• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    单个油包裹体组分预测及其在油气成藏研究中的应用

    平宏伟 陈红汉 宋国奇 ThiéryRégis

    平宏伟, 陈红汉, 宋国奇, ThiéryRégis, 2012. 单个油包裹体组分预测及其在油气成藏研究中的应用. 地球科学, 37(4): 815-824. doi: 10.3799/dqkx.2012.090
    引用本文: 平宏伟, 陈红汉, 宋国奇, ThiéryRégis, 2012. 单个油包裹体组分预测及其在油气成藏研究中的应用. 地球科学, 37(4): 815-824. doi: 10.3799/dqkx.2012.090
    PING Hong-wei, CHEN Hong-han, SONG Guo-qi, Thiéry Régis, 2012. Individual Oil Inclusion Composition Prediction and Its Application in Oil and Gas Accumulation Studies. Earth Science, 37(4): 815-824. doi: 10.3799/dqkx.2012.090
    Citation: PING Hong-wei, CHEN Hong-han, SONG Guo-qi, Thiéry Régis, 2012. Individual Oil Inclusion Composition Prediction and Its Application in Oil and Gas Accumulation Studies. Earth Science, 37(4): 815-824. doi: 10.3799/dqkx.2012.090

    单个油包裹体组分预测及其在油气成藏研究中的应用

    doi: 10.3799/dqkx.2012.090
    基金项目: 

    国家重点基础研究发展计划 2012CB214804

    详细信息
      作者简介:

      平宏伟(1982-),男,讲师,博士,主要从事含烃流体地质研究.E-mail: howping@yahoo.cn

    • 中图分类号: TE122

    Individual Oil Inclusion Composition Prediction and Its Application in Oil and Gas Accumulation Studies

    • 摘要: 了解单个石油包裹体详细的组分信息不仅有助于微观上定量认识油气充注过程中其成熟度的演化,还对精细刻画油气成藏过程中动力演化具有重要意义.根据石油包裹体热动力学原理,利用10个成熟度依次增大的已知组分的原油在匹配其饱和压力和改进气、液相摩尔体积计算前提下,建立了捕获不同组分原油的包裹体均一温度(Thoil)与其在室温下(20 ℃)气泡充填度(Fv)关系的标准图版,从而通过对比实测的Thoil和其室温下Fv与标准Thoil-Fv图版,反推出油包裹体近似等效流体组分.对东营凹陷北带民丰深层油包裹体进行系统荧光分析、显微测温和包裹体体积3D重构等一系列的测定.结果表明丰8井和丰深1井各发生过两幕油气充注,其中丰8井第一幕油气充注(甲烷摩尔含量位于31%~35%之间)对其油气成藏贡献最大;而丰深1井第二幕充注的油气(甲烷摩尔含量大于60%)控制丰深1井凝析油藏成藏.从而为进一步厘定北带深层油气充注PVTxt史奠定基础.

       

    • 图  1  石油包裹体组分预测原理示意(据Bourdet et al., 2008修改)

      a.黑油的P-T相图及5个不同的等容路径(Th1Th2Th3Th4Th5)和所对应的室温下(20 ℃)气/液相体积比(Fv1Fv2Fv3Fv4Fv5);b.虚拟的黑油包裹体不同均一温度与室温下(20 ℃)气泡充填度(Fv)关系

      Fig.  1.  The schematic diagram of petroleum inclusion composition prediction

      图  2  东营凹陷北带民丰地区丰8井和丰深1井石油包裹体荧光照片

      a,a'和e'为透射光,其他为荧光.丰8井,3 943.0 m,泥岩裂缝充填方解石脉中见大量淡黄-白色荧光油包裹体(a~d);丰8井,4 195.12 m,石英颗粒加大边中见大量淡黄-白色荧光油包裹体(e~f);丰深1井,4 321.7 m,在穿石英颗粒裂纹中见大量淡黄色荧光油包裹体(a'~b')、蓝白色荧光油包裹体(c'~d')及富气相蓝色荧光凝析油包裹体(e'~f')

      Fig.  2.  Photomicrographs of petroleum inclusions from well Feng 8 and well Fengshen 1 in Minfeng area in North Dongying depression

      图  3  东营凹陷北带民丰深层油包裹体均一温度与室温(20 ℃)下气泡充填度(Fv)关系

      Fig.  3.  The relational graph of homogenization temperature and the degree of gaseous filling (Fv) under room temperature (20 ℃) of petroleum inclusions in the deep reservoir in Minfeng area in North Dongying depression

      表  1  用于石油包裹体热动力学计算的最初流体组分

      Table  1.   The untuned crude oil composition using for petroleum inclusions thermodynamics

