Type, Discovery Process and Significance of Zhaxikang Antimony Polymetallic Ore Deposit, Tibet
-
摘要: 扎西康锑多金属矿床是北喜马拉雅成矿带中首次发现的超大型矿床, 是在全世界最年轻、最宏大的"藏南拆离系"中找矿取得的重大突破, 也是我国首次发现喷流沉积-热泉水改造型锰铁锑铅锌银矿床.通过大量详实的野外调查与综合研究, 新发现大量的锰铁碳酸盐建造、纹层状构造、"斑点狗"、同心环带、"古喷流口"、热水蛋、水热角砾岩、热泉洞以及硫化物中Pb+Zn≫Cu, Ga≫In, Mn、Fe、Ba、B含量高等喷流沉积及热泉作用证据, 属喷流沉积-热泉水改造型锑多金属矿床, 是成矿找矿理论方法创新指导找矿突破的经典范例.在重点介绍该矿床地质特征、成因的基础上, 系统论述其发现过程及勘查新进展, 这对于启迪人们的找矿思路, 推动北喜马拉雅地区喷流沉积-改造型矿床进一步的勘查评价、科学研究及理论方法创新具有重要的指导与借鉴意义.Abstract: Zhaxikang antimony polymetallic ore deposit, the first super large deposit discovered in northern Himalayan metallogenic belt (NHMB) and first SEDEX discovered modified by hot spring type Mn-Fe-Sb-Pb-Zn-Ag deposit in China, is the marked prospecting breakthrough in the youngest and great southern Tibetan detachment system (STDS). Many detailed field surveys and comprehensive researches have been made to seek evidence of SEDEX and hot spring mineralization, including the ferromanganese carbonate formation, lamellar structure, dalmatianite structure, concentric rings, paleo-spout, hot water eggs, hydrothermal breccia, hot spring hole, (Pb+Zn) concentration much higher than Cu, Ga concentration much higher than In, as well as the higher concentrations of Mn, Fe, Ba and B. These indicate that Zhaxikang is the SEDEX modified by hot spring type deposit. The innovation of ore-forming prospecting theory method plays an important role in the prospecting breakthrough of Zhaxikang deposit. Based on the analysis of characteristics of ore deposit and its genetic type, the discovery process and exploration advance were introduced, which is of great significance both in the prospecting theories and practices, and in the exploration and evaluation, scientific research, and theory innovation in NHMB.
-
图 3 扎西康喷流沉积型矿石特征
a.紋层状铁闪锌矿、黄铁矿;b.条带状闪锌矿、黄铁矿,并显示同生褶皱特征,后期被梳状石英脉充填;c.黄铁矿、闪锌矿、锰铁碳酸盐构成条带状构造;d.斑点状闪锌矿-菱锰矿,类似“斑点狗”(Dalmatianite) 构造;e.含闪锌矿的锰铁碳酸盐角砾被后期细粒的方铅矿、闪锌矿胶结,可能为同生角砾;f、g.含硫化物的菱锰矿角砾被后期呈同心环带构造的细粒方铅矿、闪锌矿及锰铁碳酸盐胶结;h.角砾状构造,角砾具有可拼贴性;i.椭球状角砾及胶结物全为锰铁碳酸盐的,“热水蛋”表面常包裹一层闪锌矿等硫化物;j.网脉状构造;k.锰碳酸盐及发育的黄铁矿化;l.发育典型的热水沉积岩——锰铁碳酸盐岩;m.闪锌矿和锰铁碳酸盐构成条带状构造,后期发育浸染状黄铁矿化和黄铜矿化;n.锰铁碳酸盐环带及中间充填的硫化物组成的“古喷流口”;o.方铅矿、黄铜矿、黄铁矿充填交代喷流岩
Fig. 3. SEDEX type ore in Zhaxikang deposit
图 5 闪锌矿Ga-In元素对比(底图据张乾,1987)
扎西康矿床数据来自本文;蔡家营矿床数据来自潘家永等(1993);冷水坑矿床数据来自承斯(2011)
Fig. 5. Ga vs.In concentration in sphalerite
图 6 扎西康氢氧同位素关系
扎西康矿床数据来自本文;沙拉岗矿床数据来自杨竹森等(2006);车穷卓布矿床据孟祥金等(2008)和本文;西藏地热水据郑淑蕙等(1982)
Fig. 6. δD-δ18O relation in Zhaxikang deposit
-
[1] Cheng, S., 2011. The mineralogical study of sphalerite of Xiabao deposit in Lengshuikeng silver-lead-zinc ore field, Jiangxi Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [2] Ding, T.P., Jiang, S.Y., Wan, D.F., et al., 1994. Silicon isotope geochemistry. Geological Publishing House, Beijing (in Chinese). [3] Gu, X.X., Liu, J.M., Oskar, S., et al., 2004. Syngenetic origin of the Woxi W-Sb-Au deposit in Hunan: evidence from trace elements and sulfur isotopes. Chinese Journal of Geology, (3): 424-439 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200403012.htm [4] Han, F., Zhao, R.S., Shen, J.Z., et al., 1997. The geology and genesis of the Dachang tin-polymetallic deposit. Geological Publishing House, Beijing, 65-157 (in Chinese). [5] Hou, Z.Q., Nigel, J.C., 2009. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue. Ore Geology Reviews, 36: 2-24. doi: 10.1016/j.oregeorev.2009.05.001 [6] Kelley, K.D., Leach, D.L., Johnson, C.A., et al., 2004. Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: implications for ore formation. Economic Geology, 99: 1509-1532. doi: 10.2113/gsecongeo.99.7.1509 [7] Leach, D.L., Bardley, D.C., Huston, D., et al., 2010. Sediment-hosted lead-zinc deposits in earth history. Economic Geology, 105: 593-625. doi: 10.2113/gsecongeo.105.3.593 [8] Li, J.G., Wang, Q.H., Chen, J.K., et al., 2002. Study of metallogenic and prospecting models for the Shalagang antimony deposit, Gyangze, Tibet. Journal of Chengdu University of Technology, 29(5): 533-538 (in Chinese with English abstract). http://www.researchgate.net/publication/282708644_Study_of_metallogenic_and_prospecting_models_for_the_Shalagang_antimony_deposit_Gyangze_Tibet [9] Li, Y.H., Ding, T.P., Wang, D.F., 1994. Experimental study of silicon isotope dynamic fraction and its geological application. Mineral Deposits, 13(3): 282-287 (in Chinese with English abstract). [10] Meng, X.J., Yang, Z.S., Qi, X.X., et al., 2008. Silicon-oxygen-hydrogen isotopic compositions of Zaxikang antimony polymetallic deposit in southern Tibet and its responses to the ore-controlling structure. Acta Petrologica Sinica, 24(7): 1649-1655 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200807022.htm [11] Moore, D.W., Young, L.E., Modene, J.S., et al., 1986. Geologic setting and genesis of the Red Dog zinc-lead-silver deposit, western Brooks Range, Alaska. Economic Geology, 81: 1696-1727. doi: 10.2113/gsecongeo.81.7.1696 [12] Nie, F.J., Hu, P., Jiang, S.H., et al., 2005. Type and temporal-spatial distributionof gold and antimony deposits (prospects) in southern Tibet, China. Acta Geologica Sinica, 79(3) : 373-385 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200503016.htm [13] Nie, F.J., Hu, P., Jiang, S.H., et al., 2006. Genetic type and geochemical features of granitoid intrusions occurring in the Qiongduojiang area, southern Tibet. Acta Geologica Sinica, 80(9): 1342-1354 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200609010.htm [14] Ohmoto, H., 1986. Stable isotope geochemistry of ore deposits. In: Valley, J.W., Taylor, Jr. H.P., O'Neil, J.R., eds., Reviews in mineralogy: stable isotopes in high temperature geological processes. Mineral. Soc. Am., 16: 491-560. [15] Pan, J.Y., Zhang, Q., Rui, Z.Y., 1993. Trace element characteristics of major minerals in the Caijiayang lend-zinc-silver deposit. Journal of Guilin College of Geology, 13(4): 386-393 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX199304006.htm [16] Qi, X.X., Li, T.F., Meng, X.J., et