Geothermochronology of Mo-W Deposits in Balkhash Metallogenic Belt, Kazakhstan, Central Asia
-
摘要: 巴尔喀什成矿带是世界著名的中亚成矿域斑岩型铜钼成矿带, 产出许多斑岩型铜钼矿床和一些石英脉-云英岩型钨钼矿床.对巴尔喀什成矿带西部的东科翁腊德、阿克沙套、扎涅特3个典型的石英脉-云英岩型钼钨矿床的成矿时代和剥露过程进行了地质热年代学研究.锆石SHRIMP U-Pb定年给出东科翁腊德、阿克沙套、扎涅特与成矿作用有关的花岗岩类岩浆作用的时代分别为293.6±2.7 Ma、306±1 Ma和304±4 Ma, 属海西晚期构造-岩浆活动的产物.花岗岩类40Ar/39Ar测年结果给出了与成矿有关岩体的冷却年龄, 其等时线年龄分别为292±3 Ma(阿克沙套黑云母)、288.8±3.6 Ma(阿克沙套钾长石)和278±5 Ma(东科翁腊德钾长石).磷灰石裂变径迹测年给出东科翁腊德、阿克沙套、扎涅特的年龄分别为92.1±5.7 Ma、92.2±5.0 Ma和80.3±4.9 Ma, 说明这3个矿床的剥露作用主要发生在晚白垩世.花岗岩类岩石U-Pb、40Ar/39Ar和裂变径迹热年代学研究, 揭示了巴尔喀什成矿带Mo-W矿床从深成岩浆侵入活动、成矿作用、区域冷却到剥露作用的全过程.Abstract: The Balkhash metallogenic belt in Kazakhstan, with many porphyritic Cu-Mo deposits and some quartz-vein greisen Mo-W deposits, is a famous porphyritic Cu-Mo metallogenic belt in Central Asian metallogenic domain. Three typical Mo-W deposits such as East Kounrad, Akshatau, and Zhanet, are studied in this paper through the application of geothermochronology. Zircon SHRIMP U-Pb geochronology yields ages of 293.6±2.7 Ma (alkaline granite), 306±1 Ma (granodiorite), and 304±4 Ma (porphyry monzonite), for East Kounrad, Akshatau, and Zhanet deposits respectively, belonging to the tectonic-magmatism in the Late Hercynian. 40Ar/39Ar thermochronology gives the cooling ages at 292±3 Ma for biotite from Akshatau, and 288.8±3.6 Ma and 278±5 Ma for K-feldspars from Akshatau and East Kounrad, respectively. Apatite fission track dating of granitoids gives low temperature cooling ages of 92.1±5.7 Ma, 92.2±5.0 Ma and 80.3±4.9 Ma, for East Kounrad, Akshatau, and Zhanet deposits, respectively, suggesting the uplifting and exhumation of Mo-W deposits together with the granitoids during the Late Cretaceous. The geochronological data and thermal history modeling presented in this paper, together with metallogenic information from previous studies, reveal the entire thermo-history, from the intrusion of plutons and Mo-W metallogenesis in the abyssal system in the Late Carboniferous and the Early Permian, through regional cooling, to the exhumation of the deposits in the Late Cretaceous, in the western part of Balkhash metallogenic belt.
