Geochemical Characteristics and Geologic Implications of Halaqiaola Mafic Intrusion, Southeast Altai, Xinjiang
-
摘要: 哈拉乔拉镁铁质岩体位于新疆阿尔泰造山带东南缘, 主要岩石类型有辉长岩、辉长苏长岩、含长辉石岩、橄榄辉长岩和橄长岩.哈拉乔拉岩体具有低TiO2(0.09%~1.28%)、低碱(Na2O+K2O=0.37%~0.78%)的特点, 属于拉斑玄武岩系列; 富集大离子亲石元素和轻稀土元素, 亏损高场强元素(Nb、Ta等), εNd(t)为-2.62~-0.78, εSr(t)为37.49~45.28.元素地球化学和Nd-Sr同位素组成表明, 岩浆源区为被消减板片交代改造过的富集型岩石圈地幔.原生岩浆为高镁拉斑玄武岩浆, 岩浆演化过程中主要发生了橄榄石、单斜辉石以及斜长石的分离结晶/堆晶, 后期有钛铁矿的析出.Abstract: Halaqiaola mafic intrusion lies in the southeast margin of the Altai orogenic belt in Xinjiang, northwestern China. The main rock types are gabbros, gabbro norite, plagioclase-bearing pyroxenite, olivine gabbro and troctolite. Halaqiaola intrusion has low contents of TiO2 (0.09%-1.28%) and alkali (Na2O+K2O=0.37%-0.78%), and belongs to tholeiitic series; the intrusion is rich in large ion lithophile elements and light rare earth elements and depleted in high field elements (such as Nb, Ta). The εNd(t) and the εSr(t) values range from -2.62 to -0.78 and 37.49 to 45.28 respectively. Element geochemistry and Nd-Sr isotopic composition shows that the magma was derived from the dehydration of subducted plate and metasomatismed enriched lithosphere mantle. The primary magma of the intrusion is basaltic magma. During the process of magma evolution, the primary magma has experienced fractional crystallization of olivine, clinopyroxene and plagioclase, with ilmenite-precipitation in the late period.
-
Key words:
- Halaqiaola /
- mafic /
- primary magma /
- magma evolution /
- lithosphere mantle /
- petrology /
- geochemistry
-
图 3 SiO2-FeOT*/MgO图解(Miyashiro, 1974)
Fig. 3. SiO2 vs. FeOT*/MgO diagram
图 4 (a) 球粒陨石标准化的稀土元素配分曲线图(球粒陨石标准化值据McDonough and Sun, 1995);(b)原始地幔标准化的多元素配分曲线图(原始地幔标准值据McDonough and Sun, 1995)
Fig. 4. (a) Chondrite-normalized REE patterns; (b) PM-normalized trace elements spider diagram
图 5 εNd(t)-(87Sr/86Sr)i相关图(据Zindler and Hart, 1986)
Fig. 5. εNd(t) versus initial 87Sr/86Sr of the intrusion
图 6 207Pb/204Pb-206Pb/204Pb和208Pb/204Pb-206Pb/204Pb相关图(据Zindler and Hart, 1986;Allègre et al., 1988)
Fig. 6. 207Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb of the intrusion
图 8 La/Ba-La/Nb以及Nb/Zr-Th/Zr图解(据Woodhead et al., 2001)
Fig. 8. La/Ba vs. La/Nb and Nb/Zr-Th/Zr relation
表 1 哈拉乔拉岩体中橄榄石、辉石电子探针分析数据(%)
Table 1. Electron microprobe analytical data of olivines and pyroxenes of Halaqiaola intrusion (%)
No. 岩石名称 矿物 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO NiO CaO Na2O K2O Total 端员组成 矿物种属 HL-05-6 橄榄
