Mineralogical, Geochronological and Geochemical Characteristics of Zhoukoudian Intrusion and Their Magmatic Source and Evolution
-
摘要: 周口店岩体由三次侵入的中酸性岩石组成, 本次测得石英闪长岩锆石U-Pb年龄为131.6±2.1 Ma, 闪长玢岩锆石U-Pb年龄为128.1±1.4 Ma.周口店岩体各种类型岩石属高钾钙碱性系列、偏铝质, Mg#较高, 重稀土元素和Ta、Nb、P以及Ti明显亏损, 轻稀土元素和Ba、K以及Sr相对富集, Eu没有异常, Yb元素含量小于2×10-6, (La/Yb)N和Sr/Y比值较高.斜长石复杂环带能谱线扫描表明, 花岗闪长岩中的斜长石核部牌号高, 完整的幔部由内向外由反环带和正环带组成, 微粒包体中的斜长石核部牌号低, 幔部以尘状环带开始, 然后演变为正环带, 这揭示存在多期基性岩浆的注入作用, 结合暗色微粒包体的形态、大小、数量、反向脉、矿物含量统计、矿物成分、地球化学和各类环带包体、岩墙状包体群等特征, 说明暗色微粒包体是在花岗闪长岩浆冷凝过程的不同阶段, 多期幔源基性岩浆注入并与酸性岩浆在围绕包体周缘的局部范围内发生不均一机械混合作用的结果.周口店中酸性岩石体现埃达克质岩的地球化学特征, 岩浆成分主要受源区控制, 形成于加厚下地壳环境.由石英闪长岩-花岗闪长岩至中酸性岩脉, 岩石(Er/Lu)N和Nb/Ta比值升高, 说明源区残留相矿物组合由角闪石+石榴石向石榴石+金红石变化, 岩浆源区不断变深.Abstract: Zhoukoudian intrusion contains intermediate-acidic rocks with three magmatic pulses. LA-ICPMS zircon U-Pb ages of quartz diorite and diorite-porphyry are 131.6±2.1 Ma and 128.1±1.4 Ma, respectively. All kinds of rocks are metaluminous and show high-K calc-alkaline affinity with high Mg#. Their LREE, Ba, K, and Sr contents are high and HREE, Ta, Nb, P, and Ti are low with no Eu anomaly, high (La/Yb)N and Sr/Y ratios. Zoned plagioclase with large mantle is common in granodiorite (second pulse) and mafic microgranular enclaves. Two such zoned plagioclase crystals are studied: One from granodiorite with high An compositions in cores and reverse-, normal-zoning outwardly in well-developed mantles; the other from mafic microgranular enclave with low An compositions in cores and beginning with dusty zoning and then showing normal-zoning in mantles, together with shape, size, quantity, reverse vein, statistics of mineral contents, mineral compositions, geochemistry, zoned structure, dyke-like swarms of mafic microgranular enclaves, a genesis of magma mingling between basic and acid magma is suggested. Magma mingling attained local equilibrium around enclaves and happened during whole solidified process of granodiorite due to multiple pulses of basic magma. The rocks from Zhoukoudian intrusion are adakitic and are partially melted within thickened lower crust. (Er/Lu)N and Nb/Ta ratios increase from quartz diorite-granodiorite to intermediate-acidic dykes, which indicates that residual minerals in source region changed from amphibole+garnet to garnet+rutile and the source became deeper.
-
Key words:
- dyke /
- mafic microgranular enclave /
- source /
- magma mingling /
- geochronology /
- Zhoukoudian
-
图 1 周口店岩体地质略图(据赵温霞,2003修改)
1.正常与倒转岩层;2.岩体内面理;3.平行不整合;4.角度不整合;5.岩体相带界线;6.强变形区边界线;7.石英闪长岩及编号;8.花岗闪长岩及编号;9.垂直面理的破裂;10.闪长玢岩脉和花岗闪长斑岩脉;11.应变捕虏体(包体);12.挤压片理;13.剥离断层;14.逆断层.Q.第四系;J.侏罗系;C-T.上石炭统-三叠系;∈-O.寒武系-下奥陶统;Qn.青白口系;Jx.蓟县系;Ch.长城系;Ar.官地杂岩
Fig. 1. Simplified geological map of the Zhoukoudian intrusion
图 2 (a) 环带状暗色微粒包体及向内部弯曲的凹边,(b)贯入暗色微粒包体的反向脉及向内弯曲的凹边,(c)微粒包体包围的寄主岩花岗闪长岩团块,(d)微粒包体(FS03-5)中复杂环带斜长石,核部为补丁状环带
Fig. 2. (a) A zoned mafic microgranular enclave with concave margins, (b) the reverse dykes and concave margins within a mafic microgranular enclave, (c) the granodiorite globule within a mafic microgranular enclave, (d) the complex zoned plagioclase within a mafic microgranular enclave
图 6 (a) 周口店岩体各种岩石SiO2-(K2O+Na2O)图解(Middlmost, 1994)和(b)SiO2-K2O图解(实线据Peccerillo and Taylor (1976), 虚线据Middlemost (1985))
1.橄榄辉长岩;2a.碱性辉长岩;2b.亚碱性辉长岩;3.辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.硅英岩;8.二长辉长岩;9.二长闪长岩;10.二长岩;11.石英二长岩;12.正长岩;13.副长石辉长岩;14.副长石二长闪长岩;15.副长石二长正长岩;16.副长正长岩;17.副长深成岩;18.霓方钠岩/磷霞岩/粗白榴岩
Fig. 6. (a) SiO2-(K2O+Na2O) (Middlmost, 1994) and (b) SiO2-K2O (Peccerillo and Taylor, 1976; Middlemost, 1985) diagrams of all kinds of rocks from the Zhoukoudian intrusion
图 7 周口店岩体早期闪长岩-石英闪长岩(a)、晚期花岗闪长岩(b)、中酸性岩脉(c)和暗色微粒包体(d)稀土元素原始地幔标准化配分图(标准化值见Wood et al.(1979, 1981)
Fig. 7. Primitive mantle normalized REE patterns of diorite-quartz diorite (a), granodiorite (b), intermediate-acidic dykes (c) and mafic microgranular enclaves (d) from the Zhoukoudian intrusion
图 9 (a) 周口店岩体各类岩石与实验岩石学结果、中国东部早白垩世高镁闪长岩SiO2-Mg#图解,(b)周口店岩体各类岩石(Er/Lu)N-Nb/Ta图解
a.玄武质岩:玄武质岩石熔融实验的熔体(Rushmer, 1991; Sen and Dunn, 1994; Rapp and Watson, 1995);周口店:周口店岩体各类岩石;玄武质岩+橄榄岩:玄武质岩石与橄榄岩熔融实验的熔体(Rapp et al., 1999);高镁闪长岩:中国东部高镁闪长岩(许文良等, 2006);b.由石英闪长岩-花岗闪长岩至中酸性岩脉,(Er/Lu)N值和Nb/Ta比值升高
