Numerical Simulation of Surfactant Enhanced Aquifer Remediation Processes at DNAPLs Contaminated Aquifer
-
摘要: 根据含水层中水、表面活性剂和DNAPLs的运移规律和相互作用机理, 建立三维多相流数值模拟模型, 用以模拟表面活性剂强化的DNAPLs污染含水层的修复过程.将所建立的模型应用于一个被PCE污染的非均质含水层中, 并分别对污染物的污染过程以及修复过程进行模拟.研究结果表明: 数值模拟模型给出了表面活性剂强化含水层修复过程中非水相流体迁移转化的数学描述, 能够在短时间内、参数有限的条件下真实地刻画DNAPLs在含水层中的运移规律, 并能有效地模拟表面活性剂的修复过程.此外, 模拟结果显示, 由于表面活性剂对PCE的增溶增流作用, 有效地提高了PCE在水中的溶解性和迁移性, 其修复40 d的去除率达到63.5%, 与抽出处理法(去除率为31.8%)相比修复效果明显增强.Abstract: According to the migration of water, surfactant, DNAPLs (dense nonaqueous phase liquid), and their interaction mechanism, a three-dimensional numerical simulation model was build to simulate the process of surfactant enhanced aquifer remediation at DNAPLs contaminated aquifer. The model was applied to a heterogeneous PCE-contaminated aquifer for simulating both the contamination process and remediation process. The result show that the numerical simulation model provided the mathematical description of migration and fate of NAPLs (nonaqueous phase liquids) in surfactant enhanced aquifer remediation processes, and with limited time and parameters it can depict NAPLs migration law in aquifer realistically and simulate surfactant remediation processes effectively. Moreover, the modeling results show that, it's removal efficiency is 63.5% after 40 days remediation due to the solubilization and mobilization of surfactant which is 32% higher than that of pump and treat (removal efficiency is 31.8%).
-
Key words:
- surfactant /
- dense nonaqueous phase liquid /
- numerical simulation /
- remediation
-
表 1 未知量个数
Table 1. Number of the unknown variable
未知量 $\tilde{C}_{k} $ Ckl Sl Pl ρl krl μl 个数 N=3 n·np=9 np=3 np=3 np=3 np=3 np=3 共np(n+5)+n=27个基本变量,前面已经有了3个质量守恒方程,因此还需要24个辅助方程才能解此问题.辅助方程个数见表 2. 表 2 辅助方程个数
Table 2. Number of the auxiliary equation
辅助方程 个数 各相的饱和度之和为1 1 所有组分的浓度之和为1 1 每个相中,组分的相浓度之和为1 3 各相流体的密度和粘度都是压力的函数(Qin et al., 2007) 6 组分浓度与相浓度和饱和度之间的关系(陈月明, 1989) 8 相对渗透率是饱和度的函数(Brooks and Corey, 1966) 3 毛细压力是饱和度的函数(Van Genuchten, 1980; Parker et al., 1987) 2 以上共24个辅助方程,基本方程数与未知量个数相等,方程组可解. 表 3 研究区物理、化学参数值
Table 3. Physical and chemical parameters in the research domain
参数 数值 参数 数值 孔隙度 0.34 水的粘度 0.001 Pa·s 水力梯度 0.004 706 PCE的粘度 0.000 89 Pa·s 纵向弥散度 0.03 m PCE与水间的界面张力 0.045 N·m-1 横向弥散度 0.009 m PCE在水中的溶解度 0.24 kg·m-3 水的密度 1.00 g/cm3 水残余饱和度 0.24 PCE的密度 1.62 g/cm3 PCE残余饱和度 0.17 表面活性剂的密度 1.15 g/cm3 -
[1] Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division, 92(2): 61-88. doi: 10.1061/JRCEA4.0000425 [2] Chen, Y.M., 1989. Basis of numerical reservoir simulation. Petroleum University Press, Dongying, 1-29 (in Chinese). [3] Cui, X.H., 2006. Numerical simulation for multiphase flow and transport in groundwater system (Dissertation). China University of Geosciences, Beijing (in Chinese). [4] Delshad, M., Pope, G.A., Sepehrnoori, K., 1996. A compositional simulator for modeling surfactant enhanced aquifer remediation, 1. Formulation. Journal of Contaminant Hydrology, 23(4): 303-327. doi: 10.1016/0169-7722(95)00106-9 [5] Fetter, C.W., 1999. Contaminant hydrogeology (second edition). Macmillan Publishing Company, New York. [6] Han, D., Shen, P.P., 2001. Principles and applications of surfactant flooding. Petroleum Industry Press, Beijing (in Chinese). [7] Hu, L.M., Xing, W.W., Wu, Z.Q., 2007. Numerical simulation of non-aqueous phase