Numerical Simulation of the Magmatism of North China Craton during Yanshanian
-
摘要: 为了定量给出华北克拉通燕山期岩浆活动的规模,在合理构建华北燕山期地质-物理模型的基础上,利用有限元方法,在忽略玄武岩浆内对流只考虑热传导的假定下,反演了该区燕山期形成花岗岩所需要的侵入玄武岩浆的量.通过计算表明:(1)在压力1 GPa、地幔的玄武岩浆底侵作用于下地壳英云闪长岩围岩的情况下,英云闪长岩围岩的纯熔融量与底侵玄武岩纯结晶总量的比值约为0.161;假设仅有25%的熔浆可分离出来,则分离出的熔浆与玄武岩结晶总量比约为0.040 25.(2)数值模拟得到最后发生相变的整体区域为-50.285~-36.867 km.与前人研究得到的现今下地壳下部和壳幔过渡带33~40 m和40~50 km接近,表明此数值模拟方法具有可行性.Abstract: After thinning of the North China craton, the magmatism was widely distributed, and, the mantle mafic basalt intruded and reconstructed the wall rock, which formed large scale granite. This paper establishes a proper geophysics model and use the finite element method to numerically simulates the the mantle mafic basalt underplating. If we ignore the convection inside the basalt and only consider the conduction, we inversion calculate the formation of granite required how much intrusion of basaltic magma. The results indicate: (1) under 1 GPa condition, the pure melting volume of tonalite rock and pure crystallization volume of underplating basalt ratio is about 0.161; on the assumption that only 25% magma can dissociate, the total ratio of separated out of basalt lava is about 0.040 25. (2) The numerical results demonstrate the phase transition zone is from -50.285 to -36.867 km to the end. It is close to the results that the present crust and crust-mantle transition zone is about 33-40 and 40-50 km, which is obtained by previous researchers. Hence our conclusion has been verified by petrology.
-
Key words:
- North China /
- Yanshanian /
- phase change /
- heat conduction /
- magmatism /
- geophysics /
- lithosphere
-
图 1 1 GPa无水条件下4种岩石类型的熔体份额对温度的函数关系(Bergantz, 1989)
a.玄武岩;b.英云闪长岩;c.白云母花岗岩;d.变泥质岩
Fig. 1. Melt fraction as a function of temperature for four rock types at 1 GPa
表 1 围岩和岩浆热学参数
Table 1. Parameters of rock and magma
L
(kJ·kg-1)ρf
(kg·m-3)ρw
(kg·m-3)kf
(W·m-1·K-1)kw
(W·m-1·K-1)cf
(J·kg-1/℃)cw
(J·kg-1/℃)3.5×105 2.54 2.75 2.105 5 1.925 1 200 1 000 注:ρf和ρw分别表示围岩和岩浆的密度;kf与kw分别表示围岩和岩浆的导热系数;cf和cw分别表示围岩和岩浆的容积热容量;数据参考崔承禹(1994)、付明希等(2004)和刘翠等(2006). 表 2 英云闪长岩围岩10 Ma后的不同熔融程度所对应的各项参数
Table 2. Parameters of different melting levels for tonalite after 10 Ma
熔融程度(%) 温度(℃) 时间(Ma) 距离(km) 0 850 10 3.108 10 875 10 2.474 20 900 10 1.850 30 950 10 0.800 38 1 000 10 0.120 表 3 玄武岩岩浆10 Ma后的不同结晶程度所对应的各项参数
Table 3. Parameters of different crystallization levels for basalt magma after 10 Ma
熔融程度(%) 温度(℃) 时间(Ma) 距离(km) 0 1 250 10 10.285 10 1 225 10 8.739 20 1 200 10 7.410 30 1 150 10 6.950 40 1 160 10 6.724 50 1 175 10 6.296 60 1 185 10 5.690 70 1 190 10 5.306 80 1 125 10 4.216 90 1 100 10 3.448 100 1 075 10 2.724 -
[1] An, M.J., Shi, Y.L., 2007. Three-dimensional thermal structure of the Chinese continental crust and upper mantle. Science in China (Ser. D), 37(6): 736-745 (in Chinese with English abstract). doi: 10.1007%2Fs11430-007-0071-3 [2] Bergantz, G.W., 1989. Underplating and partial melting: implications for melt generation and extraction. Science, 245(4922): 1093-1095. doi: 10.1126/science.245.4922.1093 [3] Bird, P., 1978. Initiation of intracontinental subduction in the Himalaya. J. Geophys Res., 83(10): 4975-4987. doi: 10.1029/JB083iB10p04975 [4] Bird, P., 1979. Continental delamination and the Colorado plateau. J. Geophys. Res., 84(B13): 7561-7571. doi: 10.1029/JB084iB13p07561 [5] Carlson, R.W., Pearson, D.G., James, D.E., 2005. Physical, chemical and chronological characteristics of continental mantle. Rev. Geophys., 