-
Key words:
- geochronology /
- SHRIMP U-Pb /
- 40Ar/39Ar /
- fission track /
- Mo-W deposit /
- Balkhash metallogenic belt
-
图 1 中亚成矿域巴尔喀什—准噶尔成矿带断裂构造体系与矿床分布示意
断裂构造体系修改自任纪舜等(1999)和李廷栋等(2008).斑岩型铜钼矿床分布修改自李明等(2007)和其他资料.图中四边形框给出本文研究范围.1.左行走滑断裂; 2.右行走滑断裂; 3.逆冲断层; 4.正断层; 5.断层; 6.盘地边界; 7.火山机构(破火山口); 8.斑碧铜矿(符写大小分别代表大、中、不型矿床下同); 9.矽卡岩型银矿; 10.黄铁矿型矿床(铜、金); 11.热液型铜矿; 12.钢镍确化物矿床; 13.火山岩型铜矿∶14.斑岩型金矿,15.矽卡岩型金访; 16.热液型金矿; 17.稀有金属矿床(T、Mo、Sn、Bi等); 18.稀有金属矿床(Ta、Nb、Li、Be、TR等); 19.铁矿床
Fig. 1. Thefaultectonic system and mineraldeposit distribution ofthe Balkhash-Jungar metallogenie belt ndits adjacentareas in theCentral Asian metallogenic domain
图 2 巴尔喀什成矿带西部区域地质简图
据陈宣华等(2010c)修改;1.第四系;2.二叠系;3.石炭-二叠系(未分);4.石炭系;5.泥盆系;6.志留系;7.前寒武系;8.三叠纪花岗岩类;9.二叠纪花岗岩类;10.石炭纪花岗岩类;11.泥盆纪花岗岩类;12.奥陶纪花岗岩类;13.前寒武纪花岗岩类;14.巴尔喀什湖区;15.逆冲断裂;16.右行走滑断裂;17.断裂;18.矿床位置(大点)和采样点位置(小点)
Fig. 2. Geological sketch map of the western part of Balkhash metallogenic belt
图 5 40Ar/39Ar阶段加热年龄谱(a、c、e)和年龄等时线(b、d、f)
a、b.xh080910-10(1) 钾长石(东科翁腊德),c、d.xh080914-10(1) 钾长石(阿克沙套),e、f.xh080914-10(2) 黑云母(阿克沙套)
Fig. 5. 40Ar/39Ar release spectra (a, c, and e) for stepwise heating analyses and isochron diagrams (b, d, and f) of minerals from Mo-W deposits in Balkhash metallogenic belt
图 7 巴尔喀什成矿带钼钨矿床岩浆-成矿作用和剥露过程的温度-时间图解
年龄数据主要来自本文,Re-Os定年数据来自陈宣华等(2010c).矿物封闭温度据陈宣华等(2010a)和引用的相关文献.a、b、c、d分别为冷却速率0.1 ℃/Ma、1 ℃/Ma、10 ℃/Ma和100 ℃/Ma线.粗虚线及其阴影部分为推测冷却曲线.磷灰石裂变径迹模拟曲线:①为xh080910-10(1)(东科翁腊德);②为xh080914-10(2)(阿克沙套);③为xh080915-4(1)(扎涅特).矿物代号:Zr.锆石; Hb.角闪石; Bi.黑云母; Ksp.钾长石; Ap.磷灰石
Fig. 7. Temperature vs time diagram showing the evolution history of magmatism, metallogenesis and exhumation of Mo-W deposits in Balkhash metallogenic belt
表 1 巴尔喀什成矿带钼钨矿床花岗岩类样品锆石SHRIMP U-Pb测年数据
Table 1. Zircon SHRIMP U-Pb data for granitoids from Mo-W deposits in Balkhash metallogenic belt
测点 Pbc(%) U(10-6) Th(10-6) 232Th/238U 206Pb*(10-6) 207Pb*/206Pb* ±% 207Pb*/235U ±% 206Pb*/238U ±% err.corr. 206Pb/238U(Ma) ±(Ma) 207Pb/206Pb(Ma) ±(Ma) 样品xh080910-10(1) 碱性花岗岩(东科翁腊德钨钼矿) 1.1 1.48 118 124 1.08 4.84 0.046 4 9.0 0.301 9.2 0.047 05 1.5 .163 296.4 4.3 20 220 2.1 1.21 184 158 0.89 7.28 0.047 4 7.2 0.297 7.3 0.045 55 1.3 .182 287.1 3.7 68 170 3.1 0.75 223 213 0.99 8.78 0.050 1 4.6 0.314 4.9 0.045 39 1.6 .323 286.2 4.4 201 110 4.1 2.54 20 16 0.82 0.897 0.053 9 10 0.370 11 0.049 8 3.1 .289 313.6 9.5 366 230 5.1 1.07 97 86 0.92 3.87 0.051 4 5.4 0.327 5.6 0.046 15 1.6 .292 290.8 4.7 258 120 6.1 0.36 175 129 0.76 7.03 0.052 6 5.4 0.338 5.6 0.046 66 1.3 .237 294.0 3.8 309 120 7.1 0.35 177 153 0.89 7.17 0.050 9 2.6 0.328 8 2.9 0.046 86 1.3 .444 295.2 3.7 236 60 8.1 3.63 16 14 0.91 0.680 0.047 30 0.313 31 0.048 1 3.5 .113 303 10 59 730 9.1 1.56 71 63 0.92 2.85 0.043 4 7.8 0.277 8.0 0.046 23 1.7 .214 291.3 4.9 -144 190 10.1 0.98 167 147 0.91 6.88 0.046 6 6.4 0.305 6.6 0.047 47 1.3 .204 299.0 3.9 30 150 11.1 1.42 90 102 1.17 3.74 0.046 6 16 0.307 16 0.047 84 1.8 .111 301.3 5.2 26 380 13.1 3.20 57 64 1.16 2.30 0.033 7 30 