辉长岩Ol 38.91 0.01 0.01 0.00 21.73 0.30 39.74 0.00 0.02 0.01 0.02 100.74 Fo77Fa23 贵橄榄石 HL-05-8 Ol 38.17 0.00 0.00 0.03 23.79 0.36 37.61 0.00 0.03 0.00 0.00 100.00 Fo74Fa26 贵橄榄石 HL-05-2 Ol 38.17 0.01 0.00 0.04 21.53 0.07 38.55 0.00 0.03 0.02 0.00 98.43 Fo74Fa26 贵橄榄石 HL-05-3 Ol 37.95 0.00 0.01 0.00 21.31 0.12 39.21 0.00 0.00 0.04 0.01 98.65 Fo74Fa26 贵橄榄石 HL-02-1 橄长岩 Ol 38.85 0.02 0.01 0.03 19.88 0.20 38.74 0.00 0.03 0.32 0.07 98.15 Fo78Fa22 贵橄榄石 HL-02-5 Ol 38.55 0.00 0.00 0.00 20.47 0.18 38.50 0.00 0.02 0.05 0.02 97.78 Fo77Fa23 贵橄榄石 HL-02-6 Ol 39.59 0.00 0.01 0.02 18.96 0.16 39.67 0.01 0.05 0.00 0.00 98.46 Fo79Fa21 贵橄榄石 HL-05-3 橄榄
辉长岩Cpx 51.95 0.20 2.88 0.05 6.27 0.28 14.71 0.00 16.29 0.15 0.00 92.77 En49Fs12Wo39 普通辉石 HL-05-1 Cpx 49.96 0.28 3.16 0.02 5.11 0.06 14.28 0.00 23.47 0.08 0.00 96.43 En42Fs8Wo50 透辉石 HL-05-4 Cpx 48.11 0.34 3.73 0.01 6.29 0.00 14.43 0.02 21.01 0.20 0.02 94.16 En44Fs11Wo45 透辉石 HL-02-4 橄长岩 Cpx 43.85 0.22 10.99 0.00 6.82 0.12 15.48 0.00 12.11 1.24 0.18 90.99 En55Fs14Wo31 普通辉石 HL-02-7 Cpx 46.21 0.09 11.68 0.00 7.53 0.05 16.36 0.00 12.55 1.36 0.15 95.99 En55Fs14Wo30 普通辉石 HL-14-6 含长
辉石岩Cpx 44.94 0.00 14.43 0.03 9.69 0.20 15.74 0.00 7.76 1.48 0.25 94.51 En59Fs20Wo21 普通辉石 HL-14-7 Cpx 45.39 0.06 13.98 0.00 10.24 0.10 14.13 0.00 8.61 1.62 0.19 94.32 En54Fs22Wo24 普通辉石 HL-14-8 Cpx 45.10 0.12 15.02 0.00 10.64 0.09 13.73 0.00 8.60 1.75 0.20 95.25 En53Fs23Wo24 普通辉石 HL-05-5 橄榄
辉长岩Opx 53.14 0.00 2.58 0.00 13.33 0.08 26.98 0.00 0.40 0.02 0.01 96.54 En78Fs21Wo1 古铜辉石 HL-05-1 Opx 51.91 0.00 2.32 0.00 13.72 0.32 26.10 0.00 0.22 0.05 0.02 94.67 En77Fs23 古铜辉石 HL-18-3 辉长岩 Opx 52.97 0.00 1.98 0.00 16.79 0.17 20.10 0.04 0.34 0.08 0.01 92.48 En68Fs31Wo1 紫苏辉石 HL-09-1 辉长
苏长岩Opx 52.47 0.14 1.38 0.04 20.03 0.08 22.77 0.02 1.15 0.01 0.01 98.11 En66Fs32Wo2 紫苏辉石 注:本数据由长安大学成矿动力学实验室采用JXI-8100型电子探针分析,电流1.0×10-8,电压15 kV.端元计算公式:Fo=Mg/(Mg+Fe)×100,Fa=Fe/(Mg+Fe)×100;Wo=Ca/(Ca+Mg+Fe)×100,En=Mg/(Ca+Mg+Fe)×100,Fs=Fe/(Ca+Mg+Fe)×100 (式中Mg、Fe、Ca都为分子数). 表 2 哈拉乔拉岩体的岩石化学组成(%)
Table 2. Petrochemical composition (%) of Halaqiaola intrusion
Sample 岩石名称 SiO2 TiO2 Al2O3 Fe2O3T MnO MgO CaO Na2O K2O P2O5 LOI Total Mg# m/f HL-02 43.68 0.14 19.47 9.33 0.15 12.83 13.06 0.35 0.02 0.02 0.53 99.58 0.73 2.75 HL-12 橄长岩 43.61 0.1 18.67 10.09 0.15 15.26 10.12 0.34 0.05 0.03 1.09 99.51 0.75 3.02 HL-13 43.64 0.12 18.64 9.92 1.14 15.1 10.13 0.38 0.07 0.02 1.47 99.63 0.75 3.04 HL-03 42.85 0.09 22.47 8.63 0.13 10.72 12.58 0.36 0.07 0.02 1.67 99.59 0.71 2.48 HL-10 橄榄辉长岩 43.82 0.11 23.28 7.84 0.12 10.23 12.52 0.46 0.08 0.05 1.05 99.56 0.72 2.6 HL-05 44.51 0.14 20.68 8.02 0.13 10.62 