Fig. 9. (a) SiO2-Mg# diagram of quartz diorites, granodiorites and intermediate-acidic dykes from the Zhoukoudian intrusion, (b) (Er/Lu)N-Nb/Ta diagram of quartz diorites, granodiorites and intermediate-acidic dykes from the Zhoukoudian intrusion
表 1 周口店复式侵入体石英闪长岩(07FS07-1)和闪长玢岩脉(CC04-1)锆石LA-ICPMS U-Pb测年结果
Table 1. Zircon LA-ICPMS U-Pb data of quartz diorite (07FS07-1) and diorite porphyry dyke (CC04-1) from the Zhoukoudian intrusion
Pb U Th Th/U 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ 07FS07-1 1 48.5 41.0 44.5 1.1 0.146 03 0.017 63 0.017 93 0.000 51 115.0 3.0 2 84.5 70.7 77.5 1.1 0.134 80 0.013 60 0.018 44 0.000 42 118.0 3.0 3 69.5 61.0 62.0 1.0 0.138 84 0.014 24 0.020 02 0.000 44 128.0 3.0 4 65.5 49.9 59.0 1.2 0.156 15 0.017 47 0.020 45 0.000 52 130.0 3.0 5 44.4 39.3 40.3 1.0 0.153 97 0.015 53 0.018 97 0.000 46 121.0 3.0 6 43.3 37.0 39.2 1.1 0.158 70 0.015 48 0.020 69 0.000 47 132.0 3.0 7 103.8 74.9 95.9 1.3 0.144 44 0.015 17 0.018 99 0.000 47 121.0 3.0 8 35.2 34.0 31.8 0.9 0.129 24 0.021 70 0.018 96 0.000 69 121.0 4.0 9 82.3 60.0 75.6 1.3 0.137 55 0.013 44 0.020 67 0.000 47 132.0 3.0 10 125.8 32.7 41.9 1.3 9.612 98 0.281 67 0.443 15 0.005 36 2 365.0 24.0 11 94.6 69.7 86.8 1.2 0.155 26 0.012 56 0.020 57 0.000 42 131.0 3.0 12 72.8 62.0 65.7 1.1 0.137 16 0.017 51 0.018 94 0.000 58 121.0 4.0 13 78.6 64.4 71.7 1.1 0.127 02 0.014 48 0.020 62 0.000 49 132.0 3.0 14 31.6 36.4 28.1 0.8 0.154 31 0.023 08 0.018 76 0.000 69 120.0 4.0 15 551.2 395.4 8.2 0.0 4.372 16 0.134 13 0.285 53 0.003 25 1 619.0 16.0 16 66.2 58.2 59.9 1.0 0.142 00 0.017 18 0.021 28 0.000 55 136.0 3.0 17 88.6 72.6 81.4 1.1 0.129 66 0.014 92 0.018 87 0.000 47 121.0 3.0 18 61.3 61.2 55.6 0.9 0.129 67 0.017 34 0.018 60 0.000 55 119.0 3.0 19 72.1 52.8 66.4 1.3 0.142 62 0.019 08 0.020 69 0.000 60 132.0 4.0 20 54.0 47.3 49.0 1.0 0.136 92 0.019 38 0.020 64 0.000 56 132.0 4.0 CC04-1 1 7.2 257.9 233.3 0.9 0.154 57 0.008 31 0.020 01 0.000 28 127.7 1.7 2 7.6 246.4 196.6 0.8 0.360 33 0.151 53 0.020 61 0.000 31 131.5 2.0 3 6.6 242.8 194.3 0.8 0.134 85 0.007 82 0.019 45 0.000 30 124.2 1.9 4 7.1 266.7 190.9 0.7 0.161 89 0.009 48 0.018 95 0.000 28 121.0 1.8 5 5.7 195.1 150.1 0.8 0.170 38 0.009 94 0.019 68 0.000 76 125.6 4.8 6 5.1 172.9 151.4 0.9 0.183 78 0.009 40 0.019 77 0.000 37 126.2 2.3 7 2.9 89.2 104.1 1.2 0.251 18 0.015 27 0.019 36 0.000 44 123.6 2.8 8 4.0 148.7 99.7 0.7 0.148 43 0.008 83 0.019 95 0.000 35 127.3 2.2 9 6.4 231.3 171.3 0.7 0.141 16 0.009 68 0.019 74 0.000 33 126.0 2.1 10 5.2 188.9 119.1 0.6 0.179 16 0.012 09 0.019 96 0.000 34 127.4 2.1 11 5.7 198.7 154.5 0.8 0.184 30 0.010 13 0.019 94 0.000 27 127.3 1.7 12 3.7 135.0 108.7 0.8 0.171 79 0.010 43 0.020 00 0.000 35 127.7 2.2 13 10.0 344.8 350.8 1.0 0.151 91 0.009 92 0.019 97 0.000 25 127.5 1.6 14 6.4 221.1 186.8 0.8 0.183 56 0.011 52 0.020 25 0.000 31 129.2 1.9 15 2.5 91.2 68.2 0.7 0.205 44 0.012 65 0.020 46 0.000 39 130.6 2.4 16 5.0 184.9 129.7 0.7 0.208 26 0.020 34 0.019 82 0.000 37 126.5 2.3 17 6.6 229.6 201.9 0.9 0.192 57 0.016 94 0.020 10 0.000 38 128.3 2.4 18 5.6 196.4 157.3 0.8 0.211 87 0.018 77 0.019 96 0.000 41 127.4 2.6 19 76.0 119.3 83.8 0.7 10.230 53 0.333 38 0.448 47 0.004 44 2 388.5 19.8 20 2.8 89.1 86.0 1.0 0.236 18 0.017 77 0.021 38 0.000 43 136.4 2.7 21 6.6 223.7 167.7 0.7 0.217 19 0.016 76 0.020 47 0.000 31 130.6 2.0 22 4.8 152.1 167.8 1.1 0.210 85 0.014 54 0.020 48 0.000 36 130.7 2.3 23 6.6 218.5 182.1 0.8 0.210 91 0.011 22 0.021 06 0.000 29 134.3 1.8 24 5.1 167.6 124.3 0.7 0.245 08 0.015 26 0.021 01 0.000 41 134.1 2.6 25 5.2 193.1 134.0 0.7 0.179 70 0.014 13 0.019 94 0.000 32 127.3 2.0 26 4.8 169.7 127.3 0.8 0.179 96 0.009 86 0.020 36 0.000 29 129.9 1.8 27 8.3 221.9 229.6 1.0 0.370 28 0.031 45 0.022 29 0.000 40 142.1 2.5 28 6.5 188.2 130.5 0.7 0.394 42 0.023 92 0.022 17 0.000 39 141.4 2.4 29 6.6 245.8 178.5 0.7 0.210 22 0.018 73 0.020 15 0.000 35 128.6 2.2 30 3.8 105.2 104.9 1.0 0.370 69 0.023 13 0.021 85 0.000 51 139.4 3.2 表 2 周口店岩体暗色微粒包体和中酸性岩脉主量(%)、微量元素(10-6)和Sr-Nd同位素测试结果
Table 2. Major, trace elements and Sr-Nd isotopic compositions of mafic microgranular enclaves and intermediate-acidic dykes within the Zhoukoudian intrusion
