2.7 Ga Granitic Gneiss in the Northern Foot of Daqingshan Mountain, Central Inner Mongolia, and Its Geological Implications
-
摘要: 本文报道了在内蒙中部大青山北麓西乌兰不浪地区早前寒武纪基底中发现的太古宙变质深成体-黑云母花岗质片麻岩的SHRIMP U-Pb定年结果.样品的锆石特征较为一致,阴极发光图像上具明显核-幔-边结构.核部锆石发育密集的岩浆环带,年龄数据分布区间较小,其加权平均年龄(2 697±11 Ma)代表了原岩形成时间,为区内有报道的最古老的高精度岩石年龄,表明区内存在一期2.7 Ga左右的岩浆活动.幔部及边部锆石具变质重结晶成因,两者除了在阴极发光图像上的差异外,其加权平均年龄(幔部2 561±18 Ma;边部2 539±34 a)及Th、U含量特征极为接近.笔者认为它们共同反映了区域内~2.5 Ga的构造-热事件.大量证据表明华北克拉通~2.5 Ga的构造-热事件是华北克拉通形成演化过程中所经历的重要地质事件,该事件之前的岩石在这一地质过程中遭受了强烈改造.Abstract: This study presents the SHRIMP U-Pb dating results of Archean biotite granitic gneiss found in the Early Precambrian metamorphic basement in Xi Ulanbulang area in northern foot of Daqingshan Mountain in central Inner Mongolia. Zircon characteristic of the rock is consistent and it obviously shows core-mantle-boundary structure from cathodoluminescence images. The core of zircons not only has intensive magmatic zoning but also has a smaller range of age distribution. The weighted average age (2 697±11 Ma) represents the diagenetic age of rock which is the oldest one of all rocks reported in the region. It shows that a magamatism occurred to 2.7 Ga years ago in the region. The mantle and of zirons is considered to be featured with metamorphic recrystallization causes. Both the weighted average age (mantle 2 561±18 Ma; rige 2 539±34 a) and Th, U content features of them are very close except for different cathodoluminescence images. Therefore, we consider that the ages of the mantle and boundary together reflect the tectono-thermal event which occurred to 2.5 Ga ago that has been proved to be an important geological event by substantial evidences during the formation and evolution of the North China craton and a large number of pre-rocks have been strongly transformed.
-
Key words:
- Xi Ulanbulang /
- biotite granitic gneiss /
- zircon /
- geochemistry /
- tectonics
-
图 1 西乌兰不浪地区地质简图
1.石榴蓝晶石英岩组合;2.石榴石英岩组合;3.中性麻粒岩组合;4.基性麻粒岩组合;5.村空山片麻岩;6.狼牙山片麻岩;7.黑云斜长片麻岩;8.实测剖面位置;9.采样位置及编号;图b为华北克拉通早前寒武纪构造区划,其中:Ⅰ.东部陆块;Ⅱ.中部造山带;Ⅲ.西部陆块;Ⅲ-1.鄂尔多斯地块;Ⅲ-2.孔兹岩带;Ⅲ-3.阴山地块(据Zhao et al., 2005简化);图b中方框表示图a所在位置
Fig. 1. Geological sketch map of Xi Ulanbulang area
图 3 黑云花岗质片麻岩球粒陨石标准化稀土元素分布(a)和上地壳标准化微量元素蛛网图(b)
(球粒陨石标准化数值引自Sun and McDonough, 1989;上地壳标准化数值引自Taylor et al., 1981)
Fig. 3. Chondrite-normalized REE pattern (a) and primitive mantle-normalizd trace element spidergrams (b) of the biotite granitic gneiss
表 1 西乌兰不浪黑云花岗质片麻岩的地球化学分析结果
Table 1. Geochemical data of the biotite granitic gneiss in Xi Ulanbulang area
样号 2p5b25-2 2p5b17-1 2p5b43-1 样号 2p5b25-2 2p5b17-1 2p5b43-1 样号 2p5b25-2 2p5b17-1 2p5b43-1 Na2O 3.50 4.38 3.21 La 47.00 14.60 15.50 Y 4.15 2.21 8.41 MgO 0.60 1.22 2.85 Ce 78.30 21.40 19.70 Zr 194.00 48.00 118.00 Al2O3 13.76 15.64 12.25 Pr 7.61 2.49 2.15 Hf 4.62 1.25 3.04 SiO2 72.75 70.73 67.11 Nd 22.90 8.13 6.42 V 23.10 36.30 123.00 P2O5 0.08 0.03 0.01 Sm 2.69 0.97 0.83 Cr 146.00 419.00 334.00 K2O 3.69 0.41 1.44 Eu 0.81 0.97 0.91 Co 4.40 8.00 22.40 CaO 2.23 4.09 