0.212 30 0.045 72 2.1 .072 288.2 6.0 -818 840 样品xh080914-10(2) 花岗闪长岩(阿克沙套钨钼矿) 1.1 0.77 436 246 0.58 18.4 0.052 6 3.0 0.353 3.0 0.048 61 0.51 .169 306.0 1.5 313 68 2.1 0.00 625 313 0.52 26.2 0.053 11 1.2 0.356 9 1.3 0.048 75 0.46 .355 306.8 1.4 333 27 3.1 0.06 818 504 0.64 34.2 0.052 67 1.1 0.353 9 1.2 0.048 72 0.38 .313 306.7 1.1 315 26 4.1 4.06 1 423 846 0.61 61.8 0.052 8 6.7 0.353 6.7 0.048 50 0.88 .131 305.3 2.6 319 150 5.1 0.25 694 322 0.48 28.8 0.053 72 1.6 0.356 6 1.6 0.048 14 0.47 .290 303.1 1.4 360 35 6.1 0.05 319 194 0.63 13.1 0.053 02 1.8 0.351 0 1.8 0.048 01 0.56 .303 302.3 1.7 330 40 7.1 0.08 999 618 0.64 42.4 0.051 85 0.9 0.352 9 1.0 0.049 35 0.33 .333 310.5 1.0 279 22 8.1 0.14 463 282 0.63 19.3 0.053 34 1.5 0.356 5 1.6 0.048 47 0.59 .370 305.1 1.8 343 34 9.1 - 902 475 0.54 38.5 0.053 03 1.3 0.363 5 1.3 0.049 72 0.35 .258 312.8 1.1 330 29 10.1 0.04 1 022 768 0.78 43.5 0.052 96 0.9 0.361 6 0.9 0.049 53 0.37 .394 311.6 1.1 327 20 11.1 0.48 558 280 0.52 23.4 0.053 8 3.3 0.361 3.4 0.048 68 0.66 .197 306.4 2.0 362 74 12.1 0.10 510 307 0.62 21.5 0.052 75 1.1 0.356 6 1.1 0.049 03 0.40 .358 308.6 1.2 318 24 样品xh080915-5(3) 二长花岗斑岩(扎涅特钼矿) 1.1 0.23 385 316 0.85 16.1 0.050 6 2.5 0.338 3.8 0.048 5 2.8 .747 305.4 8.5 222 58 2.1 0.33 296 190 0.66 12.5 0.049 7 2.6 0.334 3.2 0.048 74 1.9 .590 306.8 5.7 182 60 3.1 0.05 270 218 0.83 11.4 0.053 0 3.0 0.359 3.6 0.049 18 1.9 .536 309.5 5.8 328 68 4.1 0.30 302 303 1.04 12.5 0.052 9 3.2 0.349 3.7 0.047 84 1.9 .516 301.2 5.6 325 72 5.1 0.42 249 249 1.03 10.5 0.051 3 4.0 0.345 4.6 0.048 8 2.2 .480 307.3 6.6 255 92 6.1 1.66 653 564 0.89 27.3 0.050 2 5.2 0.332 5.5 0.047 91 1.9 .345 301.7 5.6 206 120 7.1 0.72 152 138 0.94 6.31 0.051 2 6.4 0.339 6.7 0.048 01 2.1 .309 302.3 6.1 251 150 8.1 2.36 447 397 0.92 18.9 0.053 1 7.0 0.352 7.3 0.048 13 1.9 .262 303.0 5.6 331 160 9.1 0.23 424 316 0.77 17.5 0.052 1 2.3 0.345 3.0 0.048 03 1.9 .622 302.4 5.5 288 53 10.1 0.08 333 398 1.24 14.9 0.053 6 3.4 0.384 3.9 0.051 97 1.9 .484 326.6 6.0 356 77 11.1 - 418 311 0.77 18.6 0.054 31 1.7 0.388 3 2.5 0.051 86 1.8 .731 325.9 5.9 384 39 12.1 1.56 401 527 1.36 16.5 0.057 6 5.4 0.374 6.3 0.047 1 3.2 .513 296.7 9.3 514 120 注:误差为1σ;Pbc和Pb*分别代表普通铅(206Pbc)和放射成因铅;使用实测的204Pb含量进行普通铅校正. 表 2 巴尔喀什成矿带钼钨矿床花岗岩类40Ar/39Ar年龄测试数据
Table 2. 40Ar/39Ar dating data for granitoids from Mo-W deposits in Balkhash metallogenic belt
阶段 T(℃) (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m (38Ar/39Ar)m 40Ar(%) F 39Ar(10-14 mol) 39Ar(Cum.)(%) t(Ma) ±1σ(Ma) xh080910-10(1) 碱性花岗岩钾长石(东科翁腊德),W=28.25 mg,J=0.004 795 1 700 46.095 8 0.050 3 0.014 2 0.023 5 67.72 31.217 4 0.72 1.84 251.6 2.4 2 800 37.579 5 0.013 4 0.019 1 0.015 5 89.42 33.605 1 2.53 8.32 269.5 2.5 3 850 36.713 2 0.006 6 0.005 5 0.013 9 94.70 34.768 8 1.62 12.46 278.2 2.6 4 900 37.963 4 0.010 6 0.012 9 0.015 2 91.72 34.820 7 1.52 16.36 278.5 2.6 5 950 39.528 3 0.017 4 0.008 5 0.016 3 87.00 34.388 2 1.48 20.14 275.3 2.6 6 1 000 41.277 9 0.025 3 