liquids migration in porous media. Rock and Soil Mechanics. , 28(5): 951-955 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/ytlx200705018 [8] Kueper, B.H., McWhorter, D.B., 1991. The behavior of dense, nonaqueous phase liquids in fractured clay and rock. Ground Water, 29(5): 716-728. doi: 10.1111/j.1745-6584.1991.tb00563.x [9] Li, S.X., Gu, J.W., 2009. Basis of numerical reservoir simulation. Petroleum University Press, Dongying (in Chinese). [10] Li, S., 2008. Research on surfactant enhanced pump and treat remediation of a DNAPL contaminated aquifer—case study on nitrobenzene (Dissertation). Jilin University, Changchun (in Chinese). [11] Liao, G.Z., Wang, Q.M., Wang, D.M., 1999. Principle and application of chemical flooding. Petroleum Industry Press, Beijing (in Chinese). [12] Liu, L., 2005. Modeling for surfactant-enhanced groundwater remediation processes at DNAPLs-contaminated sites. Journal of Environmental Informatics, 5(2): 42-52. doi: 10.3808/jei.200500045 [13] Parker, J.C., Lenhard, R.J., Kuppusamy, T., 1987. A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research, 23(4): 618-624. doi: 10.1029/WR023i004p00618 [14] Pennell, K.D., Jin, M., Pope, G.A., et al., 1996. Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene. Journal of Contaminant Hydrology, 16(1): 35-53. doi: 10.1016/0169-7722(94)90071-X [15] Qin, X.S., Huang, G.H., Chakma, A., et al, 2007. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites. Science of the Total Environment, 381(1-3): 17-37. doi: 10.1016/j.scitotenv.2007.04.011 [16] Van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5): 892-989. doi: 10.2136/sssaj1980.03615995004400050002x [17] Xue, Q., 2003. Research on multiphase flow model of petroleum pollutant transport in subsurface system (Dissertation). Liaoning Technical University, Fuxin (in Chinese). [18] Yi, L.X., Xu, H., 2009. Groundwater numerical modeling: the application examples of GMS. Chemical Industry Press, Beijing (in Chinese). [19] Zhao, G.X., Zhu, B.Y., 2003. Principles of surfactant action. Chinese Light Industry Press, Beijing (in Chinese). [20] Zhi, Y.F., Chen, J.J., Yang, G.G., et al, 2006. Review of study on multiphase flow related to NAPLs pollution remediation by surfactant flushing. Techniques and Equipment for Environmental Pollution Control, 7(3): 25-29(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJJZ200603004.htm [21] Zhong, L., Mayer, A.S., Pope, G.A., 2003. The effects of surfactant formulation on nonequilibrium NAPL solubilization. Journal of Contaminant Hydrology, 60(1-2): 55-75. doi: 10.1016/S0169-7722(02)00063-3 [22] 陈月明, 1989. 油藏数值模拟基础. 东营: 石油大学出版社, 1-29. [23] 崔学会, 2006. 地下水系统中多相流体数值模拟(博士学位论文). 北京: 中国地质大学. [24] 韩冬, 沈平平, 2001. 表面活性剂驱油原理及其应用. 北京: 石油工业出版社. [25] 胡黎明, 邢巍巍, 吴照群, 2007. 多孔介质中非水相流体运移的数值模拟. 岩土力学, 28(5): 951-955. doi: 10.3969/j.issn.1000-7598.2007.05.018 [26] 李淑霞谷建伟, 2009. 油藏数值模拟基础. 东营: 石油大学出版社. [27] 李隋, 2008. 表面活性剂强化抽取处理修复DNAPLs污染含水层的实验研究——以硝基苯为例(博士学位论文). 长春: 吉林大学. [28] 廖广志, 王启民, 王德民, 1999. 化学复合驱原理及应用. 北京: 石油工业出版社. [29] 薛强, 2003. 石油污染物在地下环境系统中运移的多相流模型研究(博士学位论文). 阜新: 辽宁工程技术大学. [30] 易立新, 徐鹤, 2009. 地下水数值模拟: GMS应用基础与实例. 北京: 化学工业出版社. [31] 赵国玺, 朱步瑶, 2003. 表面活性剂作用原理. 北京: 中国轻工业出版社. [32] 支银芳, 陈家军, 杨官光, 等, 2006. 表面活性剂冲洗法治理非水相流体污染多相流研究进展. 环境污染治理技术与设备, 7(3): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200603004.htm