CC01-2b* CC01-2a* FS04-2a CC03-1 CC02-3 CC02-2 CC02-1 CC03-2 CC01-4 CC01-3 暗色微粒包体 花岗闪长斑岩脉 闪长玢岩脉 SiO2 54.87 53.86 59.52 63.67 65.39 61.43 60.20 55.73 61.91 62.01 TiO2 0.96 1.02 0.78 0.56 0.67 0.90 0.89 0.96 0.93 0.92 Al2O3 16.91 16.99 15.41 16.81 15.89 16.50 17.09 16.94 16.89 16.89 Fe2O3 2.19 2.44 1.37 1.52 1.08 1.13 1.42 1.82 1.56 1.49 FeO 5.55 5.78 4.30 2.55 2.58 3.75 4.08 5.10 3.30 3.35 MnO 0.14 0.14 0.12 0.06 0.04 0.06 0.07 0.10 0.06 0.06 MgO 4.36 4.57 4.06 1.69 1.63 2.52 2.53 4.24 2.00 1.98 CaO 5.98 5.96 4.55 3.31 2.93 4.00 4.14 5.73 3.67 3.70 Na2O 4.54 4.49 3.42 4.36 4.63 4.70 4.63 4.37 4.65 4.62 K2O 2.66 2.82 4.77 3.97 3.72 3.15 3.19 2.80 3.31 3.29 P2O5 0.43 0.45 0.38 0.27 0.29 0.40 0.38 0.48 0.41 0.41 CO2 0.04 0.04 0.02 0.04 0.04 0.06 0.04 0.11 0.04 0.04 H2O 1.07 1.12 0.93 0.75 0.68 0.95 0.90 1.14 0.83 0.80 Total 99.7 99.68 99.63 99.56 99.57 99.55 99.56 99.52 99.56 99.56 ACNK 0.80 0.80 0.81 0.96 0.94 0.9 0.92 0.82 0.94 0.94 Cr 133.00 53.20 50.30 17.60 32.70 41.80 21.80 61.20 16.00 14.00 Co 18.70 23.50 22.50 8.74 8.61 13.00 14.20 21.10 11.40 11.30 Ni 61.60 19.40 18.90 9.54 13.40 22.60 12.30 30.70 9.27 8.91 Sc 12.50 18.20 17.00 5.93 5.15 7.50 7.55 15.20 6.91 6.81 V 105.0 163.0 154.0 62.9 64.5 94.4 102.3 137.3 86.3 87.7 Ga 21.1 23.0 22.3 22.0 22.7 23.5 23.7 23.0 23.2 23.2 Rb 101.0 82.6 72.9 77.5 59.9 49.9 72.2 62.7 58.9 60.7 Sr 859 803 820 1 320 1 158 1 581 1 452 1 693 1 413 1 438 Y 17.1 20.2 19.3 11.4 7.8 10.5 11.0 16.6 10.7 10.7 Nb 8.59 9.22 8.77 10.60 8.17 8.44 7.74 7.87 8.31 8.50 Zr 186 212 174 210 164 178 183 197 197 199 Ba 1 842 1 113 1 106 2 006 1 719 1 958 1 944 2 111 1 993 2 008 Hf 4.68 5.06 4.21 5.23 4.30 4.53 4.68 4.85 4.93 4.99 Ta 0.36 0.49 0.45 0.62 0.43 0.40 0.37 0.37 0.43 0.44 Pb 30.5 19.7 19.8 47.3 33 26.1 57.9 17.7 19.9 20.4 Th 10.40 8.78 8.49 9.17 5.52 3.96 3.54 5.46 4.26 4.26 U 1.32 1.26 1.08 2.18 1.19 1.35 1.06 1.45 0.94 1.02 La 66.8 65.0 65.3 59.1 48.1 55.1 56.4 66.0 58.0 57.4 Ce 124 121 118 112 95.4 106 108 132 111 111 Pr 15.2 14.8 14.5 12.9 11.7 13.4 13.5 16.7 13.5 13.7 Nd 57.9 57.1 55.5 45.6 42.7 50.5 50.6 62.5 50.3 50.9 Sm 9.02 9.27 8.99 6.55 6.37 7.60 7.65 9.36 7.50 7.53 Eu 1.87 2.01 1.97 1.86 1.77 2.17 2.21 2.60 2.11 2.15 Gd 6.23 6.82 6.63 4.40 3.94 5.02 5.26 6.35 5.02 5.15 Tb 0.72 0.81 0.78 0.50 0.43 0.56 0.57 0.73 0.55 0.57 Dy 3.67 4.15 3.99 2.35 1.74 2.45 2.63 3.53 2.47 2.5 Ho 0.63 0.76 0.73 0.42 0.29 0.40 0.43 0.63 0.41 0.41 Er 1.62 1.94 1.86 1.11 0.69 0.97 1.02 1.58 0.98 0.98 Tm 0.22 0.26 0.25 0.15 0.08 0.11 0.12 0.21 0.12 0.12 Yb 1.55 1.78 1.61 1.02 0.51 0.69 0.75 1.39 0.76 0.77 Lu 0.24 0.26 0.24 0.15 0.07 0.10 0.11 0.21 0.10 0.11 87Rb/86Sr 0.339 0 0.297 6 0.257 4 0.169 8 0.149 7 0.091 3 0.143 7 0.107 2 0.120 5 0.122 2 87Sr/86Sr 0.705 767 0.705 846 0.705 872 0.705 665 0.705 729 0.705 365 0.705 426 0.705 358 0.705 675 0.705 677 2σ 4 5 5 5 5 5 4 4 5 5 Isr 0.705 141 0.705 296 0.705 396 0.705 351 0.705 452 0.705 196 0.705 16 0.705 16 0.705 452 0.705 451 147Sm/144Nd 0.094 2 0.098 1 0.098 0 0.086 7 0.090 2 0.091 0.091 4 0.090 5 0.090 1 0.089 5 143Nd/144Nd 0.511 820 0.511 803 0.511 694 0.511 714 0.511 624 0.511 598 0.511 552 0.511 654 0.511 554 0.511 55 2σ 4 6 3 5 2 4 2 4 2 6 T2DM 2.1 2.2 2.3 2.3 2.4 2.5 2.5 2.4 2.5 2.5 εNd(t) -14.3 -14.7 -16.8 -16.2 -18 -18.5 -19.4 -17.4 -19.4 -19.5 *a表示样品取自微粒包体外部,b表示取自微粒包体内部. -
[1] Allen, C.M., 1991. Local Equilibrium of Mafic Enclaves and Granitoids of the Turtle Pluton, Southeast California: Mineral, Chemical, and Isotopic Evidence. American Mineralogist, 76, 574-588. http://www.researchgate.net/publication/236554899_Local_equilibrium_of_mafic_enclaves_and_granitoids_of_the_Turtle_pluton_southeast_California_Mineral_chemical_and_isotopic_evidence [2] Anderson, A.T., 1983. Oscillatory Zoning of Plagioclase: Nomarski Interference Contrast Microscopy of Etched Polished Sections. American Mineralogist, 68(1-2): 125-129. http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=American%20Mineralogist&atitle=Oscillatory%20zoning%20of%20plagioclase%20Nomarski%20interference%20contrast%20microscopy%20of%20etched%20polished%20sections [3] Cai, J.H., Yang, G.H., Mou, B.L., et al., 2005. Zircon U-Pb Age, Sr-Nd-Pb Isotopic Compositions and Trace Element of Fangshan Complex in Beijing and Their Petrogenesis Significance. Acta Petrologica Sinica, 21(3): 776-788 (in Chinese with English abstract). [4] Carlier, G., Lorand, J.P., 2008. Zr-Rich Accessory Minerals (Titanite, Perrierite, Zirconolite, Baddeleyite) Record Strong