0.011 3 0.017 9 81.88 33.797 9 1.87 24.92 271.0 2.5 7 1 050 41.108 6 0.025 0 0.004 7 0.017 9 82.03 33.719 6 3.72 34.46 270.4 2.5 8 1 090 41.194 4 0.025 0 0.006 1 0.017 6 82.05 33.798 7 3.31 42.95 271.0 2.5 9 1 130 40.081 2 0.021 4 0.007 2 0.017 1 84.24 33.762 9 4.25 53.82 270.7 2.5 10 1 170 38.486 3 0.015 0 0.003 1 0.015 8 88.47 34.047 7 8.31 75.10 272.8 2.5 11 1 200 37.711 5 0.010 9 0.000 0 0.015 0 91.43 34.478 8 5.15 88.29 276.0 2.6 12 1 250 38.037 6 0.011 8 0.000 0 0.015 3 90.85 34.557 8 1.90 93.14 276.6 2.6 13 1 330 38.707 1 0.014 0 0.000 0 0.015 5 89.29 34.560 8 1.95 98.14 276.6 2.6 14 1 400 38.446 9 0.012 2 0.000 0 0.015 2 90.59 34.829 1 0.73 100.00 278.6 2.7 Total age = 272.9 Ma xh080914-10(1) 碱性花岗岩钾长石(阿克沙套),W=27.11 mg,J=0.005 648 1 700 33.556 4 0.022 6 0.034 8 0.017 7 80.10 26.877 8 0.71 1.54 255.0 2.5 2 800 32.757 0 0.010 6 0.013 8 0.014 8 90.40 29.613 5 1.87 5.60 279.0 2.6 3 900 31.379 8 0.002 8 0.010 4 0.013 1 97.34 30.540 0 4.32 14.98 287.1 2.7 4 950 31.498 8 0.002 4 0.007 7 0.012 9 97.73 30.783 9 3.15 21.81 289.2 2.7 5 1 000 31.778 7 0.003 1 0.004 5 0.013 2 97.13 30.866 2 3.89 30.25 289.9 2.7 6 1 040 31.999 1 0.003 9 0.000 2 0.013 3 96.35 30.830 7 3.60 38.05 289.6 2.7 7 1 080 32.510 8 0.005 9 0.000 0 0.013 8 94.59 30.751 8 3.48 45.61 288.9 2.7 8 1 130 33.105 6 0.008 4 0.000 9 0.014 3 92.52 30.630 0 5.11 56.70 287.8 2.7 9 1 180 32.916 2 0.007 7 0.001 2 0.014 2 93.07 30.636 4 8.31 74.74 287.9 2.7 10 1 220 32.583 7 0.005 9 0.000 8 0.013 8 94.68 30.849 2 7.31 90.61 289.8 2.7 11 1 280 32.622 3 0.005 8 0.004 9 0.013 9 94.75 30.911 2 3.33 97.83 290.3 2.7 12 1 340 33.138 2 0.006 9 0.000 0 0.014 2 93.82 31.088 7 0.72 99.40 291.8 2.8 13 1 400 33.449 3 0.006 2 0.000 0 0.013 1 94.47 31.598 2 0.28 100.00 296.2 3.2 Total age = 288.0 Ma xh080914-10(2) 花岗闪长岩黑云母(阿克沙套),W=29.76 mg,J=0.005 748 1 700 29.226 7 0.068 3 0.200 7 0.043 1 30.98 9.054 5 0.38 1.02 91.5 2.7 2 800 40.558 3 0.034 3 0.025 9 0.034 8 74.98 30.412 1 2.83 8.62 290.6 2.7 3 850 31.845 4 0.004 3 0.008 8 0.029 4 96.04 30.585 3 5.22 22.62 292.2 2.7 4 900 31.267 9 0.001 6 0.007 5 0.029 2 98.48 30.793 3 3.27 31.40 294.0 2.7 5 950 31.114 4 0.001 1 0.012 6 0.028 8 98.98 30.797 1 2.83 39.01 294.0 2.7 6 1 000 31.912 7 0.001 5 0.011 7 0.029 0 98.60 31.465 8 3.15 47.48 299.9 2.8 7 1 050 31.318 0 0.001 5 0.016 8 0.028 7 98.56 30.867 3 5.52 62.31 294.6 2.7 8 1 100 31.020 9 0.001 7 0.011 8 0.028 9 98.36 30.513 8 7.74 83.09 291.5 2.7 9 1 140 31.050 1 0.001 6 0.034 2 0.029 2 98.44 30.567 3 5.61 98.15 292.0 2.7 10 1 180 31.045 2 0.001 2 0.669 8 0.030 9 98.99 30.748 7 0.65 99.88 293.6 2.8 11 1 400 33.506 2 0.015 0 2.430 8 0.044 7 87.30 29.307 3 0.04 100.00 281 12 Total age = 291.2 Ma 注:表中下标m代表样品中测定的同位素比值;F=40Ar*/39Ar,为放射成因40Ar与39Ar的比值 表 3 巴尔喀什成矿带钼钨矿床花岗岩类磷灰石裂变径迹测年分析数据
Table 3. Apatite FT dating data for granitoids from Mo-W deposits in Balkhash metallogenic belt