43: RG1001. doi: 10.1029/2004RG000156 [6] Cheng, Y.Q., 1994. The introduction of China geology. Geological Press, Beijing, 90-164 (in Chinese). [7] Cui, C.Y., 1994. The research of rock's heat parameter. Environment Remote Sensing, 9(3): 177-183 (in Chinese with English abstract). [8] Deng, J.F., Mo, X.X., Zhao, H.L., et al., 1994. Lithosphere root/de-rooting and activation of the East China continent. Geoscience, 8(3): 349-356 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ403.017.htm [9] Deng, J.F., Su, S.G., Liu, C., et al., 2006. Discussion on the lithospheric thinning of the North China craton: delamination? Or thermal erosion and chemical metasomatism? Earth Science Frontiers, 13(2): 105-119 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200602012.htm [10] Deng, J.F., Su, S.G., Mo, X.X., et al., 2004. The sequence of magmatic tectonic events and orogenic processes of Yanshan belt, North China. Acta Geol Sinica, 78(1): 260-266. doi: 10.1111/j.1755-6724.2004.tb00698.x [11] Deng, J.F., Zhao, H.L., Luo, Z.H., et al., 1998. Mantle plumes and lithosphere motion in East Asia. In: Flower, M.F.J., Chung, S.L., Lo, C.H., et al., eds., Mantle dynamics and plate interactions in East Asia. American Geophysical Union, Washington D.C., 59-65. doi: 10.1029/GD027p0059. [12] Deng, J.F., Zhao, H.L., Mo, X.W., et al., 1996. Continental roots—plume tectonics of China, key to the continental dynamics. Geol. Pub. House, Beijing (in Chinese). [13] E, M.L., Zhao, D.S., 1987. The Cenozoic basalts and deep-seated rock xenoliths in eastern China. Science Press, Beijing (in Chinese). [14] Fan, Q.C., Hooper, P.R., 1989. The mineral chemistry of ultramafic xenoliths of Eastern China: implications for upper mantle composition and the paleogeotherms. J. Petrol., 30(5): 1117-1158. doi: 10.1093/petrology/30.5.1117 [15] Fan, Q.C., Liu, R.X., 1996. The high-temperature granulite xenolith of basalt at Hannuoba. Chinese Science Bulletin, 41(3): 235-238 (in Chinese with English abstract). doi: 10.1360/csb1996-41-3-235 [16] Fan, Q.C., Liu, R.X., Li, H.M., et al., 1998. Zircon chronology and REE geochemistry of granulite xenolith at Hannuoba. Chinese Science Bulletin, 43(18): 1510-1515 (in Chinese with English abstract). doi: 10.1007/BF02883438 [17] Fan, Q.C., Sui, J.L., Liu, R.X., et al., 2001. Eclogite facies garnet-pyroxenolite xenolith in Hannuoba area: new evidence of magma underplating. Acta Petrologica Sinica, 17(1): 1-6 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200101000.htm [18] Fan, Q.C., Zhang, H.F., Sui, J.L., et al., 2005. Magma underplating and Hannuoba present crust-mantle transitional zone composition: xenolith petrological and geochemical evidence. Science in China (Ser. D), 48(8): 1089-1105 (in Chinese with English abstract). https://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020414944047.html [19] Fan, W.M., Menzies, M.A., 1992. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath Eastern China. Geotectonica Metallogenia, 16(1): 171-180. http://pure.royalholloway.ac.uk/portal/en/publications/destruction-of-aged-lower-lithosphere-and-accretion-of-asthenosphere-mantle-beneath-eastern-china(5807f052-c717-4821-aebe-1c3430c74027).html [20] Fu, M.X., Hu, S.B., Wang, J.Y., 2004. Thermal regime transition in eastern North China and its tectonic implication. Science in China (Ser. D), 48(6): 840-848. doi: 10.1360/03yd0098 [21] Fyfe, W.S., Leonardos, O.H., 1973. Ancient metamorphic-migmatite