13.94 0.35 0.03 0.03 1.19 99.64 0.73 2.64 HL-09 辉长苏长岩 44.84 1.02 20.13 13.78 0.18 6.92 10.43 0.71 0.07 0.06 1.42 99.56 0.5 1 HL-08 43.89 1.28 17.86 15.14 0.2 7.46 12.42 0.62 0.06 0.06 0.69 99.68 0.5 0.98 HL-17 45.57 0.68 18.72 12.62 0.17 9.74 9.59 0.61 0.05 0.05 1.7 99.5 0.61 1.54 HL-16 辉长岩 44.97 0.27 16.93 10.26 0.15 12.62 11.27 0.44 0.06 0.02 2.51 99.5 0.71 2.46 HL-18 45.66 0.68 18.57 12.61 0.17 9.88 9.56 0.53 0.09 0.05 1.71 99.51 0.61 1.56 HL-14 含长辉石岩 42.58 0.22 15.64 10.8 0.14 17.42 8.04 0.53 0.1 0.04 4.04 99.55 0.76 3.22 HL-15 42.33 0.21 13.21 11.52 0.16 19.53 7.14 0.46 0.1 0.05 4.94 99.65 0.77 3.38 注:本数据由西北大学大陆动力学实验室采用X荧光光谱仪(3080E)分析. 表 3 哈拉乔拉岩体的稀土微量元素数据(10-6)
Table 3. Rare earth elements and trace elements abundances data of Halaqiaola intrusion
Sample HL-02 HL-12 HL-13 HL-03 HL-10 HL-05 HL-09 HL-08 HL-17 HL-16 HL-18 HL-14 HL-15 岩石名称 橄长岩 橄榄辉长岩 辉长苏长岩 辉长岩 含长辉石岩 Sc 22.39 12.36 13.8 8.98 9.12 26.59 32.17 43.69 25.55 30.81 27.46 12.84 14.48 V 78.03 60.6 67.06 52.59 53.55 89.29 462.4 568.6 387.9 32.95 394.6 88.11 87.58 Cr 416.4 379.9 356.9 284.2 276.7 450.5 76.34 47.76 238.6 159.7 253.4 384.3 484 Mn 1 305 1 280 1 262 1 112 1 014 1 095 1 667 1 757 1 522 400 1 464 1 260 1 461 Co 69.43 83.01 81.47 64.42 65.64 63.11 57.88 62.8 70.31 17.24 72.65 86.48 91.35 Ni 85.78 232.6 226.4 119.6 159.1 86.45 54.84 63.84 131.6 31.51 149.8 243.9 275 Cu 74.94 20.74 29.36 55.02 134.2 101.3 71.18 111.9 145.9 15.38 125.4 45.6 49.81 Zn 57.52 72.92 74.16 60 51.49 50.78 138.5 140.4 108.6 15.11 108 84.58 88.03 Rb 2.4 2.45 2.72 2.44 2.55 1.52 2.95 2.16 2.22 1.08 2.36 1.82 2.61 Sr 248.1 238 242.6 281.8 305.8 269 342.4 316.3 278.8 192.3 269.1 168.2 83.44 Y 2.08 1.55 1.85 1.31 1.84 2.02 3.77 6.53 2.45 2.85 3.81 3.16 3.28 Zr 6.39 5.34 7.04 4.69 11.06 5.54 12.91 18.59 8.19 2.88 10.95 14.28 15.16 Nb 0.27 0.3 0.35 0.31 0.55 0.2 1.16 1.51 0.8 0.05 0.85 0.75 0.79 Cs 0.1 0.16 0.14 0.1 0.11 0.04 0.19 0.1 0.25 0.09 0.31 0.17 0.21 Ba 42.41 26.03 23.26 80.48 72.01 30.41 87.82 134.3 43.28 32.63 53.7 23.06 25.98 Hf 0.18 0.17 0.22 0.15 0.28 0.17 0.39 0.59 0.25 0.11 0.36 0.41 0.42 Ta 0.02 0.02 0.02 0.02 0.04 0.02 0.08 0.09 0.06 0.01 0.06 0.05 0.05 Pb 1.31 1.27 1.23 2.14 8.15 1 2.85 6.97 2.05 0.38 2.23 1.33 1.17 Bi 0.11 0.06 0.07 0.24 0.56 0.02 0.14 0.16 0.08 0.03 0.05 0.18 0.31 Th 0.19 0.26 0.28 0.26 0.45 0.15 0.35 0.29 0.27 0.22 0.29 0.6 0.56 U 0.07 0.1 0.09 0.18 0.16 0.05 0.18 0.16 0.11 0.08 0.12 0.18 0.21 La 0.92 0.98 1.11 1.06 1.58 0.84 2.74 2.66 1.77 1.06 2.02 2.02 2.03 Ce 2.1 2.16 2.5 2.24 3.33 1.92 5.69 6.21 3.6 2.08 