Characteristics of Melt-Fluid Inclusions and Sulfur Isotopic Compositions of the Hashitu Molybdenum Deposit, Inner Mongolia
-
摘要: 哈什吐钼矿床是近年来在大兴安岭中段地区新发现的矿床,矿体产出于花岗岩体内,是一个与酸性岩浆作用密切相关的内生金属矿床.矿床金属矿物组成主要为辉钼矿、黄铜矿、黄铁矿、磁黄铁矿、闪锌矿、方铅矿、毒砂等.包裹体研究表明包裹体类型主要为液体包裹体(Ia型)、气体包裹体(Ib型)、含子晶包裹体(Ic型)及熔融包裹体(II型)构成.不同类型包裹体共存产出表明这些包裹体大都经历了流体沸腾作用.包裹体均一测温表明流体包裹体均一温度主要变化于250~500 ℃,熔融包裹体均一温度集中变化于750~950 ℃.计算得到流体盐度、压力和密度变化范围分别为1%~49% NaCl eqv、5~100 MPa、0.7~1.1 g/cm3.包裹体研究表明哈什吐钼矿床成矿流体为一种高温度、高盐度、高压力、中高密度且含一定量CO2的流体,该流体可归属为H2O-NaCl-CO2-SO42-体系.硫化物的δ34Sv-cdt(‰)变化范围为0.4‰~3.8‰,计算得到成矿流体的δ34SH2S(‰)变化范围为1.1‰~4.7‰,硫同位素组成表明成矿作用与深部岩浆作用有密切联系.矿床成矿流体演化过程发生了流体沸腾和混合作用,显著的减压沸腾作用是造成成矿体系发生大量硫化物沉淀的主要机制.哈什吐钼矿床的发现对该区寻找岩浆热液型的内生多金属矿床具有重要的启示意义.该区找矿勘探应重视岩体与不同岩性岩石及构造带的接触部位以及岩体与构造断裂交汇的部位.Abstract: The Hashitu Mo deposit was discovered recently in the middle section of the Da Hinggan Montain district. The ore body occurs in granite intrusion and this deposit is regarded as an endogenic metallic ore deposit related to acid magmatism. The metallic minerals are composed of molybdenite,chalcopyrite,pyrite,sphalerite,galena,and arsenopyrite,etc. The fluid inclusions study demonstrates that inclusion types mainly involve liquid inclusion (Ia type),gaseous inclusion (Ib type),daughter crystal inclusion (Ic type) and melt inclusion (II type). Co-existence of different inclusion types indicates the fluid boiling. The heating and freezing study shows that homogenization temperature of fluid and melt inclusions ranges 250~500 ℃ and 750~950 ℃,respectively. The calculation of fluid salinity,pressure and density indicates that these values range 1%~49% NaCl eqv,5~100 MPa and 0.7~1.1 g/cm3,respectively. The fluid inclusion study indicates that ore forming fluid are characterized by high temperature,high salinity,high pressure,high-moderate density and CO2 bearing,which can be classified as H2O-NaCl-CO2-SO42- system. δ34Sv-cdt(‰) values of sulfides and δ34SH2S(‰) values of ore forming fluid range from 0.4‰ to 3.8‰ and 1.1‰ to 4.7‰,respectively. These isotopic values indicate that mineralization is related with magmatism in this region. Both fluid boiling and mixing are identified in ore forming fluid evolution and fluid boiling resulting in pressure decrease was the mainly mechanism for sulfide minerals deposition form hydrothermal fluid. Discovery of the Hashitu Mo deposit in this region is helpful to the exploration of other magmatic-hydrothermal Mo-W-Cu-Pb-Zn-Au deposits. More attention should be paid to the contact and intersection parts between intrusions and other host rocks,intrusions and structural zones in future mining exploration.
-
Key words:
- melt-fluid inclusions /
- sulfur isotope /
- molybdenum deposit /
- Hashitu /
- ore prospecting /
- ore deposits.