belts of Brazilian African coasts. Nature, 244(8): 501-502. doi: 10.1038/244501a0 [22] Gallagher, R.K., Hawkesworth, C.J., 1992. Dehydration melting and the generation of continental flood basalts. Nature, 358(7): 57-59. doi: 10.1038/358057a0 [23] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling lower continental crust in the North China craton. Nature, 432(12): 892-897. doi: 10.1038/nature03162 [24] Gao, S., Zhang, B.R., Jin, Z.M., et al., 1998. How mafic is the lower continental crust? Earth Planetary Science Letters, 161(1-4): 101-117. doi: 10.1016/S0012-821X(98)00140-X [25] Gao, S., Zhou, L., Lin, W.L., et al., 2005. Age and geochemistry of volcanic rocks of Angou Group at the Archean-Proterozoic boundary. Earth Science—Journal of China University of Geosciences, 30(3): 259-263 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200503001.htm [26] Hirose, K., Kushiro, I., 1993. Partial melting of day peridotites at high pressure: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planetary Science Letters, 114(4): 477-489. doi: 10.1016/0012-821X(93)90077-M [27] Karato, 2008. Deformation of earth materials. Cambridge University Press, London. [28] King, S., 2005. Archean cratons and mantle dynamics. Earth Planetary Science Letters, 234(1-2): 1-14. doi: 10.1016/j.epsl.2005.03.007 [29] Liu, C., Deng, J.F., Su, S.G., et al., 2006. The numerical simulation of heat fluxes of Yanshanian igneous activity, North China. Earth Science Frontiers, 13(2): 158-164 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200602018.htm [30] Lowell, R.P., 1982. Thermal convection in magmas generated by hot-plate heating. Nature, 30(11): 253-254. doi: 10.1038/300253a0 [31] Mao, J.W., Zhang, Z.H., Yu, J.J., et al., 2003. Nitrogen isotope and content record of Mesozoic orogenic gold deposits surrounding the North China craton. Science in China (Ser. D), 46(3): 231-245 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200303004.htm [32] Menzies, M.A., Hawkesworth, C.J., 1987. Mantle xenoliths. In: Nixon, P.H., ed., Upper mantle processes and composition. John Wiley & Sons Ltd., New York, 725-738. [33] Menzies, M.A., Xu, Y.G., 1998. Geodynamics of the North China craton. In: Flower, M., Chung, S.L., Lo, C.H., et al., eds., Mantle dynamics and plate interaction in East Asia. American Geophys Union Geodyn Ser., Washington, D.C., 27(1): 155-165. [34] Olafsson, M., Eggler, D.H., 1983. Phase relations of amphibole, amphibole-carbonate and phlogopite-carbonate peridotite: petrological constraints on the asthenosphere. Earth Planetary Science Letters, 64(2): 305-315. doi: 10.1016/0012-821X(83)90212-1 [35] Petford, N., 2001. Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth Planetary Science Letters, 193(3-4): 483. doi: 10.1016/S0012-821X(01)00481-2 [36] Qiao, Y.C., Zhao, G.P., Shi, Y.L., et al., 2010. Numerical simulation of the Qinghai-Tibet plateau rising rates influence the Permafrost Formation. Acta Geologica Sinica, 84(6): 901-908 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201006016.htm [37] Qiu, R.Z., Deng, J.F., Zhou, F., et al., 2004. Lithosphere types in North China: evidence from geology and geophysics. Science in China (Ser. D), 34(8): 689-711 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=JDXG200511001 [38] Shao, J.A., Zhang, H.F., Liu, X.M., et al., 2007. Geochronological record of Early Mesozoic magma underplating in the northern margin of the North China craton: evidence from the U-Pb dating