3.12 Gd 2.52 0.80 0.96 Ni 7.62 30.00 70.40 TiO2 0.36 0.04 0.63 Tb 0.19 0.06 0.14 Rb 40.00 2.65 30.90 MnO 0.01 0.02 0.08 Dy 0.77 0.26 1.01 Sr 248.00 331.00 454.00 Fe2O3 1.00 0.07 2.86 Ho 0.12 0.04 0.24 Nb 2.76 0.38 5.11 FeO 1.37 1.99 5.23 Er 0.37 0.12 0.89 Ba 955.00 201.00 554.00 H2O+ 0.50 0.80 0.62 Tm 0.04 0.02 0.15 Ta 0.06 0.04 0.20 CO2 0.20 0.37 0.29 Yb 0.31 0.09 1.09 Th 5.06 0.12 5.34 LOI 0.52 0.76 0.27 Lu 0.05 0.02 0.19 U 0.24 0.09 0.32 A/CNK 1.00 1.04 0.97 Eu/Eu* 0.93 3.27 3.10 Sc 2.26 2.65 13.90 K2O/Na2O 1.05 0.09 0.44 ∑REE 163.66 49.89 50.25 (La/Yb)N 103.28 106.63 9.58 注:常量元素的单位为%;稀土和微量元素单位为10-6. 表 2 西乌兰不浪黑云花岗质片麻岩(B1001)SHRIMP U-Pb分析结果
Table 2. Zircon SHRIMP U-Pb data of biotite granite gneiss (B1001) from Xi Ulanbulang area
测试点 206Pbc(%) U(10-6) Th(10-6) 232Th/238U 206Pb*(10-6) 207Pb*/206Pb* ±% 207Pb*/235U ±% 206Pb*/238U ±% 误差 207Pb/206Pb(Ma) 1.1M 0.00 101 28 0.29 44.80 0.173 6 0.84 12.33 2.2 0.515 0 2.1 0.928 2 593±14 2.1M 0.05 317 86 0.28 125.00 0.163 8 1.00 10.34 2.2 0.458 1 2.0 0.886 2 495±17 3.1C 0.11 75 32 0.44 32.30 0.185 0 1.00 12.83 2.4 0.503 0 2.2 0.906 2 698±17 4.1R 0.00 32 8 0.25 12.30 0.160 8 1.60 9.97 3.0 0.450 0 2.5 0.839 2 464±27 4.2C 0.03 126 21 0.17 59.70 0.185 1 1.20 14.06 2.3 0.551 0 2.0 0.868 2 699±19 4.3M 0.14 50 42 0.87 20.50 0.166 5 1.30 11.00 2.7 0.479 0 2.4 0.882 2 523±21 5.1C 0.00 167 16 0.10 72.40 0.184 0 0.59 12.79 2.1 0.503 9 2.0 0.958 2 690±10 5.2R 0.00 27 12 0.47 11.40 0.168 3 1.70 11.46 3.1 0.494 0 2.6 0.842 2 540±28 5.3M 0.00 177 8 0.05 74.70 0.176 1 0.59 11.94 2.0 0.491 8 1.9 0.957 2 617±10 6.1R 0.67 23 10 0.45 8.65 0.148 9 3.90 8.80 5.1 0.429 0 3.2 0.641 2 333±66 6.2M 0.02 450 479 1.10 187.00 0.171 8 1.10 11.43 2.1 0.482 4 1.9 0.867 2 576±18 7.1R 0.00 70 31 0.45 29.10 0.160 7 0.89 10.71 2.3 0.483 0 2.1 0.924 2 464±15 8.1M 0.01 300 92 0.32 132.00 0.174 5 0.48 12.34 2.2 0.513 0 2.1 0.976 2 601±8 8.2C 0.00 65 10 0.15 30.20 0.185 7 1.10 13.82 2.6 0.540 0 2.3 0.909 2 704±18 9.1M 0.00 152 78 0.53 63.00 0.172 8 0.74 11.49 2.4 0.482 0 2.3 0.950 2 585±12 9.2C 0.00 47 11 0.25 21.00 0.182 1 1.30 12.94 3.4 0.515 0 3.1 0.920 2 672±22 10.1M 0.00 73 37 0.52 31.00 0.172 7 0.97 11.71 2.4 0.491 0 2.2 0.913 2 584±16 11.1R 0.20 45 40 0.91 19.20 0.174 7 1.40 11.92 3.9 0.495 0 3.6 0.932 2 604±23 11.2C 0.05 164 21 0.13 75.80 0.186 6 0.71 13.80 2.1 0.536 0 2.0 0.940 2 712±12 12.1C 0.00 35 14 0.42 15.80 0.192 2 1.20 13.85 2.7 0.523 0 2.4 0.901 2 761±19 13.1C 0.03 148 38 0.26 66.10 0.190 3 0.69 13.59 2.1 0.518 0 2.0 0.946 2 745±11 14.1R 0.16 21 17 0.84 8.84 0.172 4 2.40 11.59 3.7 0.488 0 2.8 0.760 2 581±40 15.1M 0.02 511 126 0.25 203.00 0.169 7 0.36 10.83 1.9 0.462 9 1.9 0.982 2 554±6 15.2R 0.00 49 8 0.17 19.00 0.163 6 1.20 10.11 2.6 0.448 0 2.3 0.893 2 493±19 16.1R 0.17 43 8 0.20 16.70 0.166 8 1.20 10.38 2.6 0.451 0 2.3 0.891 2 526±20 17.1M 0.04 120 1 0.01 47.40 0.165 9 0.75 10.50 2.2 0.459 3 2.0 0.938 2 516±13 17.2R 0.00 25 11 0.45 10.10 0.168 4 1.70 10.79 3.4 0.465 0 3.0 0.870 2 542±28 18.1R 0.16 38 29 0.80 16.10 0.168 2 1.30 11.54 2.7 0.498 0 2.4 0.882 2 539±21 18.2M 0.11 49 21 0.44 19.10 0.160 6 1.20 10.04 2.6 0.454 0 2.3 0.878 2 462±21 19.1M 0.03 171 99 0.60 72.40 0.171 0 0.69 11.58 2.1 0.491 3 1.9 0.942 2 568±12 20.1M 0.11 415 64 0.16 162.00 0.169 8 0.69 10.59 2.0 0.452 4 1.9 0.938 2 555±12 21.1M 0.03 220 70 0.33 96.80 0.168 1 0.53 11.88 2.0 0.512 5 1.9 0.964 2 538±9 注:*表示放射性成因Pb. -