Oxidation Associated with Magma Mixing in the South Peruvian Potassic Province. Lithos, 104: 54-70. doi: 10.1016/j.lithos.2007.11.008 [5] Castro, A., 2001. Plagioclase Mornphologies in Assimilation Experiments. Implications for Disequilibrium Melting in the Generation of Granodiorite Rocks. Mineralogy and Petrology, 71(1-2): 31-49. doi: 10.1007/s007100170044 [6] Chappell, B.W., White, A.J.R., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28: 1111-1138. doi: 10.1093/petrology/28.6.1111 [7] Chen, B., Liu, C.Q., Tian, W., 2006. Magma-Mixing between Mantle- and Crustal-Derived Melts in the Process of Mesozoic Magmatism, Taihangshan: Constraints from Petrology and Geochemistry. Earth Science Frontiers, 13(2): 140-147 (in Chinese with English abstract). http://www.cqvip.com/QK/98600X/20062/21391287.html [8] Chen, B., Zhai, M.G., Shao, J.A., 2003. Petrogenesis and Significance of the Mesozoic North Taihang Complex: Major and Trace Element Evidence. Science in China (Seri. D), 46(9): 941-953. doi: 10.1007/BF02991340 [9] Cortés, J.A., 2009. On the Harker Variation Diagrams; A Comment on "the Statistical Analysis of Compositional Data. Where Are We and Where Should We Be Heading?" by Aitchison and Egozcue (2005). Mathematical Geosciences, 41(7), 817-828. doi: 10.1007/s11004-009-9222-8 [10] Dahlquist, J.A., 2002. Mafic Microgranular Enclaves: Early Segregation from Metaluminous Magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth Sciences, 15: 643-655. doi: 10.1016/S0895-9811(02)00112-8 [11] Deng, J.F., 1978. Thermodynamic Calculations for Metamorphic Reactions Involved in the Formation of Sillimanite-Hornfels. Geochimica, 3: 234-241 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX197803007.htm [12] Dodge, F.C.W., Kistler, R.W., 1990. Some Additional Observations on Inclusions in the Granitic Rocks of the Sierra Nevada. Journal of Geophysical Research, 95: 17841-17848. doi: 10.1029/JB095iB11p17841 [13] Fan, Q.C., Zhang, H.F., Sui, J.L., et al., 2005. Magma Underplating and Hannuoba Present Crust-Mantle Transitional Zone Composition: Xenolith Petrological and Geochemical Evidence. Science in China (Seri. D), 48(8): 1089-1105. http://www.cnki.com.cn/Article/CJFDTotal-JDXG200508001.htm [14] Forster, H.J., Tischendorf, G., Trumbull, R.B., 1997. An Evaluation of the Rb vs. (Y+Nb) Discrimination Diagram to Infer Tectonic Setting of Silicic Igneous Rocks. Lithos, 40: 261-293. doi: 10.1016/S0024-4937(97)00032-7 [15] Gagnevin, D., Daly, J.S., Poli, G., 2008. Insights into Granite Petrogenesis from Quantitative Assessment of the Field Dstribution of Enclaves, Xenoliths and K-Feldspar Megacrysts in the Monte Capanne Pluton, Italy. Mineralogical Magazine, 72(4): 925-940. doi: 10.1180/minmag.2008.072.4.925 [16] Gan, G.L., 1993. Mineral-Melt Element Partition Coefficients: Data and Major Variation Regularities. Acta Petrologica et Mineralogica, 12(2): 144-181 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW199302006.htm [17] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432: 892-897. doi: 10.1038/nature03162 [18] Ge, X.Y., Li, X.H., Chen, Z.G., et al., 2002. Geochemistry and Petrogenesis of Jurassic High Sr Low Y Granitoids in Eastern China: Constrains on Crustal Thickness. Chinese Science Bulletin, 47(11): 962-968. doi: 10.1360/02tb9216 [19] He, Z.L., 1935. The Granitic Intrusion from the Western Mountain. The State-Run Central Academia Cluster Publishes, Beijing, 5 (in Chinese). [20] Holden, P., Halliday, A.N., Stephes, W.E., 1987. Neodymium and Strontium Isotope Content of Microdiorite Enclaves Points to Mantle Input to Granitoid Production. Nature, 330(5): 53-56. doi: 10.1038/330053a0 [21] Huang, F.S., Jiang, C.Y., 1985. Geological Geochemical Characteristics of Fang Shan Intrusion and Origin Research. Journal of Chang'an University Earth Science Edition, 7(3): 9-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX198503002.htm [22] Izbekov, P.E., Eichelberger, J.C., Patino, L.C., et al., 2002. Calcic Cores of Plagioclase Phenocrysts in Andesite from Karymsky Volcano: Evidence for Rapid Introduction by Basaltic Replenishment. Geology, 30(9): 799-802. doi:10.1130/0091-7613(2002)030<0799:CCOPPI>2.0.CO;2 [23] Janoušek, V., Braithwaite, C.J.R., Bowes, D.R., 2004. Magma-Mixing in the