Paleoenvironment and Paleoproductivity Variations in the Bering Sea Since the Last Deglacial
-
摘要: 对白令海B5-4岩心沉积物中有机碳、CaCO3及17种地球化学元素进行分析,结合AMS 14C年龄数据,恢复了白令海13.7 ka以来古环境和古生产力的演化历史.结果显示,B5-4孔沉积速率高达34.2 cm/ka,新仙女木(YD)、Bolling-Allerod(BA)及冰川融水信号在B5-4孔都有记录.白令海陆源沉积物的输入受源区气候、海平面变化和生源物质稀释等多种因素的控制.末次冰消期白令海以高生产力和底层水体缺氧为显著特征.冰川融水及太平洋暖水团输入是导致末次冰消期白令海高生产力的2个主要因素.末次冰消期底层水体缺氧与表层高生产力和次表层水体层化有显著的关系.但是,太平洋中层水通风能力及太平洋底层环流减弱也是导致底层水体出现缺氧现象的潜在因素.全新世,阿拉斯加环流成为白令海古生产力和古环境变化的主要控制因素,生产力及古环境在全新世没有发生显著的变化.Abstract: Paleoenvironment and paleoproductivity variations were constructed, combined with radiocarbon dating, based on 17 geochemical elements, TOC and CaCO3, since 13.7 ka in the Bering Sea. The results show that the sedimentation rate was 34.2 cm/ka and the climate signals such as Younger-Dryas (YD), Bolling-Allerod (BA), and meltwater pulse were also reflected in the B5-4 core. The accumulation of terreginous sediments is controlled by many factors, including climate condition in the sediments source, sea level change and biogenic material dilution. The obvious features are the high paleoproductivity and hypoxia in the bottom water in the Bering Sea during the last deglacial period. The high paleoproductivity are attributed to the meltwater pulse event and the input of warmer Pacific water with the increased temperature. Hypoxia in the bottom water is caused by high productivity in the surface water and subsurface waterbody stratification due to saline gradient. However, the potential factors caused hypoxia in the bottom water also include the decreasing Pacific intermediate water ventilation and bottom-current speed in the Pacific Ocean. In the Holocene, the paleoenvironment and productivity of the Bering Sea were mainly controlled by the Alaskan stream. There are no obvious changes for productivity and paleoenvironment in the Holocene.
-
Key words:
- paleoproductivity /
- paleoredox environment /
- the last deglacial /
- Bering Sea /
- sediments /
- geochemistry
-
图 5 陆源碎屑、古生产力与冰芯及太阳辐射变化比较(h引自文献Dansgaard et al., 1993;i引自文献Berger and Loutre, 1991)
Fig. 5. Comparison between terrigenous debris and paleoproductivity and ice core and solar insolation
-
[1] Bahk, J.J., Chough, S.K., Jeong, K.S., et al., 2001. Sedimentary records of paleoenvironmental changes during the last deglaciation in the Ulleung Interplain Gap, East Sea (sea of Japan). Global and Planetary Change, 28(1-4): 241-253. doi: 10.1016/S0921-8181(00)00076-X [2] Barron, J.A., Bukry, D., Dean, W.E., et al., 2009. Paleoceanography of the Gulf of Alaska during the past 15 000 years: results from diatoms, silicoflagellates, and geochemistry. Marine Micropaleontology, 72(3-4): 176-195. doi: 10.1016/j.marmicro.2009.04.006 [3] Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q [4] Caissie, B.E., Brigham-Grette, J., Lawrence, K.T., et al., 2010. Last glacial maximum to Holocene Sea surface conditions at Umnak plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records. Paleoceanography, 25: PA1206. doi: 10.1029/2008pa001671 [5] Calvert, S.E., Nielsen, B., Fontugne, M.R., 1992. Evidence from nitrogen isotope ratios for enhanced productivity during formation of eastern Mediterranean sapropels. Nature, 359(7302): 223-225. doi: 10.1038/359223a0 [6] Chekhovskaya, M.P., Basov, I.A., Matul, A.G., et al., 2008. Planktonic foraminifers in the southern Bering Sea: changes in composition and productivity during the Late Pleistocene-Holocene. Stratigraphy and Geological Correlation, 16(3): 328-342. doi: 10.1134/s0869593808030076 [7] Cook, M.S., Keigwin, L.D., Sancetta, C.A., 2005. The deglacial history of surface and intermediate water of the Bering Sea. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 52(16-18): 2163-2173. doi: 10.1016/j.dsr2.2005.07.004 [8] Crusius, J., Pedersen, T.F., Kienast, S., et al., 2004. Influence of Northwest Pacific productivity on North Pacific intermediate water oxygen concentrations during the Bølling-Ållerød interval (14.7-12.9 ka). Geology, 32(7): 633-636. doi: 10.1130/G20508.1 [9] Dansgaard, W., Johnsen, S.J., Clausen, H.B., et al., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364(6434): 218-220. doi: 10.1038/364218a0 [10] Dean, W.E., 2007. Sediment geochemical records of productivity and oxygen depletion along the margin of western North America during the past 60 000 years: teleconnections with Greenland ice and the Cariaco basin. Quaternary Science Reviews, 26(1-2): 98-114. doi: 10.1016/j.quascirev.2006.08.006 [11] Dean, W.E., Piper, D.Z., Peterson, L.C., 1999. Molybdenum accumulation in Cariaco basin sediment over the past 24 k. y. : a record of water-column anoxia and climate. Geology, 27(6): 507-510. doi: 10.1130/0091-7613(1999)027<0507:MAICBS>2.3.CO;2 [12] Dymond, J., Suess, E., Lyle, M., 1992. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography, 7(2): 163-181. doi: 10.1029/92PA00181 [13] Feely, R.A., Sabine, C.L., Lee, K., et al., 2002. In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochemical Cycles, 16(4): 1144. doi: 10.1029/2002GB001866 [14] Gebhardt, H., Sarnthein, M., Grootes, P.M., et al., 2008. Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V. Paleoceanography, 23(4): PA4212. doi: 10.1029/2007pa001513 [15] Gorbarenko, S.A., Basov, I.A., Chekhovskaya, M.P., et al., 2005. Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial-Holocene: geochemical and paleontological evidence. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 52(16-18): 2174-2185. doi: 10.1016/j.dsr2.2005.08.005 [16] Gorbarenko, S.A., Wang, P., Wang, R., et al., 2010. Orbital and suborbital environmental changes in the southern Bering Sea during the last 50 kyr. Palaeogeography Palaeoclimatology Palaeoecology, 286(1-2): 97-106. doi: 10.1016/j.palaeo.2009.12.014 [17] He, Y.P., Wang, R.J., Zheng, H.B., et al., 2005. Paleoceanographic and paleoclimatic records from DSDP site 188 in the Bering Sea since marine isotopic stage 3. Marine Geology & Quaternary Geology, 26(2): 65-71 (in Chinese with English abstract). [18] Hedges, J.I., Keil, R.G., 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 49(2-3): 81-115. doi: 10.1016/0304-4203(95)00008-F [19] Higginson, M.J., Maxwell, J.R., Altabet, M.A., 2003. Nitrogen isotope and chlorin paleoproductivity records from the northern South China Sea: remote vs. local forcing of millennial- and orbital-scale variability. Marine Geology, 201(1-3): 223-250. doi: 10.1016/S0025-3227(03)00218-4 [20] Katsuki, K., Takahashi, K., 2005. Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the Late Quaternary. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 52(16-18): 2110-2130. doi: 10.1016/j.dsr2.2005.07.001 [21] Khusid, T.A., Basov, I.A., Gorbarenko, S.A., et al., 2006. Benthic foraminifers in Upper Quaternary sediments of the southern Bering Sea: distribution and paleoceanographic interpretations. Stratigraphy and Geological Correlation, 14(5): 538-548. doi: 10.1134/s0869593806050066 [22] Kienast, S.K., Calvert, S.E., Pedersen, T.F., 2002. Nitrogen isotope and productivity variations along the northeast Pacific margin over the last 120 kyr: surface and subsurface paleoceanography. Paleoceanography, 17(4): 1055. doi: 10.1029/2001PA000650 [23] Lehmann, M.F., Sigman, D.M., McCorkle, D.C., et al., 2005. Origin of the deep Bering Sea nitrate deficit: constraints from the nitrogen and oxygen isotopic composition of water column nitrate and benthic nitrate fluxes. Global Biogeochemical Cycles, 19(4): GB4005. doi: 10.1029/2005GB002508 [24] Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114(3-4): 289-302. doi: 10.1016/0009-2541(94)90059-0 [25] Murray, R.W., Knowlton, C., Leinen, M., et al., 2000. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr. Paleoceanography, 15(6): 570-592. doi: 10.1029/1999PA000457 [26] Nakatsuka, T., Watanabe, K., Handa, N., et al., 1995. Glacial to interglacial surface nutrient variations of Bering deep basins recorded by δ13C and δ15N of sedimentary organic matter. Paleoceanography, 10(6): 1047-1061. doi: 10.1029/95PA02644 [27] Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717. doi: 10.1038/299715a0 [28] Okada, M., Takagi, M., Narita, H., et al., 2005. Chronostratigraphy of sediment cores from the Bering Sea and the subarctic Pacific based on paleomagnetic and oxygen isotopic analyses. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 52(16-18): 2092-2109. doi: 10.1016/j.dsr2.2005.08.004 [29] Okazaki, Y., Takahashi, K., Asahi, H., et al., 2005. Productivity changes in the Bering Sea during the Late Quaternary. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 52(16-18): 2150-2162. doi: 10.1016/j.dsr2.2005.07.003 [30] Reed, R.K., Gonzalez, F.I., Miller, L., 1991. On the structure and stability of the Alaskan Stream. Journal of Marine Research, 49(4): 719-726. doi: 10.1357/002224091784995684 [31] Sancetta, C., Heusser, L., Labeyrie, L., et al., 1984. Wisconsin-Holocene paleoenvironment of the Bering Sea: evidence from diatoms, pollen, oxygen isotopes and clay minerals. Marine Geology, 62(1-2): 55-68. doi: 10.1016/0025-3227(84)90054-9 [32] Sancetta, C., Robinson, S.W., 1983. Diatom evidence on Wisconsin and Holocene events in the Bering Sea. Quaternary Research, 20(2): 232-245. doi: 10.1016/0033-5894(83)90079-0 [33] Schenau, S.J., Reichart, G.J., De Lange, G.J., 2005. Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments. Geochimica et Cosmochimica Acta, 69(4): 919-931. doi: 10.1016/j.gca.2004.05.044 [34] Sigman, D.M., Boyle, E.A., 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407(6806): 859-869. doi: 10.1038/35038000 [35] Stabeno, P.J., Reed, R.K., Napp, J.M., 2002. Transport through Unimak Pass, Alaska. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 49(26): 5919-5930. doi: 10.1016/S0967-0645(02)00326-0 [36] Stabeno, P., Napp, J., Mordy C., et al., 2010. Factors influencing physical structure and lower tropic levels of the eastern Bering Sea shelf in 2005: sea ice, tides and winds. Progress in Oceanography, 85: 180-196. doi: 10.1016/j.pocean.2010.02.010 [37] Stuiver, M., Reimer, P., 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon, 35(1): 215-230. doi: 10.1017/S0033822200013904 [38] Tanaka, S., Takahashi, K., 2005. Late Quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 52(16-18): 2131-2149. doi: 10.1016/j.dsr2.2005.07.002 [39] Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution. Blackwell Scientific Publisher, Palo Alto. [40] Tribovillard, N., Algeo, T.J., Lyons, T., et al., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012 [41] Wang, R.J., Li, X., Xiao, W.S., et al., 2005. Paleoceanographic records and sea ice extension history of the northern Bering Sea slope over the last 100 ka. Earth Science—Journal of China University of Geosciences, 30(5): 550-558 (in Chinese with English abstract). [42] Wang, R.J., Xiao, W.S., Li, Q.Y., et al., 2006. Polycystine radiolarians in surface sediments from the Bering Sea green belt area and their ecological implication for paleoenvironmenal reconstructions. Marine Micropaleontology, 59: 135-152. doi: 10.1016/j.marmicro.2006.02.002 [43] Xiong, L.F., Liu, J.H., Bai, Y.Z., et al., 2012. The distributions of total organic carbon in the surface sediments from the Yellow Sea and the north of the East China Sea. Advance in Marine Science, in press (in Chinese with English abstract). [44] Zou, J.J., Shi, X.F., Liu, Y.G., et al., 2010a. Geochemical records of paleoproductivity and paleoredox in the sea of Japan since 48 ka. Acta Oceanologica Sinica, 32(4): 98-109 (in Chinese with English abstract). [45] Zou, J.J., Shi, X.F., Liu, Y.G., et al., 2010b. Geochemical record of terrigenous sediments from the sea of Japan since last glacial and its response for sea level and climate change. Marine Geology & Quaternary Geology, 30(2): 75-86 (in Chinese with English abstract). [46] 王汝建, 李霞, 肖文申, 等, 2005. 白令海北部陆坡100 ka来的古海洋学记录及海冰的扩张历史. 地球科学——中国地质大学学报, 30(5): 550-558. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505005.htm [47] 何沅澎, 王汝建, 郑洪波, 等, 2006. 白令海DSDP188站氧同位素3期以来的古海洋与古气候记录. 海洋地质与第四纪地质, 26(2): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200602010.htm [48] 熊林芳, 刘季花, 白亚之, 等, 2012. 南黄海-东海北部表层沉积物有机碳分布特征. 海洋科学进展(待刊). [49] 邹建军, 石学法, 刘焱光, 等, 2010a. 48 ka以来日本海古生产力和古氧化还原环境变化的地球化学记录. 海洋学报, 32(4): 98-109. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201004010.htm [50] 邹建军, 石学法, 刘焱光, 等, 2010b. 末次冰期以来日本海陆源碎屑的地球化学记录及其古气候意义. 海洋地质与第四纪地质, 30(2): 75-86.