[1] Belousova, E.A., Griffin, W.L., O'Rilly, S.Y., et al., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143(5): 602-622. doi: 10.1007/s00410-002-0364-7 [2] Chen, D.G., Li, B.X., Xia, Q.K., et al., 2001. An evaluation of zircon U-Pb dating for metamorphic rocks and comments on zircon ages of Dabie orogen. Acta Petrologica Sinica, 17(1): 129-138 (in Chinese with English abstract). [3] Dong, X.J., Xu, Z.Y., Liu, Z.H., et al., 2012. Zircon U-Pb geochronology of Archean high-grade metamorphic rocks from Xi Ulanbulang area, central Inner Mongolia. China Earth Sciences (Ser. D), 55(2): 204-212. doi: 10.1007/s11430-011-4360-5 [4] Geng, Y.S., Liu, F.L., Yang, C.H., 2006. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implications. Acta Geologica Sinica, 80(6): 819-833. doi: 10.1111/j.1755-6724.2006.tb00305.x [5] Grant, M.L., Wilde, S.A., Wu, F.Y., et al., 2009. The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China craton at the Archean/Proterozoic boundary. Chemical Geology, 261(1-2): 155-171. doi: 10.1016/j.chemgeo.2008.11.002 [6] Hoskin, P.W.O., 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7): 627-630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2 [7] Jahn, B.M., Zhang, Z.Q., 1984. Archean granulite gneisses from eastern Hebei Province, China: rare earth geochemistry and tectonic implications. Contributions to Mineralogy and Petrology, 85(3): 224-243. doi: 10.1007/BF00378102 [8] Jian, P., Zhang, Q., Liu, D.Y., et al., 2005. SHRIMP dating and geological significance of Late Archaean high-Mg diorite (sanukite) and hornblende-granite at Guyang of Inner Mongolia. Acta Petrologica Sinica, 21(1): 151-157 (in Chinese with English abstract). [9] Jin, W., Li, S.X., Liu, X.S., 1991. A study on characteristics of Early Precambrian high-grade metamorphic rock series and their metamophic dynamics. Acta Petrologica Sinica, 7(4): 27-35 (in Chinese with English abstract). [10] Jin, W., Li, S.X., 1996. PTt path and crustal thermodynamic model of Late Archaean-Early Proterozoic high grade metamorphic terrain in North China. Acta Petrologica Sinica, 12(2): 209-221 (in Chinese with English abstract). [11] Kröner, A., Compston, W., Zhang, G.W., et al., 1988. Age and tectonic setting of Late Archaean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology, 16(3): 211-215. doi: 10.1130/0091-7613(1988)016<0211:AATSOL>2.3.CO;2 [12] Liu, D.Y., Nutman, A.P., Compston, W., et al., 1992. Remnants of ≥3 800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20(4): 339 -342. doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2 [13] Liu, D.Y., Wilde, S.A., Wan, Y.S., et al., 2008. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China craton. American Journal of Science, 308(3): 200 -231. doi: 10.2475/03.2008.02 [14] Liu, X.S., Jin, W., Li, S.X., et al., 1993. Two types of Precambrian high-grade metamorphism, Inner Mongolia, China. Journal of Metamorphic Geology, 11(4): 499 -510. doi: 10.1111/j.1525-1314.1993.tb00167.x [15] Polat, A., Li, J.H., Fryer, B., et al., 2006. Geochemical characteristics of the Neo-Archean (2 800-2 700 Ma) Taishan greenstone belt, North China craton: evidence for plume-craton interaction. Chemical Geology, 230(1-2): 60 -87. doi: 10.1016/j.chemgeo.2005.11.012 [16] Rubatto, D., 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138. doi: 10.1016/S0009-2541(01)00355-2 [17] Song, B., Nutman, A.P., Liu, D.Y., et al., 1996.3 800 to 2 500 Ma crustal evolution in the Anshan area of Liaoning Province, Northeastern China. Precambrian Research, 78(1-3): 79-94. doi: 10.1016/0301-9268(95)00070-4 [18] Sun, S.S., McDonugh, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [19] Taylor, S.R., McLennan, S.M., Armstrong, R.L., et al., 1981. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London. A, 301(1461): 381-399. doi: 10.1098/rsta.1981.0119 [20] Tao, J.X., Xu, L.Q., 2002. U-Pb age of zircon on gneiss in north Zhaohemiao area, central Inner Mongolia. Geology of Inner Mongolia, (3): 5-9 (in Chinese with English abstract). [21] Vavra, G., Schmid, R., Gebauer, D., 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircons: geo-chronology of the Ivren zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4): 380-404. doi: 10.1007/s004100050492 [22] Wan, Y.S., Liu, D.Y., Dong, C.Y., et al., 2009. The oldest rocks and zircons in China. Acta Petrologica Sinica, 25(8): 1793-1807 (in Chinese with English abstract). [23] Wang, H.C., Yuan, G.B., Xin, H.T., 2001. U-Pb single zircon ages for granulites in Cunkongshan area, Guyang Inner Mongolia and enlightenment for its geological signification, China. Progress in Precambrian Research, 24(1): 28-34 (in Chinese with English abstract). [24] Wilde, S.A., Valley, J.W., Kita, N.T., et al., 2008. SHRIMP U-Pb and CAMECA 1 280 oxygen isotope result from ancient detrital zircons in the Caozhuang quartzite, eastern Hebei, North China craton: evidence for crustal reworking 3.8 Ga ago. American Journal of Science, 308(3): 185-199. doi: 10.2475/03.2008.01 [25] Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In: Mickibben, M.A., Shanks Ⅲ, W.C., Ridley, W.I., eds., Applications of microanalytical techniques to understanding mineralizing process. Reviews in Economic Geology, 7: 1-35. [26] Whitehouse, M.J., Kamber, B.S., 2002. A rare earth element study of complex zircons from Early Archaean Amîtsoq gneisses, Godthåbsfjord, south-west Greenland. Precambrian Research, 126(3-4): 363-377. doi: 10.1016/S0301-9268(03)00105-0 [27] Yang, Z.S., Liu, Z.H., Xu, Z.Y., et al., 2006. Major progress in Early Precambrian research in the Daqing Shan-Wula Shan region, central