al., 2008. Cenozoic tectonic evolution of the Tethyan Himalayan foreland fault-fold belt in southern Tibet, and its constraint on antimony-gold polymetallic minerogenesis. Acta Petrologica Sinica, 24(7): 1638-1648 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200807021.htm [17] Schwartz, M.O., 2000. Cadmium in zinc deposits: economic geology of a polluting element. International Geology Review, 42(5): 445-469. doi: 10.1080/00206810009465091 [18] Sun, X.M., Wei, H.X., Zhai, W., et al., 2010. Ore-forming fluid geochemistry and metallogenic mechanism of Bangbu large-scale orogenic gold deposit in southern Tibet, China. Acta Petrologica Sinica, 26(6): 1672-1684 (in Chinese with English abstract). http://www.researchgate.net/publication/286281106_Ore-forming_fluid_geochemistry_and_metallogenic_mechanism_of_Bangbu_large-scale_orogenic_gold_deposit_in_southern_Tibet_China [19] Wei, H.X., Sun, X.M., Zhai, W., et al., 2010. He-Ar-S isotopic compositions of ore-forming fluids in the Bangbu large-scale gold deposit in southern Tibet, China. Acta Petrologica Sinica, (6): 1685-1691 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201006005.htm [20] Yang, Z.S., Hou, Z.Q., Gao, W., et al., 2006. Metallogenic characteristics and genetic model of antimony and gld deposits in South Tibetan detachment system. Acta Geologica Sinica, 80(9): 1377-1391 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200609013.htm [21] Yu, G.M., Wang, C.S., 1990. Tethy sedimentary geology in Tibet. Geological Publishing House, Beijing, 10-49 (in Chinese). [22] Zeng, L.S., Gao, L., Dong, C.Y., et al., 2012. High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa massif, southern Tibet. Gondwana Research, 21: 138-151. doi: 10.1016/j.gr.2011.07.023 [23] Zeng, L.S., Liu, J., Gao, L.E., et al., 2009. Early Oligocene anatexis in the Yardoigneiss dome, southern Tibet and geological implications. Chinese Science Bulletin, 54(1): 104-112 (in Chinese with English abstract). doi: 10.1007/s11434-008-0362-x [24] Zhang, G.Y., Zheng, Y.Y., Zhang, J.F., et al., 2011. Ore-control structural and geochronologic constrain in Shalagang antimony deposit in southern Tibet, China. Acta Petrologica Sinica, 27(7): 2143-2149 (in Chinese with English abstract). http://www.oalib.com/paper/1474194 [25] Zhang, H.F., Nigel, H., Randall, P., Zhang, L., Zhao, Z.D., et al., 2005. Geochemistry of North Himalayan leucogranites: regional comparison, petrogenesis and tectonic implications. Earth Science—Journal of China University of Geosciences, 30: 275-288 (in Chinese with English abstract). [26] Zhang, H.R., Hou, Z.Q., Yang, Z.M., 2010. Metallogenesis and geodynamics of Tethyan metallogenic domain: a review. Mineral Deposits, 29(1): 113-133 (in Chinese with English abstract). [27] Zhang, J.F., Zheng, Y.Y., Zhang, G.Y., et al., 2010. Genesis of Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya: constraints from multi-isotope geochemistry. Earth Science—Journal of China University of