序号 样品编号 岩性 高程(m) Nc ρd(Nd)(106 cm-2) ρs(Ns)(105 cm-2) ρi(Ni)(106 cm-2) 1 xh080910-10(1) 碱性花岗岩 402 23 0.968(2420) 2.995(578) 0.557(1075) 2 xh080914-10(2) 花岗闪长岩 762 23 0.901(2253) 6.199(936) 1.073(1620) 3 xh080915-4(1) 碱性花岗岩 579 26 0.882(2206) 3.319(624) 0.646(1215) 序号 样品编号 岩性 U(10-6) P(χ2)% r tFT(Ma±1σ) MTL(μm±1σ)(Nj) SD(μm) 1 xh080910-10(1) 碱性花岗岩 7.2 90.5 0.856 92.1±5.7 13.50±0.12(107) 1.26 2 xh080914-10(2) 花岗闪长岩 14.9 76.7 0.756 92.2±5.0 13.85±0.12(103) 1.20 3 xh080915-4(1) 碱性花岗岩 9.2 95.9 0.802 80.3±4.9 13.96±0.11(100) 1.15 注:Nc为测试的颗粒数;ρd为标准玻璃的诱发径迹密度;Nd为标准玻璃的诱发径迹数;ρs为自发径迹密度;Ns为自发径迹数;ρi为外探测器诱发径迹密度;Ni为外探测器诱发径迹数;U为磷灰石样品U含量;P(χ2)是在自由度为Nc-1时得到的χ2值的概率;r为Ns和Ni之间的相关系数;Nj为测量的水平围限径迹数;tFT为磷灰石裂变径迹年龄,均为合并年龄;MTL为围限径迹平均长度;SD为径迹长度标准偏差. 表 4 巴尔喀什成矿带钼钨矿床同位素年龄数据
Table 4. Combined geochronologic data from Mo-W deposits in Balkhash metallogenic belt
序号 样品号 采样位置 矿床 岩石名称 测试对象及方法 同位素年龄(Ma) 1 xh080910-11 N47°01′08.5″,E075°08′05.9″ 东科翁腊德钨钼矿床 云英岩-石英脉 辉钼矿Re-Os 298.0±4.6 2 xh080910-10(1) N46°59′58.6″,E075°06′38.7″ 碱性花岗岩 SHRIMP锆石U-Pb 293.6±2.7 3 钾长石40Ar/39Ar 278±5 4 磷灰石FT 92.1±5.7 5 xh080914-9 N47°58′52.5″,E074°03′22.4″ 阿克沙套钨钼矿床 云英岩-石英脉 辉钼矿Re-Os 289.3±4.2 6 xh080914-10(1) N47°59′41.8″,E074°02′35.8″ 碱性花岗岩 钾长石40Ar/39Ar 288.8±3.6 7 xh080914-10(2) 花岗闪长岩 SHRIMP锆石U-Pb 306±1 8 黑云母40Ar/39Ar 292±2 9 磷灰石FT 92.2±5.0 10 xh080915-5(3) N47°31′16.7″,E074°18′55.0″ 扎涅特钼矿床 二长花岗斑岩 SHRIMP锆石U-Pb 304±4 11 xh080915-5 云英岩-石英脉 辉钼矿Re-Os 295.0±4.5 12 xh080915-4(1) N47°32′29.7″,E074°15′17.2″ 碱性花岗岩 磷灰石FT 80.3±4.9 注:40Ar/39Ar法只给出坪年龄.辉钼矿Re-Os年龄据陈宣华等(2010c),为模式年龄的平均值. -
[1] Bespaev, Kh. A., Miroshnichenko, L.A., 2004. Atlas of mineral deposit models. K.I. Satpaev Institute of Geological Sciences, Almaty, Kazakhstan. [2] Burmistrov, A.A., Ivanov, V.N., Frolov, A.A., 1990. Structural and mineralogical types of molybdenum-tungsten deposits of central Kazakhstan. International Geology Review, 32 (1): 92-99. doi: 10.1080/00206819009465758 [3] Chen, G., Zhao, Z.Y., Li, P.L., et al., 2005. Fission track evidence for the tectonic thermal history of the Hefei basin. Chinese Journal of Geophysics, 48 (6): 1366-1374 (in Chinese with English abstract). doi: 10.1002/cjg2.792/full [4] Chen, W., Zhang, Y., Zhang, Y.Q., et al., 2006. Late Cenozoic episodic uplifting in southeastern part of the Tibetan plateau—evidence from Ar-Ar thermochronology. Acta Petrologica Sinica, 22 (4): 867-872 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2009gecas..73r1512z [5] Chen, X.H., Chen, Z.L., Yang, N., 2009. Study on regional mineralizations and ore-field structures: building of mineralizing tectonic systems. Journal of Geomechanics, 15 (1): 1-15 (in Chinese with English abstract). http://www.cqvip.com/QK/98414X/200901/30683571.html [6] Chen, X.H., Dang, Y.Q., Yin, A., et al., 2010a. Basin-mountain coupling and tectonic evolution of Qaidam Basin and its adjacent orogenic belts. Geological Publishing House, Beijing (in Chinese). [7] Chen, X.H., Qu, W.J., Han, S.Q., et al., 2010b. Re-Os geochronology of Cu and W-Mo deposits in the Balkhash metallogenic belt, Kazakhstan