-
图 4 哈什吐钼矿床包裹体组成
a.Ib型流体包裹体和Id型纯气相流体包裹体共存;b.Ia型液体包裹体与Ic型三相包裹体和Ie型纯液相包裹体共存;c.Ia型液体包裹体、Ib型气体包裹体、Ic型三相包裹体和Id型纯气相包裹体共存;d.Id型纯气相包裹体;e.Ia型液体包裹体与Id型纯气相包裹体和Ie型纯液相包裹体共存;f.Ic型三相包裹体和Ie型纯液相包裹体共存,部分Ic型包裹体含多个子矿物;g.Ia型液体包裹体与Ic型三相包裹体和Id型纯气相包裹体共存;h.Ia型液体包裹体与Ib型气体包裹体和Ic型三相包裹体共存;i.II型熔融包裹体,温度为650 ℃条件下仍未均一;j.原生Ia型液体包裹体;k.辉钼矿(Mol)边部石英中的Ic型三相包裹体;l.Ia型液体包裹体与Ic型三相包裹体和Id型纯气相包裹体共存,Ic型包裹体含有子矿物赤铁矿(Hem)
Fig. 4. Characteristics of inclusions from the Hashitu Mo deposit
图 9 哈什吐钼矿床成矿流体演化图解(食盐饱和曲线和临界曲线根据Shepherd et al., 1985)
Fig. 9. Fluid evolution diagram of the Hashitu Mo deposit
表 1 哈什吐钼矿床包裹体显微测温结果
Table 1. Microthermometric results of inclusions from the Hashitu Mo deposit
包裹体类型 寄主矿物 大小(μm) Th (℃) 均一方式 Tm, ice(℃) Tm(℃) Ia 石英 5.5~76.4 91.2~596 Th(l) -22~-0.4 - 石英 6.1~35.8 253~459 Th(g) -8~-0.9 - Ib 石英 8.3~52.8 325~389 Th(l) - - 石英 10.5~62.3 300~591 Th(g) - - Ic 石英 5.1~36.3 160~600 Th(l) -5.9~-0.4 145~600 II 石英 4.8~21.5 640~1 049 Th(l) - - 注:Th为完全均一温度;Th(l)为完全均一至液相;Th(g)为完全均一至气相;Tm, ice为冰点温度;Tm为子矿物消失温度. 表 2 内蒙古哈什吐钼矿床硫同位素组成
Table 2. Sulfur isotope compositions of the Hashitu Mo deposit
样品编号 硫化物 温度(℃)1 δ34SV-cdt (‰) δ34SH2S(‰)2 10HST-05 辉钼矿 415 2.6 3.6 10HST-07 辉钼矿 446 2.3 3.2 10HST-09 辉钼矿 438 3.8 4.7 10HST-16 黄铁矿 478 0.4 1.1 10HST-07 闪锌矿 446 0.9 1.1 10HST-15 磁黄铁矿 483 2.3 2.5 注:上标“1”表示温度为与硫化物共生石英中包裹体的均一温度;上标“2”表示δ34SH2S(‰) 计算根据Ohmoto and Rye(1979)和Ohmoto and Lasaga(1982) 的硫化物(H2S)的硫同位素平衡方程. -
[1] Bakker, R.J., 1999. Adaption of Bowers and Helgeson (1983) equation of state to the H2O-CO2-CH4-N2-NaCl system. Chemical Geology, 154(1-4), 225-236. doi: 10.1016/S0009-2541(98)00133-8 [2] Bakker, R.J., 2012. Package FLUIDS. Part 4: thermodynamic modelling and purely empirical equations for H2O-NaCl-KCl solutions. Mineralogy and Petrology, 105(1-2): 1-29. doi: 10.1007/s00710-012-0192-z [3] Chen, Y.Q., Han, X.L., Zhao, H.J., et al., 2010. Characteristics of primary halo zonation and predication pattern of deep orebody of the Huaaobaote Pb-Zn-Ag polymetallic deposit, Inner Mongolia. Earth Science—Journal of China University of Geosciences, 36(2): 236-246 (in Chinese with English abstract). http://www.researchgate.net/publication/285714091_Characteristics_of_primary_halo_zonation_and_prediction_pattern_of_deep_orebody_of_the_Huaaobaote_Pb-Zn-Ag_polymetallic_deposit_Inner_Mongolia [4] Fu, L.B., Wei, J.H., Wei, Q.R., et al., 2010. Petrogenesis and geodynamic setting of Late Triassic dykes of Jinchanggouliang, eastern Inner Mongolia. Earth Science—Journal of China University of Geosciences, 35(6): 933-946 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.108 [5] Gu, X.X., Liu, L., Dong, S.Y., et al., 2010. Immiscibility during mineralization of Yinan Au-Cu-Fe deposit, Shandong Province: evidence from fluid inclusions and H-O isotopes. Mineral Deposits, 29(1): 43-57 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201001007.htm [6] Hall, D.L., Sterner, S.M., Bodnar, R.J., 1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology, 83: 197-202. doi: 10.2113/gsecongeo.83.1.197 [7] Liu, J.J., Xing, Y.L., Wang, J.P., et al., 2010. Discovery of falkmanite from the Bairendaba superlarge Ag-Pb-Zn polymetallic deposit, Inner Mongolia and its origin significance. Journal of Jilin University (Earth Science Edition), 40(3): 565-572 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cckjdxxb201003012 [8] Liu, J.M., Zhang, R., Zhang, Q.Z., 2004. The regional metallogy of Da Hinggan Ling, China. Earth Science Frontiers, 11(1): 269-273 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200401036.htm [9] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid inclusion. Science Press, Beijing, 375-494 (in Chinese). [10] Mao, J.W., Xie, G.Q., Zhang, Z.H., et al., 2005. Mesozoie large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200501018.htm [11] Ohmoto, H., Lasaga, A.C., 1982. Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochem Cosmochim Acta, 46(10): 1727-1745. doi: 10.1016/0016-7037(82)90113-2 [12] Ohmoto, H., Rye, R.O., 1979. Isotopes of sulfur and carbon. In: Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits. Wiley Interscience, New York, 509-567. [13] Reed, M.H., Palandri, J., 2006. Sulfide mineral precipitation from hydrothermal fluids. Reviews in Mineralogy and Geochemistry, 61(1): 609-631. doi: 10.2138/rmg.2006.61.11 [14] Selby, D., Nesbitt, B.E., Muehlenbachs, K., 2000. Hydrothermal alteration and fluid chemistry of the Endako porphyry molybdenum deposit, British Columbia. Economic Geology, 95(1): 183-202. doi: 10.2113/gsecongeo.95.1.183 [15] Shao, J., Wang, S.C., Ma, X.L., et al., 2003. Regional metallogetic characteristics of gold and multimetal deposits in northern Daxing'anling Mountain. Journal of Jilin University (Earth Science Edition), 33(1): 32-36 (in Chinese with English abstract). http://www.researchgate.net/publication/284993303_Regional_metallogentic_characteristic_of_gold_and_multimetal_deposits_in_northern_Daxing'anling_Mountain [16] Shepherd, T.J., Rankin, A.H., Alderton, D.H.M., 1985. A practical guide to fluid inclusion studies. Chapman & Hall, Blackie. [17] Sun, J., Mao, J.W., Xie, G.Q., et al., 2012. Characteristics of ore-forming fluid and metallogenesis of the Tongkengzhang porphyry molybdenum deposit, Jiangxi Province. Acta Petrologica Sinica, 28(1): 91-104 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201201010.htm [18] Wang, D., Lu, H.Z., Bi, X.W., 2011. Comparison of characteristics of ore forming fluids between quartz-vein tungsten deposits and porphyry copper deposits associated with granitic rocks. Earth Science Frontiers, 18(5): 121-131 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201105011.htm [19] Wang, L.J., Shimazaki, H., Wang, J.B., et al., 2001. Ore-forming fluids and metallization of the Huanggangliang skarn Fe-Sn deposit, Inner Mongolia. Science in China (Ser. D), 31(7): 553-562 (in Chinese). doi: 10.1007/BF02907203 [20] Wood, S.A., Crerar, D.A., Borcsik, M.P., 1987. Solubility of the assemblage pyrite-pyrrhotite-magnetite-sphalerite-galena-gold-stibnite-bismuthinite-argentite-molybdenite in H2O-NaCl-CO2 solutions from 200 ℃ to 350 ℃. Economic Geology, 82: 1864-1887. doi: 10.2113/gsecongeo.82.7.1864 [21] Wu, H.Y., Zhang, L.C., Chen, Z.G., et al., 2010. Hypersaline, high-oxygen fugacity and F-rich fluid inclusions in Jiguanshan porphyry molybdenum deposit, Xilamulun metallogenic belt. Acta Petrologica Sinica, 26(5): 1363-1374 (in Chinese with English abstract). http://www.oalib.com/paper/1475155 [22] Zhai, D.G., Liu, J.J., Wang, J.P., et al., 2009. Re-Os isotopic chronology of molybdenite from the Taipinggou porphyry-type molybdenum deposit in Inner Mongolia and its geological significance. Geosciences, 23(2): 262-268 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200902009.htm [23] Zhai, D.G., Liu, J.J., Yang, Y.Q., et al, 2012. Petrogenetic and metallogentic ages of the Huanggangliang Fe-Sn deposit, Inner Mongolia and its tectonic setting. Acta Petrologica et Mineralogica, 31(4): 513-523 (in Chinese with English