Geosciences, 35(6): 1000-1011 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.113 [28] Zhang, Q., 1987. Application of diagram of trace elements in the sphalerite and galena to the genetic type of lead and zinc deposit. Geology Geochemistry, 64-66 (in Chinese with English abstract). http://www.researchgate.net/publication/292767403_Application_of_diagram_of_trace_elements_in_the_sphalerite_and_galena_to_the_genetic_type_of_lead_and_zinc_deposit [29] Zheng, S.H., Zhang, Z.F., Ni, B.L., et al., 1982. Hydrogen and oxygen isotopic studies of thermal waters in Xizang. Acta Scientiarum Naturalum Universitis Pekinesis, (1): 99-106 (in Chinese with English abstract). http://www.cabdirect.org/abstracts/19812608807.html [30] Zheng, Y.Y., Duo, J., Ma, G.T., et al., 2007. Mineralization characteristics, discovery and age restriction of Chalapu hardrock gold deposit, southern Tibet. Earth Science—Journal of China University of Geosciences, 32(2): 185-189 (in Chinese with English abstract). http://www.researchgate.net/publication/287868996_Mineralization_characteristics_discovery_and_age_restriction_of_chalapu_hardrock_gold_deposit_southern_Tibet [31] Zheng, Y.Y., Zhao, Y.X., Wang, P., et al., 2004. Metallogenic regularity and prospecting advance of gold and antimony ore belt, southern Tibet. Earth Science—Journal of China University of Geosciences, 29(1): 44, 68 (in Chinese with English abstract). [32] Zhou, J.X., Huang, Z.L., Zhou, G.F., et al., 2009. The occurrence states and regularities of dispersed elements in Tianqiao Pb-Zn ore deposit, Guizhou Province, China. Acta Mineralogica Sinica, 29(4): 471-480 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200904013.htm [33] Zhou, T.F., Yuan, F., Yue, S.C., et al., 2001. Silicon, helium and neon isotope geochemistry of Cu, Au ore deposist in the Yueshan orefield, Anhui Province. Bulletin of Mineralogy Petrology and Geochemistry, 20(4): 385-390 (in Chinese with English abstract). http://www.researchgate.net/publication/289974645_Silicon_helium_and_neon_isotope_geochemistry_of_Cu_Au_ore_deposits_in_the_Yueshan_Orefield_Anhui_province [34] Zhou, W.N., Fu, J.B., 1989. Typomorphic characteristics of sphalerite in Tongkeng-Changpo mine of Dachang ore field, Guangxi, China. Minerals and Rocks, 9(2): 66-72 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS198902005.htm [35] Zhu, D.C., Chung, S.L., Mo, X.X., et al., 2009. The 132 Ma Comei-Bunbury large igneous province: remnants identified in present-day SE Tibet and SW Australia. Geology, 37(7): 583-586. doi: 10.1130/G30001A.1 [36] 承斯, 2011. 江西冷水坑银铅锌矿下鲍矿区闪锌矿的矿物学特征研究(硕士学位论文). 北京: 中国地质大学. [37] 丁悌平, 蒋少涌, 万德芳, 等, 1994. 硅同位素地球化学. 北京: 地质出版社. [38] 顾雪祥, 刘建明, Oskar Schulz, 等, 2004. 湖南沃溪钨锑金建造矿床同生成因的微量元素和硫同位素证据. 地质科学, (3): 424-439. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200403012.htm [39] 韩发, 赵汝松, 沈建忠, 等, 1997. 大厂锡多金属矿床地质及成因. 北京: 地质出版社, 65-157. [40] 李金高, 王全海, 陈健坤, 等, 2002. 西藏江孜县沙拉岗锑矿床成矿与找矿模式的初步研究. 成都理工学院学报, 29(5): 533-538. doi: 10.3969/j.issn.1671-9727.2002.05.011 [41] 李延河, 丁悌平, 万德芳, 1994. 