and its geological significance. Geoscience Frontiers, 1(1): 115-124. doi: 10.1016/j.gsf.2010.08.006 [8] Chen, X.H., Qu, W.J., Han, S.Q., et al., 2010c. Re-Os dating of molybdenites from the Cu-Mo-W deposits in the Balkhash metallogenic belt, Kazakhstan and its geological significance. Acta Geologica Sinica, 84(9): 1333-1348 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201009008.htm [9] Chen, X.H., Wang, Z.H., Yang, N., et al., 2010d. Geological characteristics of and metallogenic model for large-scale Sayak copper ore field in Balkhash metallogenic belt, Central Asia. Journal of Geomechanics, 16(2): 189-202 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DZLX201002009&dbcode=CJFD&year=2010&dflag=pdfdown [10] Chen, X.H., Yang, N., Chen, Z.L., et al., 2010e. Geological characteristics and metallogenic model of super-large porphyry copper deposit in Aktogai ore field, Kazakhstan. Journal of Geomechanics, 16(4): 326-339 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201004002.htm [11] Chen, X.H., Yang, N., Ye, B.Y., et al., 2011. Tectonic system and its control on metallogenesis in western Junggar as part of the Central Asia multi-core metallogenic system. Geotectonica et Metallogenia, 35(3): 325-338 (in Chinese with English abstract). http://www.researchgate.net/publication/292813847_Tectonic_system_and_its_control_on_metallogenesis_in_western_Junggar_as_part_of_the_Central_Asia_multi-core_metallogenic_system [12] Galbraith, R.F., 1981. On statistical models for fission track counts. Mathematical Geology, 13(6): 471-478. doi: 10.1007/BF01034498 [13] Gleadow, A.J.W., Duddy, I.R., 1981. A natural long-term track annealing experiment for apatite. Nuclear Tracks, 5(1-2): 169-174. doi: 10.1016/0191-278X(81)90039-1 [14] Green, P.F., Duddy, I.R., Laslett, G.M., et al., 1989. Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology (Isotope Geoscience Section), 79(2): 155-182. doi: 10.1016/0168-9622(89)90018-3 [15] He, G.Q., Zhu, Y.F., 2006. Comparative study of the geology and mineral resources in Xinjiang, China, and its adjacent regions. Geology in China, 33(3): 451-460 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200603000.htm [16] Hurford, A.J., Green, P.F., 1983. The zeta age calibration of fission-track dating. Isotope Geoscience, 1: 285-317. doi: 10.1016/S0009-2541(83)80026-6 [17] Ketcham, R.A., Donelick, R.A., Carlson, W.D., 1999. Variability of apatite fission-track annealing kinetics: Ⅲ. Extrapolation to geological time scales. American Mineralogist, 84(9): 1235-1255. doi: 10.2138/am-1999-0903 [18] Ketcham, R.A., Donelick, R.A., Donelick, M.B., 2000. AFTSolve: a program for multi-kinetic modeling of apatite fission-track data. Geological Materials Research, 2(1): 1-32. http://www.researchgate.net/publication/228085656_AFTSolve_A_program_for_multi-kinetic_modeling_of_apatite_fission-track_data [19] Li, L., Chen, Z.L., Qi, W.X., et al., 2008. Apatite