Genesis of Hercynian Calc-aAkaline Granitoids: An Integrated Petrographic and Geochemical Study of the Sázava Intrusion, Central Bohemian Pluton, Czech Republic. Lithos, 78: 67-99. doi: 10.1016/j.lithos.2004.04.046 [24] Lesher, C.E., 1990. Decoupling of Chemical and Isotopic Exchange during Magma Mixing. Nature, 344(15), 235-237. doi: 10.1038/344235a0 [25] Liu, B., Ba, J., Zhang, L., et al., 2008. Zircon LA-ICP-MS U-Pb Dating of Metamorphism and Anatexis of the Guandi Complex, Zhoukoudian Area, Beijing. Geological Science and Technology Information, 27(6): 37-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200806008.htm [26] Liu, G.H., Wu, J.S., 1987. Metamorphic Zones of the Fangshan Area in Beijing. Bulletin of the Chinese Academy of Geological Sciences, 16: 113-137 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB198702010.htm [27] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51: 537-571. doi: 10.1093/petrology/egp082 [28] Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247: 133-153. doi: 10.1016/j.chemgeo.2007.10.016 [29] Loomis, T.P., 1982. Numerical Simulations of Crystallization Processes of Plagioclase in Complex Melts: The Origin of Major and Oscillatory Zoning in Plagioclase. Contributions to Mineralogy and Petrology, 81: 219-229. doi: 10.1007/BF00371299 [30] Ma, C.Q., 1988. The Magm-Dynamic Mechanism of Emplacement and Compositional Zonation of the Zhoukoudian Stock, Beijing. Acta Geological Sinica, 62(4): 329-341 (in Chinese with English abstract). [31] Ma, C.Q., Ming, H.L., Yang, K.G., 2004. An Ordovician Magmatic Arc at the Northern Foot of Dabie Mountains: Evidence from Geochronology and Geochemistry of Intrusive Rocks. Acta Petrologica Sinica, 20(3): 393-402 (in Chinese with English abstract). http://www.oalib.com/paper/1472430 [32] Ma, C.Q., Wang, R.J., 1990. The Characteristic Features and Origin of K-Feldspar Megacrysts in the Zhoukoudian Pluton, Beijing. Acta Mineralogica Sinica, 10(4): 323-331 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199004004.htm [33] Ma, C.Q., Wang, R.J., Qiu, J.X., 1992. Enclaves as Indicators of the Origin of Granitoid Magma and Repeater Magma Mingling: An Example from The Zhoukoudian Intrusion, Beijing. Geological Review, 38(2): 109-119 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DZLP199202001&dbcode=CJFD&year=1992&dflag=pdfdown [34] Ma, C.Q., Wang, R.J., Yang, K.G., 1996. Magmatic Thermodynamic Structures of the Zhoukoudian Granodioritic Intrusion in the Western Hills of Beijing, Field Trip Guide of 30th International Geological Congress. Geological Publishing House, Beijing, 1-14. [35] Ma, F., Mu, Z.G., Liu, Y.L., 2003. Fangshan Intrusion, Beijing: Constraints from Trace and Rare Earth Elements As Well As Sr-Isotope Composition. Acta Geosicientia Sinica, 24(2): 105-110 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200302001.htm [36] Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4), 581-593. doi: 10.1016/j.epsl.2005.12.034 [37] Middlemost, E.A.K., 1985. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. Longman, London. [38] Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth Science Reviews, 37: 215-224. doi: 10.1016/0012-8252(94)90029-9 [39] Morgan, D.J., Jerram, D.A., Chertkoff, D.G., et al., 2007. Combining CSD and Isotopic Microanalysis: Magma Supply and Mixing Processes at Stromboli Volcano, Aeolian Islands, Italy. Earth and Planetary Science Letters, 260: 419-431. doi: 10.1016/j.epsl.2007.05.037 [40] Pearce, J.A., Harris, B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956 [41] Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 63-81. doi: 10.1007/BF00384745 [42] Perugini, D., Poli, G., Christofides, G., et al., 2003. Magma Mixing in the Sithonia Plutonic Complex, Greece: Evidence From Mafic Microgranular Enclaves. Mineralogy and Petrology, 78: 173-200. doi: 10.1007/s00710-002-0225-0 [43] Perugini, D., Poli, G., Valentini, L., 2005. Strange Attractors in Plagioclase Oscillatory Zoning: Petrological Implications. Contributions to Mineralogy and Petrology, 149: 482-497. doi: 10.1007/s00410-005-0667-6 [44] Qian, Q., Zhong, S.L., Li, T.Y., et al., 2002. Geochemical Characteristics and Petrogenesis of the Badaling High Ba-Sr Granitoids: A Comparison of Igneous Rocks from