of zicons from the Late Mesozoic andesites in western Liaoning Province. Progess in Natural Science, 17(5): 609-613 (in Chinese with English abstract). http://www.researchgate.net/publication/293143762_Geochronological_record_of_early_Mesozoic_magma_underplating_in_the_northern_margin_of_the_North_China_craton_Evidence_from_the_U-Pb_dating_of_zircons_from_the_late_Mesozoic_andesites_in_western_Liaon [39] Wang, Y.J., Zhang, Y.H., Fan, W.M., et al., 2002. Numerical modeling for generation of Indo-Sinian peraluminous granitoids Hunan Province: basaltic underplating vs. tectonic thickening. Science in China(Ser. D), 45(11): 1042-1056 (in Chinese with English abstract). doi: 10.1007/BF02911241 [40] Wickham, S.M., 1987. The segregation and emplacement of granitic magmas. Journal of the Geological Society, 44(2): 281-297. doi: 10.1144/gsjgs.144.2.0281 [41] Wilde, S.A., Zhou, X.H., Nemchin, A.A., et al., 2003. Mesozoic crust-mantle interaction beneath the North China craton: a consequence of the dispersal of Gonwanaland and accretion of Asia. Geology, 31(9): 817-820. doi: 10.1130/G19489.1 [42] Wu, F.Y., 1998. The material exchange at the crust-mantle boundary: evidence from igneous petrology. Earth Science Frontiers, 5(3): 95-103 (in Chinese with English abstract). [43] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the petrogenesis of granites. Acta Petrol. Sinica, 23(6): 1217-1238 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200706000.htm [44] Wu, F.Y., Sun, D.Y., Lin, Q., 1999. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China. Acta Petrologica Sinica, 15(2): 181-189 (in Chinese with English abstract). http://www.oalib.com/paper/1471776 [45] Wu, F.Y., Sun, D.Y., Li, H.M., et al., 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem. Geol., 187(1): 143-173. doi: 10.1016/S0009-2541(02)00018-9 [46] Wu, F.Y., Sun, D.Y., Zhang, G.L., et al., 2000. Deep geodynamics of Yanshan movement. Ceol. J. China. Uni., 6(3): 379-388 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200003001.htm [47] Wu, F.Y., Xu, Y.G., Gao, S., et al., 2008. Lithospheric thinning and destruction of the North China craton. Acta Petrologica Sinica, 24(6): 1145-1174 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb200806001.htm [48] Xu, Y.G., Li, H.Y., Pang, C.J., et al., 2009. On the timing and duration of the destruction of the North China craton. Chinese Sci. Bull., 54(14): 1974-1989 (in Chinese with English abstract). doi: 10.1360/csb2009-54-14-1974 [49] Zheng, J.P., 1999. Mesozoic-Cenozoic mantle replacement and lithospheric thinning beneath East China. China University of Geosciences Press, Wuhan (in Chinese). [50] Zheng, J.P., Sun, M., Lu, F.X., et al., 2003. Mesozoic lower crust xenoliths and their significance in lithospheric evolution beneath the Sino-Korean craton. Tectonophys, 361(1-2): 37-60. doi: 10.1016/S0040-1951(02)00537-1 [51] Zhou, X.H., Sun, M., 2003. Major transformation of subcontinental lithosphere mantle beneath the Sino-Korean craton in Late Mesozoic: a possible global link. Geochimica et Cosmochimica Acta, 67(18): 584. doi: 1005-2321.0.2006-02-005 [52] Zhou, X.H., Yang, J.H., Zhang, L.C., 2002. Metallogenesis of superlarge gold deposits in Jiaodong region and deep processes of subcontinental lithosphere beneath North China craton in Mesozoic. Science in China (Ser. D), 46(Suppl. ): 14-25 (in Chinese with English abstract). https://xueshu.baidu.com/usercenter/paper/show?paperid=11fc3d6138edd22805309b649eaf08b3&site=xueshu_se [53] 安美建, 石耀霖, 2007. 