4.75 4.46 4.6 Pr 0.28 0.27 0.33 0.28 0.4 0.25 0.7 0.86 0.42 0.33 0.64 0.58 0.63 Nd 1.4 1.23 1.46 1.25 1.71 1.31 3.11 4.4 1.76 1.63 2.96 2.59 2.76 Sm 0.35 0.28 0.37 0.27 0.38 0.36 0.71 1.17 0.4 0.46 0.68 0.64 0.68 Eu 0.23 0.16 0.18 0.21 0.25 0.24 0.6 0.69 0.29 0.24 0.35 0.24 0.25 Gd 0.46 0.39 0.41 0.36 0.5 0.47 0.91 1.44 0.52 0.6 0.83 0.71 0.79 Tb 0.08 0.06 0.07 0.05 0.07 0.08 0.13 0.23 0.08 0.1 0.13 0.11 0.12 Dy 0.48 0.32 0.39 0.27 0.39 0.44 0.76 1.43 0.47 0.63 0.79 0.67 0.7 Ho 0.1 0.07 0.08 0.06 0.08 0.09 0.17 0.31 0.11 0.13 0.17 0.14 0.14 Er 0.29 0.21 0.24 0.17 0.25 0.26 0.53 0.88 0.35 0.38 0.51 0.4 0.43 Tm 0.04 0.03 0.04 0.02 0.04 0.04 0.08 0.12 0.06 0.06 0.08 0.06 0.06 Yb 0.26 0.23 0.26 0.17 0.24 0.25 0.56 0.83 0.43 0.41 0.55 0.4 0.41 Lu 0.04 0.03 0.04 0.03 0.04 0.04 0.09 0.13 0.07 0.06 0.09 0.06 0.06 ∑REE 7.02 6.42 7.47 6.43 9.24 6.58 16.77 21.37 10.32 8.14 14.53 13.08 13.63 δEu 1.75 1.46 1.41 2.08 1.71 1.77 2.28 1.61 1.96 1.39 1.43 1.1 1.03 (La/Yb)N 2.45 2.86 2.93 4.17 4.55 2.3 3.35 2.17 2.82 1.77 2.51 3.39 3.39 (La/Sm)N 1.63 2.18 1.86 2.42 2.59 1.45 2.4 1.42 2.79 1.45 1.86 1.98 1.87 (Gd/Yb)N 1.47 1.37 1.29 1.69 1.72 1.52 1.32 1.4 0.98 1.19 1.22 1.42 1.57 注:本数据由长安大学西部矿产资源与地质工程教育部重点实验室采用X7型ICP-MS分析, δEu=2EuN/(SmN+GdN), EuN、SmN、GdN等为球粒陨石标准化数值, 据McDonough and Sun(1995). 表 4 哈拉乔拉岩体Nd-Sr-Pb同位素数据
Table 4. The isotopic compositions of Nd, Sr and Pb for Halaqiaola intrusion
Sample 岩石名称 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i εSr(t) HL-003 橄榄辉长岩 0.025 1 0.706 8 0.706 7 37.49 HL-017 辉长岩 0.023 0.707 3 0.707 2 44.98 HL-008 辉长苏长岩 0.019 8 0.707 3 0.707 2 45.28 Sample 岩石名称 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)i εNd(t) HL-003 橄榄辉长岩 0.132 8 0.512 3 0.512 0 -2.39 HL-017 辉长岩 0.1364 0.512 3 0.512 0 -2.62 HL-008 辉长苏长岩 0.161 6 0.512 5 0.512 1 -0.78 Sample 岩石名称 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb (206Pb/204Pb)i (207Pb/204Pb)i (208Pb/204Pb)i HL-003 橄榄辉长岩 18.033 15.491 37.874 17.639 4 15.469 37.693 5 HL-017 辉长岩 18.276 15.507 37.933 18.015 5 15.492 8 37.740 9 HL-008 辉长苏长岩 18.26 15.587 38.304 18.149 2 15.580 9 38.242 4 注:计算参数:λ(Sr)=1.42×10-11 a-1,λ(Nd)=0.654×10-11 a-1,(87Sr/86Sr)UR=0.704 5,(143Nd/144Nd)UR=0.512 638,t=274 Ma.HD样品由中国科学院广州地球化学研究所采用MC-ICP-MS法分析. -