North China and the Dabie-Sulu Orogen. Acta Petrologica Sinica, 18(3): 275-292 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200203001.htm [45] Qin, F., Xu, X.X., Luo, Z.H., 2006. Mixing and Mingling in Petrogenesis of the Fangshan Intrusion, Beijing. Acta Petrologica Sinica, 22(12): 2957-2970 (in Chinese with English abstract). http://www.researchgate.net/publication/286221578_Mixing_and_mingling_in_petrogenesis_of_the_Fangshan_intrusion_Beijing [46] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160: 335-356. doi: 10.1016/S0009-2541(99)00106-0 [47] Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36: 891-931. doi: 10.1093/petrology/36.4.891 [48] Rushmer, T., 1991. Partial Melting of Two Amphibolites: Contrasting Experimental Results Under Fluid-Absent Conditions. Contributions to Mineralogy and Petrology, 107: 41-59. doi: 10.1007/BF00311184 [49] Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa: Implications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117: 394-409. doi: 10.1007/BF00307273 [50] Sparks, R.S.J., Marshall, L.A., 1986. Thermal and Mechanical Constraints on Mixing between Mafic and Silicic Magmas. Journal of Volcanology and Geothermal Research, 29(1-4): 99-124. doi: 10.1016/0377-0273(86)90041-7 [51] Streck, M.J., Leeman, W.P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, Not a Primitive Mantle Melt. Geology, 35(4), 351-354. doi: 10.1130/G23286A.1 [52] Sun, J.F., Yang, J.H., Wu, F.Y., 2008. Magma Mixing Origin of the Fangshan Pluton: Mineral in situ Hf and Nd Isotopic Evidences. Bulletin of Mineralogy, Petrology and Geochemistry, 27(Suppl. ): 388 (in Chinese). [53] Sun, J.F., Yang, J.H., Wu, F.Y., et al., 2010. Magma Mixing Controlling the Origin of the Early Cretaceous Fangshan Ganitic Pluton, North China Craton: In Situ U-Pb Age and Sr-, Nd-, Hf- and O-Isotope Evidence. Lithos, 120: 421-438. doi: 10.1016/j.lithos.2010.09.002 [54] Tao, J.D., Ma, C.Q., Zhang, J.Y., et al., 2009. Evolution of Enclaves in Beijing Fangshan Granodiorite and Genesis of Dioritic Microgranular Enclaves. Geological Science and Technology Information, 28(2): 33-41(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200902006.htm [55] Tsuchiyama, A., 1985. Dissolution Kinetics of Plagioclase in Melt of the System Diopside-Albite-Anorthite, and the Origin of Dusty Plagioclase in Andesites. Contributions to Mineralogy and Petrology, 89: 1-16. doi: 10.1007/BF01177585 [56] Vernon, R.H., 1990. Crystallization and Hybridism in Microgranitoid Enclave Magmas: Microstructural Evidence. Journal of Geophysical Research, 95: 17849-17859. doi: 10.1029/JB095iB11p17849 [57] Wang, D.Z., Xie, L., 2008. Magma Mingling: Evidence from Enclaves. Geological Journal of China Universities, 14(1): 16-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200801004.htm [58] Wang, D.Z., Zhou, X.M., Xu, X.S., et al., 1992. On Geneses of Microgranitoid Enclaves. Journal of Guilin College of Geology, 12(3): 235-241 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX199203007.htm [59] Wang, R.J., Ma, C.Q., 1989. Features and Emplacement of the Zhoukoudian Stock, Beijing. Journal of China University of Geosciences, 14(4): 399-406 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX198904009.htm [60] Wang, R.J., Ma, C.Q., Li, Z.Z., et al., 1990. Thermodynamic Structures and Emplacement Mechanism of the Zhoukoudian Intrusion. Regional Geology of China, 1: 1-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD199001000.htm [61] Wang, S.P., 1950. Petrogenesis Study on the Fangshan Intrusions. Geological Review, 15: 13-32 (in Chinese). [62] Wang, S.S., 1983. Age Determinations of 40Ar-40K, 40Ar-39Ar and Radiogenic 40Ar Released Characteristics on K-Ar Geostandards of China. Chinese Journal of Geology, 4: 315-323 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/80001776549/ [63] Wang, Y., Deng, J.F., Ji, G.Y., 2004. A Perspective on the Geotectonic Setting of Early Cretaceous Adakite-Like Rocks in the Lower Reaches of Yangtze River and Its Significance for Copper-Gold Mineralization. Acta Petrologica Sinica, 20(2): 297-314 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200402010.htm [64] Wood, D.A., Joron, J.L., Treuil, M., et al., 1979. Elemental and Sr Isotope Variations in Basic Lavas from