fission track evidence for uplifting-exhumation processes of mountains surrounding the Junggar basin. Acta Petrologica Sinica, 24(5): 1011-1020 (in Chinese with English abstract). http://www.oalib.com/paper/1470487 [20] Li, M., Zhou, S.H., Hu, Q.W., et al., 2007. Knowledge of porphyry Cu (Mo) ore belts in the Central Asian metallogenic domain and their establishment. Geology in China, 34(5): 870-877 (in Chinese with English abstract). http://www.researchgate.net/publication/285722734_Geological_evolution_and_metallogeny_in_the_core_part_of_the_Central_Asian_metallogenic_domain [21] Li, T.D., Geng, S.F., Fan, B.X., et al., 2008. Geological map of Central Asia and adjacent areas (1:2 500 000). Geological Publishing House, Beijing (in Chinese). [22] Li, W., Hu, J.M., Qu, H.J., 2010. Fission track analysis of Junggar basin peripheral orogen and its geological significance. Acta Geologica Sinica, 84(2): 171-182 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2010EGUGA..1211996L [23] Ludwig, K.R., 2003. User's Manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Geochronology Center, Berkeley, Special Publication No. 4. [24] Ren, J.H., Wang, Z.X., Chen, B.W., et al., 1999. Analysis on tectonics of China in global tectonic system—A brief specification on tectonics map of China and its adjacent. Geological Publishing House, Beijing, 1-25 (in Chinese). [25] Steiger, R.H., Jäger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. doi: 10.1016/0012-821X(77)90060-7 [26] Tang, H.F., Qu, W.J., Su, Y.P., et al., 2007. Genetic connection of Sareshike tin deposit with the alkaline A-type granites of Sabei body in Xinjiang: constraint from isotopic ages. Acta Petrologica Sinica, 23(8): 1989-1997 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200708018.htm [27] Tang, H.S., Chen, Y.J., Liu, Y.L., et al., 2006. Isotope dating of the Be'erkuduke tin deposit in the eastern Junggar area. Journal of Mineralogy and Petrology, 26(2): 71-73 (in Chinese with English abstract). http://www.researchgate.net/publication/281297609_Isotope_dating_of_the_Be'erkuduke_tin_deposit_in_the_eastern_Junggar_area [28] Tu, G.Z., 1999. On the Certral Asia metallogenic province. Scientia Geologica Sinica, 34(4): 397-404 (in Chinese with English abstract). [29] Xiao, W.J., Shu, L.S., Gao, J., et al., 2008. Continental dynamics of the central Asian orogenic belt and its metallogeny. Xinjiang Geology, 26(1): 4-8 (in Chinese with English abstract). http://www.researchgate.net/publication/302506364_Continental_dynamics_of_the_central_Asian_orogenic_belt_and_its_metallogeny [30] Yefimov, A.V., Borodayev, Yu. S., Mozgova, N.N., et al., 1990. Bismuth mineralization of the Akchatau molybdenum-tungsten deposit, central Kazakhstan. International Geology Review, 32(10): 1017-1027. doi: 10.1080/00206819009465834 [31] Zhang, Y., Chen, W., Chen, K.L., et al., 2006. Study on the Ar-Ar age spectrum of diagenetic I/S and the mechanism of 