中国大陆地壳和上地幔三维温度场. 中国科学(D辑), 37(6): 736-745. https://d.wanfangdata.com.cn/periodical/zgkx-cd200706004 [54] 程裕淇, 1994. 中国区域地质概论. 北京: 地质出版社, 90-164. [55] 崔承禹, 1994. 岩石的热惯量研究. 环境遥感, 9(3): 177-183. http://www.cqvip.com/qk/92457X/199403/1386693.html [56] 邓晋福, 莫宣学, 赵海玲, 等, 1994. 中国东部岩石圈根/去根作用与大陆"活化"——东亚型大陆动力学模式研究计划. 现代地质, 8(3): 349-356. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ403.017.htm [57] 邓晋福, 苏尚国, 刘翠, 等, 2006. 关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论: 是拆沉, 还是热侵蚀和化学交代?地学前缘, 13(2): 105-119. doi: 10.3321/j.issn:1005-2321.2006.02.009 [58] 邓晋福, 赵海玲, 莫宣学, 等, 1996. 中国大陆根, 柱构造: 大陆动力学的钥匙. 北京: 地质出版社. [59] 鄂莫岚, 赵大升, 1987. 中国东部新生代玄武岩及深源岩石包体. 北京科学出版社. [60] 樊祺诚, 刘若新, 1996. 汉诺坝玄武岩中高温麻粒岩捕掳体. 科学通报, 41(3): 235-238. doi: 10.3321/j.issn:0023-074X.1996.03.014 [61] 樊祺诚, 刘若新, 李惠民, 等, 1998. 汉诺坝捕掳体麻粒岩锆石年代学与稀土元素地球化学. 科学通报, 43(2): 133-137. doi: 10.3321/j.issn:0023-074X.1998.02.003 [62] 樊祺诚, 隋建立, 刘若新, 等, 2001. 汉诺坝榴辉岩相石榴辉石岩——岩浆底侵作用新证据. 岩石学报, 17(1): 1-6. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200101000.htm [63] 樊祺诚, 张宏福, 隋建立, 等, 2005. 岩浆底侵作用与汉诺坝现今壳-幔边界组成——捕虏体岩石学与地球化学证据. 中国科学(D辑), 35(1): 1-14. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200501000.htm [64] 范蔚茗, Menzies, M.A., 1992. 中国东部古老岩石圈下部的破坏和软流圈地幔的增生. 大地构造与成矿学, 16(1): 171-180. [65] 付明希, 胡圣标, 汪集旸, 2004. 华北东部中生代热体制转换及其构造意义. 中国科学(D辑), 34(6): 514-520. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200406002.htm [66] 高山, 金振民, 1997. 拆沉作用(delamination)及其壳—幔演化动力学意义. 地质科技情报, 16(1): 1-9. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ701.000.htm [67] 高山, 周炼, 凌文黎, 等, 2005. 华北克拉通南缘太古—元古宙界线安沟群火山岩的年龄及地球化学. 地球科学——中国地质大学学报, 30(3): 259-263. http://www.cnki.com.cn/Article/CJFDTotal-DQKX200503001.htm [68] 刘翠, 邓晋福, 苏尚国, 等, 2006. 华北地区燕山期岩浆活动热供给的初步数值模拟. 地学前缘, 13(2): 158-164. doi: 10.3321/j.issn:1005-2321.2006.02.014 [69] 毛景文, 张作衡, 余金杰, 等, 2003. 华北及邻区中生代大规模成矿的地球动力学背景: 从金属矿床年龄精测得到启示. 中国科学(D辑), 33(4): 289-299. https://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200304001 [70] 乔彦超, 赵桂萍, 石耀霖, 等, 2010. 青藏高原隆升速率对冻土层形成影响的数值模拟. 地质学报, 84(6): 901-908. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201006016.htm [71] 邱瑞照, 邓晋福, 周肃, 等, 2004. 华北地区岩石圈类型: 地质与地球物理证据. 中国科学(D辑), 34(8): 689-711. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200408001.htm [72] 邵济安, 张宏福, 柳小明, 等, 2007. 华北北缘早中生代岩浆底侵作用的年代学记录: 来自辽西晚中生代安山岩锆石U-Pb定年结果. 自然科学进展, 17(5): 609-613. doi: 10.3321/j.issn:1002-008X.2007.05.008 [73] 王岳军, Zhang, Y.H., 范蔚茗, 等, 2002. 湖南印支期过铝质花岗岩的形成: 岩浆底侵与地壳加厚热效应的数值模拟. 中国科学(D辑), 32(6): 491-499. https://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200206006 [74] 吴福元, 1998. 壳—幔物质交换的岩浆岩石学研究. 地学前缘, 5(3): 95-103. doi: 10.3321/j.issn:1005-2321.1998.03.009 [75] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [76] 吴福元, 孙德有, 林强, 1999. 东北地区显生宙花岗岩的成因与地壳增生. 岩石学报, 15(2): 181-189. http://www.cnki.com.cn/Article/CJFDTotal-YSXB902.003.htm [77] 吴福元, 孙德有, 张广良, 等, 2000. 论燕山运动的深部地球动力学本质. 高校地质学报, 6(3): 379-388. doi: 10.3969/j.issn.1006-7493.2000.03.002 [78] 吴福元, 徐义刚, 高山, 等, 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 24(6): 1145-1174. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200806001.htm [79] 徐义刚, 李洪颜, 庞崇进, 等, 2009. 论华北克拉通破坏的时限. 科学通报, 54(14): 1974-1989. http://www.cnki.com.cn/Article/CJFDTotal-KXTB200914005.htm [80] 郑建平, 1999. 中国东部地幔置换作用与中新生代岩石圈减薄. 武汉: 中国地质大学出版社. [81] 周新华, 杨进辉, 张连昌, 2002. 胶东超大型金矿的形成与中生代华北大陆岩石圈深部过程. 中国科学(D辑), 32(增刊): 11-20. http://www.cnki.com.cn/Article/CJFDTotal-JDXK2002S1001.htm