Iceland and the Surrounding Ocean Floor. Contributions to Mineralogy and Petrology, 70: 319-339. doi: 10.1007/BF00375360 [65] Wood, D.A., Tarney, J., Weaver, B.L., 1981. Trace Element Variations in Atlantic Ocean Basalts and Proterozoic Dykes From Northwest Scotland: Their Bearing Upon the Nature and Geochemical Evolution of the Upper Mantle. Tectonophysics, 75: 91-112. doi: 10.1016/0040-1951(81)90211-0 [66] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). http://www.oalib.com/paper/1492686 [67] Xiong, X.L., Adam, J., Green, T.H., et al., 2006. Trace Element Characteristics of Partial Melts Produced by Melting of Metabasalts at High Pressures: Constraints on the Formation Condition of Adakitic Melts. Science in China Series D-Earth Science, 49(9): 915-925. doi: 10.1007/s11430-006-0915-2 [68] Xu, W.L., Gao, S., Wang, Q.H., et al., 2006. Mesozoic Crustal Thickening of the Eastern North China Craton: Evidence from Eclogite Xenoliths and Petrologic Implications. Geology, 34(9): 721-724. doi: 10.1130/G22551.1 [69] Xu, W.L., Yang, C.H., Yang, D.B., et al., 2006. Mesozoic High-Mg Diorites in Eastern North China Craton: Constraints on the Mechanism of Lithospheric Thinning. Earth Science Frontiers, 13(2): 120-129 (in Chinese with English abstract). http://www.researchgate.net/publication/291796536_Mesozoic_high-Mg_diorites_in_eastern_North_China_craton_Constraints_on_the_mechanism_of_lithospheric_thinning [70] Yan, D.P., Zhou, M.F., Song, H.L., et al., 2005. A Geochronological Constraint to the Guandi Complex, Western Hills of Beijing, and Its Implications for the Tectonic Evolution. Earth Science Frontiers, 21: 332-337 (in Chinese with English abstract). http://www.researchgate.net/publication/285500523_A_geochronological_constraint_to_the_Guandi_complex_Western_Hills_of_Beijing_and_its_implications_for_the_tectonic_evolution [71] Yan, D.P., Zhou, M.F., Song, H.L., et al., 2006. Mesozoic Extensional Structures of the Fangshan Tectonic Dome and Their Subsequent Reworking during Collisional Accretion of the North China Block. Journal of the Geological Society, 163(1): 127-142. doi: 10.1144/0016-764904-154 [72] Yan, D.P., Zhou, M.F., Zhao, D.G., et al., 2011. Origin, Ascent and Oblique Emplacement of Magmas in a Thickened Crust: An Example From the Cretaceous Fangshan Adakitic Pluton, Beijing. Lithos, 124, 102-120. doi: 10.1016/j.lithos.2010.11.015 [73] Yang, Z.W., 1928. Zhoukoudian Granite in the Western Mountain of Beijing. Academical Record of Geology Department of Peking University, 3: 10-14 (in Chinese). [74] Ye, L.F., 1920. Geology of Westhill in Beijing. Ministry of Commerce and Agriculture, Beijing, 30-31 (in Chinese). [75] Zhang, D.Q., 1981. The Characteristics and Origin of the Dioritic Inclusions in the Fangshan-Intrusion, Beijing. Geological Review, 27: 143-149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP198102008.htm [76] Zhang, Q., Qian, Q., Wang, E.Q., et al., 2001a. An East China Plateau in Mid-Late Yanshanian Period: Implication from Adakites. Scientia Geologica Sinica, 36(2): 248-255 (in Chinese with English abstract). http://www.researchgate.net/publication/303564342_An_East_China_plateau_in_Mid-Late_Yanshanian_Period_Implicationfrom_adakites [77] Zhang, Q., Wang, Y., Qian, Q., et al., 2001b. The Characteristics and Tectonic-Metallogenic Significances of the Adakites in Yanshan Period from Eastern China. Acta Petrologica Sinica, 17(2): 236-244 (in Chinese with English abstract). http://www.researchgate.net/publication/279686768_the_characteristics_and_tectonic-metallogenic_significances_of_the_adakites_in_yanshan_period_from_eastern_china [78] Zhang, Q., Wang, Y., Xiong, X.L., et al., 2008. Adakite and Granite: Challenge and Opportunity. China Land Press, Beijing (in Chinese). [79] Zhao, W.X., 2003. Geology of Zhoukoudian and Field Geological Working Methods, Advanced Technology Application. China University of Geosceiences Press, Wuhan (in Chinese). [80] Zhao, Z.H., Xiong, X.L., Wang, Q., et al., 2008. Some Aspects on Geochemistry of Nb and Ta. Geochimica, 37(4): 304-320 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200804004.htm [81] Zheng, S.C., Huang, F.S., Jiang, C.Y., et al., 1987. Oxygen, Hydrogen and Carbon Isotope Studies for Fangshan Granitic Intrusion. Acta Petrologica Sinica, 3: 13-22 (in Chinese with English abstract). [82] 蔡剑辉, 阎国翰, 牟保磊, 等, 2005. 