硅同位素动力学分馏的试验研究及地质应用. 矿床地质, 13(3): 282-287. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ403.009.htm [42] 孟祥金, 杨竹森, 戚学祥, 等, 2008. 藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应. 岩石学报, 24(7): 1649-1655. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807022.htm [43] 聂凤军, 胡朋, 江思宏, 等, 2005. 藏南地区金和锑矿床(点)类型及其时空分布特征. 地质学报, 79(3): 373-385. doi: 10.3321/j.issn:0001-5717.2005.03.009 [44] 聂凤军, 胡朋, 江思宏, 等, 2006. 藏南邛多江地区花岗岩地球化学特征及成因类型. 地质学报, 80(9): 1342-1354. doi: 10.3321/j.issn:0001-5717.2006.09.010 [45] 潘家永, 张乾, 芮宗瑶, 1993. 河北蔡家营铅锌银矿床主要矿物的微量元素特征. 桂林工学院院报, 13(4): 386-393. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX199304006.htm [46] 戚学祥, 李天福, 孟祥金, 等, 2008. 藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用. 岩石学报, 24(7): 1638- 1648. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807021.htm [47] 孙晓明, 韦慧晓, 翟伟, 等, 2010. 藏南邦布大型造山型金矿成矿流体地球化学和成矿机制. 岩石学报, 26(6): 1672-1684. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201006004.htm [48] 韦慧晓, 孙晓明, 翟伟, 等, 2010. 藏南邦布大型金矿成矿流体He-Ar-S同位素组成及其成矿意义. 岩石学报, (6): 1685-1691. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201006005.htm [49] 杨竹森, 侯增谦, 高伟, 等, 2006. 藏南拆离系锑金成矿特征与成因模式. 地质学报, 80(9): 1377-1391. doi: 10.3321/j.issn:0001-5717.2006.09.013 [50] 余光明, 王成善, 1990. 西藏特提斯沉积地质. 北京: 地质出版社, 10-49. [51] 曾令森, 刘静, 高利娥, 等, 2009. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义. 科学通报, (3): 373-381. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200903019.htm [52] 张刚阳, 郑有业, 张建芳, 等, 2011. 西藏沙拉岗锑矿控矿构造及成矿时代约束. 岩石学报, 27(7): 2143-2149. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107022.htm [53] 张宏飞, 张利, 赵志丹, 等, 2005. 北喜马拉雅淡色花岗岩地球化学: 区域对比, 岩石成因及其构造意义. 地球科学——中国地质大学学报, 30: 275-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200503003.htm [54] 张洪瑞, 侯增谦, 杨志明, 2010. 特提斯成矿域主要金属矿床类型与成矿过程. 矿床地质, 29(1): 113-133. doi: 10.3969/j.issn.0258-7106.2010.01.011 [55] 张建芳, 郑有业, 张刚阳, 等, 2010. 北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约. 地球科学——中国地质大学学报, 35(6): 1000-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201006011.htm [56] 张乾, 1987. 利用方铅矿、闪锌矿的微量元素图解法区分铅锌矿床的成因类型. 地质地球化学, 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198709012.htm [57] 郑淑蕙, 张知非, 倪葆龄, 等, 1982. 西藏地热水的氢氧稳定同位素研究. 北京大学学报, (1): 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ198201010.htm [58] 郑有业, 多吉, 马国桃, 等, 2007. 藏南查拉普岩金矿床特征、发现及时代约束. 地球科学——中国地质大学学报, 32(2): 185- 193. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702004.htm [59] 郑有业, 赵永鑫, 王苹, 等, 2004. 藏南金锑成矿带成矿规律研究及找矿取得重大进展. 地球科学——中国地质大学学报, 29(1): 44, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401007.htm [60] 周家喜, 黄智龙, 周国富, 等, 2009. 贵州天桥铅锌矿床分散元素赋存状态及规律. 矿物学报, 29(4): 471-480. doi: 10.3321/j.issn:1000-4734.2009.04.011 [61] 周涛发, 袁峰, 岳书仓, 等, 2001. 安徽月矿田硅、氦、氖同位素地球化学研究. 矿物岩石地球化学通讯, 20(4): 385-390. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200104049.htm [62] 周卫宁, 傅金宝, 1989. 广西大厂矿田铜坑-长坡矿区闪锌矿的标型特征. 矿物岩石, 9(2): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198902005.htm