[1] Allègre, C.J., Lewin, E., Dupré, B., 1988. A coherent crust-mantle model for the uranium-thorium-lead isotopic system. Chemical Geology, 70(3): 211-234. doi: 10.1016/0009-2541(88)90094-0 [2] Baker, J.A., Menzies, M.A., Thirlwall M.F., et al., 1997. Petrogenesis of Quaternary intraplate volcanism, Sana'a Yemen: implications for plume-lithosphere interaction and polybaric melt hybridization. Journal of Petrology, 38(10): 1359-1390. doi: 10.1093/petroj/38.10.1359 [3] Campbell, I.H., Griffiths, R.W., 1993. The evolution of the mantle's chemical structure. Lithos, 30(3-4): 389-399. doi: 10.1016/0024-4937(93)90047-G [4] Elliott, T., Plank, T., Zindler, A., et al., 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102(B7): 14991-15019. doi: 10.1029/97JB00788 [5] Frey, F.A., Green, D.H., Roy, S.D., 1978. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 19(3): 463-513. doi: 10.1093/petrology/19.3.463 [6] Geist, D., Naumann, T., Larson, P., 1998. Evolution of Galápagos magmas: mantle and crustal fractionation without assimilation. Journal of Petrology, 39(5): 953-971. doi: 10.1093/petroj/39.5.953 [7] Green, D.H., 1975. Genesis of Archean peridotitic magmas and constraints on Archean geothermal gradients and tectonics. Geology, 3(1): 15-18. doi: 10.1130/0091-7613(1975)3<15:GOAPMA>2.0.CO;2 [8] Hess, P.C., 1992. Phase equilibria constraints on the origin of ocean floor basalts. In: Morgan, J.P., Blackman, D.K., Sinton, J.M., eds., Mantle flow and melt generation at mid-ocean ridges. Geophysical Monograph, American Geophysical Union, 71: 67-102. [9] Hofmann, A.W., 1988. Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314. doi: 10.1016/0012-821X(88)90132-X [10] Hu, Z.D., 2009. The character of Halaqiaola ultrabasic complex and its copper-nickel deposits formation conditions in Qinghe, Xinjiang. Xinjiang Nonferrous Metals, (Suppl. 1): 5-7(in Chinese with English abstract). [11] Jiang, C.Y., Qian, Z.Z., Jiang, H.B., et al., 2007. Petrogenesis and source characteristics of low-Ti basalts and picrites at Binchuan-Yongsheng-Lijiang region, Yunnan, China. Acta Petrologica Sinica, 23(4): 777-792(in Chinese with English abstract). http://www.cqvip.com/QK/94579X/20074/25484807.html [12] Macdonald, R., Rogers, N.W., Fitton, J.G., et al., 2001. Plume-Lithosphere interactions in the generation of the basalts of the Kenya Rift, East Africa. Journal of Petrology, 42(5): 877-900. doi: 10.1093/petrology/42.5.877 [13] McDonough, W.F., Sun, S.S., 1995. The composition of the earth. Chemical Geology, 120: 223-253. doi: 10.1016/0009-2541(94)00140-4 [14] Miyashiro, A., 1974. Volcanic rocks series in island arcs and active continental margins. American Journal of Science, 274(4): 321-355. doi: 10.2475/ajs.274.4.321 [15] Sato, H. 1977. Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos, 10(2): 113-120. doi: 10.1016/0024-4937(77)90037-8 [16] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publication, London, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [17] Wilson, M., 1989. Igneous petrogenesis. Unwin Hyman, London. [18] Woodhead, J.D., Hergt, J.M., Davidson, J.P., et al., 2001. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes. Earth and Planetary Science Letters, 192(3): 331-346. doi: 10.1016/S0012-821X(01)00453-8 [19] Wu, L.R., 1963. Metallogenetic specialization of basic-ultrabasic rocks, China. Geoscience, 1: 29-41 (in Chinese with English abstract). http://www.researchgate.net/publication/292225527_Metallogenetic_specialization_of_basic-ultrabasic_rocks_China [20] Zhang, Y.Y., Guo, Z.J., Liu, C., et al., 2007. Geochemical characteristics and geologic implications of Cenozoic basalts, east Altai, Xinjiang. Acta Petrologica Sinica, 23(7): 1730-1738(in Chinese with English abstract). http://www.oalib.com/paper/1470495 [21] Zhang, Z.C., Yan, S.H., Chen, B.L., et al., 2005. Middle Devonian picrites of south margin of Altay orogenic belt and implications for tectonic setting and petrogenesis. Earth Science―Journal of China University of Geosciences, 30(3): 289-297(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200503004.htm [22] Zhou, G., Zhang, Z.C., Yang, W.P., et al., 2005. Metabasic rock on the south side of Mayin'ebo fault in the south margin of Altay mountains, Xinjiang, and its geological implications. Earth Science—Journal of China University of Geosciences, 30(6): 738-746(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200506009.htm [23] Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571. doi: 10.1146/annurev.ea.14.050186.002425 [24] 胡忠德, 2009. 新疆青河县哈拉乔拉超基性杂岩体的特征及铜镍成矿条件分析. 新疆有色金属(增刊1): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYS2009S1002.htm [25] 姜常义, 钱壮志, 姜寒冰, 等, 2007. 云南宾川-永胜-丽江地区低钛玄武岩和苦橄岩的岩石成因与源区性质. 岩石学报, 23(4): 777-792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200704010.htm [26] 吴利仁, 1963. 论中国基性岩、超基性岩的成矿专属性. 地质科学, 1: 29-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX196301003.htm [27] 张元元, 郭召杰, 刘畅, 等, 2007. 新疆阿尔泰东部新生代玄武岩的地球化学特征与地质意义. 岩石学报, 23(7): 1730-1738. doi: 10.3969/j.issn.1000-0569.2007.07.018 [28] 张招崇, 闫升好, 陈柏林, 等, 2005. 阿尔泰造山带南缘中泥盆世苦橄岩及其大地构造和岩石学意义. 地球科学——中国地质大学学报, 30(3): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200503004.htm [29] 周刚, 张招崇, 杨文平, 等, 2005. 新疆阿尔泰山南缘玛音鄂博断裂南侧变质基性岩的发现及其地质意义. 地球科学——中国地质大学学报, 30(6): 738-746. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200506009.htm