39Ar recoil loss-examples from the clay minerals of P-T boundary in Changxing, Zhejiang Province. Geological Review, 52(4): 556-561 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200604018.htm [32] Zhu, Y.F., He, G.Q., An, F., 2007. Geological evolution and metallogeny in the core part of the Central Asian metallogenic domain. Geological Bulletin of China, 26 (9): 1167-1177 (in Chinese with English abstract). http://www.researchgate.net/publication/285722734_Geological_evolution_and_metallogeny_in_the_core_part_of_the_Central_Asian_metallogenic_domain [33] 陈刚, 赵重远, 李丕龙, 等, 2005. 合肥盆地构造热演化的裂变径迹证据. 地球物理学报, 48(6): 1366-1374. doi: 10.3321/j.issn:0001-5733.2005.06.020 [34] 陈文, 张彦, 张岳桥, 等, 2006. 青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据. 岩石学报, 22(4): 867-872. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604010.htm [35] 陈宣华, 陈正乐, 杨农, 2009. 区域成矿与矿田构造研究——构建成矿构造体系. 地质力学学报, 15(1): 1-15. doi: 10.3969/j.issn.1006-6616.2009.01.001 [36] 陈宣华, 党玉琪, 尹安, 等, 2010a. 柴达木盆地及其周缘山系盆山耦合与构造演化. 北京: 地质出版社. [37] 陈宣华, 屈文俊, 韩淑琴, 等, 2010c. 巴尔喀什成矿带Cu-Mo-W矿床的辉钼矿Re-Os同位素年龄测定及其地质意义. 地质学报, 84(9): 1333-1348. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201009008.htm [38] 陈宣华, 王志宏, 杨农, 等, 2010d. 中亚巴尔喀什成矿带萨亚克大型铜矿田矿床地质特征与成矿模式. 地质力学学报, 16(2): 189-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201002009.htm [39] 陈宣华, 杨农, 陈正乐, 等, 2010e. 哈萨克斯坦阿克斗卡超大型斑岩型铜矿田地质特征与成矿模式. 地质力学学报, 16(4): 326-339. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201004002.htm [40] 陈宣华, 杨农, 叶宝莹, 等, 2011. 中亚成矿域多核成矿系统西准噶尔成矿带构造体系特征及其对成矿作用的控制. 大地构造与成矿学, 35(3): 325-338. doi: 10.3969/j.issn.1001-1552.2011.03.001 [41] 何国琦, 朱永峰, 2006. 中国新疆及其邻区地质矿产对比研究. 中国地质, 33(3): 451-460. doi: 10.3969/j.issn.1000-3657.2006.03.001 [42] 李丽, 陈正乐, 祁万修, 等, 2008. 准噶尔盆地周缘山脉抬升-剥露过程的FT证据. 岩石学报, 24(5): 1011-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200805008.htm [43] 李明, 周圣华, 胡庆雯, 等, 2007. 中亚成矿域斑岩铜(钼)矿带的认识与建立. 中国地质, 34(5): 870-877. doi: 10.3969/j.issn.1000-3657.2007.05.014 [44] 李廷栋, 耿树方, 范本贤, 等, 2008. 亚洲中部及邻区地质图(1:2 500 000). 北京: 地质出版社. [45] 李玮, 胡健民, 渠洪杰, 2010. 准噶尔盆地周缘造山带裂变径迹研究及其地质意义. 地质学报, 84(2): 171-182. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201002003.htm [46] 任纪舜, 王作勋, 陈炳蔚, 等, 1999. 从全球看中国大地构造——中国及邻区大地构造图简要说明. 北京: 地质出版社, 1-25. [47] 汤好书, 陈衍景, 刘玉林, 等, 2006. 东准噶尔贝尔库都克锡矿成矿年龄测定. 矿物岩石, 26(2): 71-73. doi: 10.3969/j.issn.1001-6872.2006.02.011 [48] 唐红峰, 屈文俊, 苏玉平, 等, 2007. 新疆萨惹什克锡矿与萨北碱性A型花岗岩成因关系的年代学制约. 岩石学报, 23(8): 1989-1997. doi: 10.3969/j.issn.1000-0569.2007.08.019 [49] 涂光炽, 1999. 初议中亚成矿域. 地质科学, 34(4): 397-404. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199904000.htm [50] 肖文交, 舒良树, 高俊, 等, 2008. 中亚造山带大陆动力学过程与成矿作用. 新疆地质, 26(1): 4-8. doi: 10.3969/j.issn.1000-8845.2008.01.002 [51] 张彦, 陈文, 陈克龙, 等, 2006. 成岩混层(I/S)Ar-Ar年龄谱型及39Ar核反冲丢失机理研究——以浙江长兴地区P-T界线粘土岩为例. 地质论评, 52(4): 556-561. doi: 10.3321/j.issn:0371-5736.2006.04.015 [52] 朱永峰, 何国琦, 安芳, 2007. 中亚成矿域核心地区地质演化与成矿规律. 地质通报, 26(9): 1167-1177. doi: 10.3969/j.issn.1671-2552.2007.09.018