abstract). http://www.researchgate.net/publication/285160959_Petrogenetic_metallogentic_ages_of_the_Huanggangliang_Fe-Sn_deposit_Inner_Mongolia_its_tectonic_setting [24] Zhang, D.H., 1997. Some new advances in ore-forming fluid geochemistry on boiling and mixing of fluids during the processes of hydrothermal deposits. Advance in Earth Sciences, 12(6): 546-550 (in Chinese with English abstract). http://www.adearth.ac.cn/EN/Y1997/V12/I6/546 [25] Zhang, L.C., Wu, H.Y., Xiang, P., et al., 2010. Ore-forming processes and mineralization of complex tectonic system during the Mesozoic: a case from Xilamulun Cu-Mo metallogenic belt. Acta Petrologica Sinica, 26(5): 1351-1362 (in Chinese with English abstract). [26] Zhao, Y.M., Zhang, D.Q., 1997. Metallogenic regularity and prospective evaluation of the copper-polymetallic deposits in Daxinganling and adjacent areas. Earthquake Publishing House, Beijing (in Chinese). [27] Zhong, J., Chen, Y.J., Chen, J., et al., 2011. Fluid inclusion study of the Luoboling porphyry Cu-Mo deposit in the Zijinshan ore field, Fujian Province. Acta Petrologica Sinica, 27(5): 1410-1424 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=38275343 [28] 陈永清, 韩学林, 赵红娟, 等, 2010. 内蒙花敖包特Pb-Zn-Ag多金属矿床原生晕分带特征与深部矿体预测模型. 地球科学——中国地质大学学报, 36(2): 236-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201102009.htm [29] 付乐兵, 魏俊浩, 魏启荣, 等, 2010. 内蒙古金厂沟梁地区晚三叠世脉岩地球化学特征及成岩动力学背景. 地球科学——中国地质大学学报, 35(6): 933-946. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201006006.htm [30] 顾雪祥, 刘丽, 董树义, 等, 2010. 山东沂南金铜铁矿床中的液态不混溶作用与成矿: 流体包裹体和氢氧同位素证据. 矿床地质, 29(1) : 43-57. doi: 10.3969/j.issn.0258-7106.2010.01.006 [31] 刘家军, 邢永亮, 王建平, 等, 2010. 内蒙拜仁达坝超大型Ag-Pb-Zn多金属矿床中针硫锑铅矿的发现与成因意义. 吉林大学学报(地球科学版), 40(3): 565-572. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201003013.htm [32] 刘建明, 张锐, 张庆洲, 2004. 大兴安岭地区的区域成矿特征. 地学前缘, 11(1): 269-273. doi: 10.3321/j.issn:1005-2321.2004.01.024 [33] 卢焕章, 范宏瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社, 375-494. [34] 毛景文, 谢桂青, 张作衡, 等, 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm [35] 邵军, 王世称, 马晓龙, 等, 2003. 大兴安岭北段金、多金属矿床区域成矿特征. 吉林大学学报(地球科学版), 33(1): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200301006.htm [36] 孙嘉, 毛景文, 谢桂青, 等, 2012. 江西铜坑嶂斑岩钼矿床成矿流体特征与成矿作用研究. 岩石学报, 28(1): 91-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201010.htm [37] 王蝶, 卢焕章, 毕献武, 2011. 与花岗质岩浆系统有关的石英脉型钨矿和斑岩型铜矿成矿流体特征比较. 地学前缘, 18(5): 121-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201105011.htm [38] 王莉娟, 岛崎英彦, 王京彬, 等, 2001. 黄岗梁矽卡岩型铁锡矿床成矿流体及成矿作用. 中国科学(D辑), 31(7): 553-562. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200107003.htm [39] 吴华英, 张连昌, 陈志广, 等, 2010. 西拉木伦多金属成矿带鸡冠山斑岩钼矿富氟高盐度高氧逸度流体包裹体研究. 岩石学报, 26(5) : 1363-1374. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005004.htm [40] 翟德高, 刘家军, 王建平, 等, 2009. 内蒙古太平沟斑岩型钼矿床Re-Os等时线年龄及其地质意义. 现代地质, 23(2): 262-268. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200902009.htm [41] 翟德高, 刘家军, 杨永强, 等, 2012. 内蒙古黄岗梁铁锡矿床成岩、成矿时代与构造背景. 岩石矿物学杂志, 31(4): 513-523. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201204005.htm [42] 张德会, 1997. 流体的沸腾和混合在热液成矿中的意义. 地球科学进展, 12(6): 546-550. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ706.006.htm [43] 张连昌, 吴华英, 相鹏, 等, 2010. 中生代复杂构造体系的成矿过程与成矿作用——以华北大陆北缘西拉木伦钼铜多金属成矿带为例. 岩石学报, 26(5): 1351-1362. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005003.htm [44] 赵一鸣, 张德全, 1997. 大兴安岭及其邻区铜多金属矿床成矿规律与远景评价. 北京: 地震出版社. [45] 钟军, 陈衍景, 陈静, 等, 2011. 福建省紫金山矿田罗卜岭斑岩型铜钼矿床流体包裹体研究. 岩石学报, 27(5): 1410-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201105016.htm