Inner Mongolia, China, and some suggestions for stratigraphic work in high-grade metamorphic areas. Geological Bulletin of China, 25(4): 427-433 (in Chinese with English abstract). [28] Zhang, W.J., Li, L., Geng, M.S., 2000. Petrology and dating of Neo-Archaean intrusive rocks from Guyang area, Inner Mogolia. Earth Science—Journal of China University of Geosciences, 25(3): 221-226 (in Chinese with English abstract). [29] Zhang, Y.Q., Wang, T., Jia, H.Y., et al., 2003. U-Pb ages of zircons from the Xi Ulanbulang hypersthenes-plagioclase granulite in the north Daqing Mountain, central Inner Mongolia. Geology in China, 30(4): 394-399 (in Chinese with English abstract). [30] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 1999. Tectonothermal history of the basement rocks in the western zone of the North China craton and its tectonic implications. Tectonophysics, 310(1-4): 37 -53. doi: 10.1016/S0040-1951(99)00152-3 [31] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 200l. Archean blocks and their boundaries in the North China craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45 -73. doi: 10.1016/S0301926800001546 [32] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005. Late Archean to Paleoproterozoic evolution of the North China craton: key issues revisited. Precambrian Research, 136(2): 177 -202. doi: 10.1016/j.precamres.2004.10.002 [33] Zhao, G.C., 2009. Metamorphic evolution of major tectonic units in the basement of the North China craton: key issues and discussion. Acta Petrologica Sinica, 25(8): 1772-1792 (in Chinese with English abstract). [34] 陈道公, 李彬贤, 夏群科, 等, 2001. 变质岩中锆石U-Pb计时问题评述——兼论大别造山带锆石定年. 岩石学报, 17(1): 129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101012.htm [35] 简平, 张旗, 刘敦一, 等, 2005. 内蒙古固阳晚太古代赞岐岩(sanukite)-角闪花岗岩的SHRIMP定年及其意义. 岩石学报, 21(1): 151-157. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501016.htm [36] 金巍, 李树勋, 刘喜山, 1991. 内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学. 岩石学报, 7(4): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199104002.htm [37] 金巍, 李树勋, 1996. 华北晚太古代-早元古代高级变质区的变质PTt轨迹及其地壳热动力学演化模式. 岩石学报, 12(2): 209-221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB602.003.htm [38] 陶继雄, 许立权, 2002. 内蒙古中部召河庙北部片麻岩的锆石U-Pb年龄. 内蒙古地质, (3): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGZ200203002.htm [39] 万渝生, 刘敦一, 董春燕, 等, 2009. 中国最古老岩石和锆石. 岩石学报, 25(8): 1793-1807. [40] 王惠初, 袁桂邦, 辛后田, 2001. 内蒙古固阳村空山地区麻粒岩的锆石U-Pb年龄及其对年龄解释的启示. 前寒武纪研究进展, 24(1): 28-34. doi: 10.3969/j.issn.1672-4135.2001.01.005 [41] 杨振升, 徐仲元, 刘正宏, 等, 2006. 内蒙古中部大青山-乌拉山地区早前寒武系研究的重要进展及对高级变质区开展地层工作的几点建议. 地质通报, 25(4): 427-433. doi: 10.3969/j.issn.1671-2552.2006.04.001 [42] 张维杰, 李龙, 耿明山, 2000. 内蒙古固阳地区新太古代侵入岩的岩石特征及时代. 地球科学——中国地质大学学报, 25(3): 221-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200003000.htm [43] 张玉清, 王弢, 贾和义, 等, 2003. 内蒙古中部大青山北西乌兰不浪紫苏斜长麻粒岩锆石U-Pb年龄. 中国地质, 30(4): 394-399. doi: 10.3969/j.issn.1000-3657.2003.04.012 [44] 赵国春, 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908006.htm