北京房山岩体锆石U-Pb年龄和Sr、Nd、Pb同位素与微量元素特征及成因探讨. 岩石学报, 21(3): 776-788. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503018.htm [83] 陈斌, 刘超群, 田伟, 2006. 太行山中生代岩浆作用过程中的壳幔岩浆混合作用: 岩石学和地球化学证据. 地学前缘, 13(2): 140-147. doi: 10.3321/j.issn:1005-2321.2006.02.012 [84] 邓晋福, 1978. 硅线石角岩形成时变质反应的热力学计算. 地球化学, 3: 234-241. doi: 10.3321/j.issn:0379-1726.1978.03.009 [85] 干国樑, 1993. 矿物-熔体间元素分配系数资料及主要变化规律. 岩石矿物学杂志, 12(2): 144-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199302006.htm [86] 何作霖, 1935. 西山花岗岩侵入体. 北平: 国立中央研究院丛刊, 5. [87] 黄福生, 姜常义, 1985. 房山岩体的地质-地球化学特征及其成因探讨. 西安地质学院学报, 7(3): 9-29. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX198503002.htm [88] 刘兵, 巴金, 张璐, 等, 2008. 北京周口店官地杂岩变质-深熔作用的锆石LA-ICP-MS U-Pb定年. 地质科技情报, 27(6): 37-42. doi: 10.3969/j.issn.1000-7849.2008.06.007 [89] 刘国惠, 伍家善, 1987. 北京房山地区的变质带. 中国地质科学院院报, 16: 113-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198702010.htm [90] 马昌前, 1988. 北京周口店岩株侵位和成分分带的岩浆动力学机理. 地质学报, 62(4): 329-341. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198804004.htm [91] 马昌前, 明厚利, 杨坤光, 2004. 大别山北麓的奥陶纪岩浆弧: 侵入岩年代学和地球化学证据. 岩石学报, 20(3): 393-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403003.htm [92] 马昌前, 王人镜, 1990. 北京周口店岩体中钾长石巨晶的特征及成因. 矿物学报, 10(4): 323-331. doi: 10.3321/j.issn:1000-4734.1990.04.005 [93] 马昌前, 王人镜, 邱家骧, 1992. 花岗质岩浆起源和多次岩浆混合的标志: 包体-以北京周口店岩体为例. 地质论评, 38(2): 109-119. doi: 10.3321/j.issn:0371-5736.1992.02.002 [94] 马芳, 穆治国, 刘玉琳, 2003. 北京房山侵入岩体: 微量元素、稀土元素及Sr同位素组成对其成因的制约. 地球学报, 24(2): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200302001.htm [95] 钱青, 钟孙霖, 李通艺, 等, 2002. 八达岭基性岩和高Ba-Sr花岗岩地球化学特征及成因探讨: 华北和大别-苏鲁造山带中生代岩浆岩的对比. 岩石学报, 18(3): 275-292. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203001.htm [96] 孙金凤, 杨进辉, 吴福元, 2008. 房山岩体的岩浆混合成因: 矿物原位微区Hf、Nd同位素证据. 矿物岩石地球化学通报, 27(增刊): 388. [97] 覃锋, 徐晓霞, 罗照华, 2006. 北京房山岩体形成过程中的岩浆混合作用证据. 岩石学报, 22(12): 2957-2970. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200612012.htm [98] 陶继东, 马昌前, 张金阳, 等, 2009. 北京房山花岗闪长岩体中包体的演化及闪长质微粒包体的成因. 地质科技情报, 28(2): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200902006.htm [99] 王德滋, 谢磊, 2008. 岩浆混合作用: 来自岩石包体的证据. 高校地质学报, 14(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200801004.htm [100] 王德滋, 周新民, 徐夕生, 等, 1992. 微粒花岗岩类包体的成因. 桂林冶金地质学院学报, 12(3): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX199203007.htm [101] 王人镜, 马昌前, 1989. 北京周口店侵入体特征及其侵位机制. 地球科学, 14(4): 399-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198904009.htm [102] 王人镜, 马昌前, 李志中, 等, 1990. 周口店岩体热动力构造及定位机制研究. 中国区域地质, 1: 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD199001000.htm [103] 王述平, 1950. 房山侵入体之岩石成因学的究研. 地质论评, 15: 13-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1950Z1002.htm [104] 王松山, 1983. 我国K-Ar法标准样40Ar-40K和40Ar-39Ar年龄测定及放射性成因40Ar的析出特征. 地质科学, 4: 315-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198304001.htm [105] 汪洋, 邓晋福, 姬广义, 2004. 长江中下游地区早白垩世埃达克质岩的大地构造背景及其成矿意义. 岩石学报, 20(2): 297-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402010.htm [106] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm [107] 许文良, 杨承海, 杨德彬, 等, 2006. 华北克拉通东部中生代高Mg闪长岩-对岩石圈减薄机制的制约. 地学前缘, 13(2): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602014.htm [108] 颜丹平, 周美夫, 宋鸿林, 等, 2005. 北京西山官地杂岩的形成时代及构造意义. 地学前缘, 21: 332-337. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200502018.htm [109] 杨增威, 1928. 北京西山周口店花岗岩. 北京大学地质系学会志, 3: 10-14. [110] 叶良辅, 1920. 北京西山地质志. 北京: 农商部地质调查所, 30-31. [111] 张德全, 1981. 北京房山侵入体闪长质包体的特征及其成因意义. 地质论评, 27: 143-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP198102008.htm [112] 张旗, 钱青, 王二七, 等, 2001a. 燕山中晚期的中国东部高原: 埃达克岩的启示. 地质科学, 36(2): 248-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200102015.htm [113] 张旗, 王焰, 钱青, 等, 2001b. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报, 17(2): 236-244. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102007.htm [114] 张旗, 王焰, 熊小林, 等, 2008. 埃达克岩和花岗岩: 挑战与机遇. 北京: 中国大地出版社. [115] 赵温霞, 2003. 周口店地质及野外地质工作方法与高新技术应用. 武汉: 中国地质大学出版社. [116] 赵振华, 熊小林, 王强, 等, 2008. 铌与钽的某些地球化学问题. 地球化学, 37(4) : 304-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200804004.htm [117] 郑斯成, 黄福生, 姜常义, 等, 1987. 房山花岗岩岩体氧氢碳的同位素研究. 岩石学报, 3: 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB198703002.htm