      No. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
      N2 0.24 0.29 0.25 0.53 0.00 0.00 0.41 0.32 0.74 1.67
      CO2 0.39 0.46 2.19 0.12 2.13 0.77 0.44 2.80 2.01 2.18
      H2S 0.00 0.49 1.16 0.00 0.00 0.00 0.00 1.49 0.00 0.00
      C1 5.82 10.75 16.33 22.80 31.28 36.20 40.48 45.29 51.30 60.51
      C2 0.84 1.11 6.29 6.45 7.51 9.74 7.74 9.11 10.67 7.52
      C3 0.43 1.58 7.48 8.51 6.93 6.75 8.20 5.50 7.12 4.74
      C4 1.14 3.68 6.09 6.60 6.26 4.96 5.45 4.13 3.61 4.12
      C5 3.01 4.03 4.36 4.71 4.74 3.89 3.64 3.06 2.20 2.97
      C6 4.92 4.75 3.58 4.24 4.37 3.29 2.83 2.38 1.83 0.00
      C7+ 83.20 72.86 52.27 46.04 36.78 34.40 31.42 25.92 20.52 16.29
      GR.C7+ 942.00 861.00 880.00 864.00 851.05 849.18 845.00 838.06 805.00 789.00
      MW.C7+ 304.00 261.00 249.00 242.00 232.88 216.89 210.00 215.89 192.35 181.00
        注:F1据Elsharkawy(2003);F2和F4据Wu and Rosenegger(1999);F3据Moharam and Fahim(1995);F5、F6和F8据Jaubert et al.(2002);F7据Pedersen et al.(1988);F9据Neau et al.(1993);F10据Jacopy and Berry(1958).GR.C7+为C7+组分比重;MW.C7+为C7+组分分子量(kg/mol).
      下载: 导出CSV

      表  2  用于石油包裹体热动力学计算的调整后的流体组分

      Table  2.   The tuned crude oil composition using for petroleum inclusions thermodynamics

      No. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
      N2 0.23 0.29 0.25 0.53 0.00 0.00 0.41 0.32 0.74 1.66
      CO2 0.37 0.46 2.21 0.12 2.12 0.77 0.44 2.83 2.02 2.17
      H2S 0.00 0.49 1.17 0.00 0.00 0.00 0.00 1.51 0.00 0.00
      C1 5.55 10.74 16.46 22.76 31.14 35.84 40.33 45.80 51.53 60.13
      C2 0.80 1.11 6.34 6.44 7.48 9.64 7.71 9.21 10.72 7.47
      C3 0.41 1.58 7.54 8.49 6.90 6.68 8.17 5.56 7.15 4.71
      C4 1.09 3.68 6.14 6.59 6.23 4.91 5.43 4.18 3.63 4.09
      C5 2.87 4.03 4.40 4.70 4.72 3.86 3.63 3.09 2.21 2.95
      C6 4.69 4.75 3.61 4.23 4.35 3.26 2.82 2.41 1.84 0.00
      C7+ 83.99 72.89 51.89 46.14 37.06 35.05 31.07 25.08 20.16 16.81
      GR.C7+ 898.06 860.15 887.08 862.36 847.33 840.70 846.96 847.55 808.64 784.09
      MW.C7+ 287.12 260.65 252.86 241.01 230.14 210.71 211.57 225.64 196.66 174.30
      下载: 导出CSV

      表  3  表 1中流体匹配饱和压力后的组分变化

      Table  3.   The composition change of petroleum fluids in table 1 after match of the saturation pressure

      F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 AAD%
      AD%
      N2 4.17 - 0.00 - - - - - - 0.60 1.59
      CO2 5.13 - 0.91 - 0.47 - - 1.07 0.50 0.46 1.42
      H2S - - 0.86 - - - - 1.34 - - -
      C1 4.64 0.09 0.80 0.18 0.45 0.99 0.37 1.13 0.45 0.63 0.97
      C2 4.76 0.00 0.79 0.16 0.40 1.03 0.39 1.10 0.47 0.66 0.98
      C3 4.65 0.00 0.80 0.24 0.43 1.04 0.37 1.09 0.42 0.63 0.97
      C4 4.39 0.00 0.82 0.15 0.48 1.01 0.37 1.21 0.55 0.73 0.97
      C5 4.65 0.00 0.92 0.21 0.42 0.77 0.27 0.98 0.45 0.67 0.94
      C6 4.67 0.00 0.84 0.24 0.46 0.91 0.35 1.26 0.55 - 1.03
      C7+ 0.95 0.04 0.73 0.22 0.76 1.89 1.11 3.24 1.75 3.19 1.39
      GR.C7+ 4.66 0.10 0.80 0.19 0.44 1.00 0.23 1.13 0.45 0.62 0.96
      MW.C7+ 5.55 0.13 1.55 0.41 1.18 2.85 0.75 4.52 2.24 3.70 2.29
        注:$ AD = \left| {\frac{{{x^{{\rm{tun}}}} - {x^{{\rm{exp}}}}}}{{{x^{\exp }}}}} \right|;AAD = \frac{1}{N}\sum\limits_{i = 1}^N {\left| {\frac{{{x^{{\rm{tun}}}} - {x^{{\rm{exp}}}}}}{{{x^{\exp }}}}} \right|} $,其中xexpxtun分为调整前和调整后的组分或者分子量和密度,N为个数.
      下载: 导出CSV

      表  4  根据表 2中调整后组分计算的石油包裹体不同均一温度对应室温下(20 ℃)气泡充填度值(Fv)

      Table  4.   The degree of gaseous filling (Fv) under room temperature (20 ℃) calculated according to the tuned fluid composition shown in table 2 under different homogenization temperatures of petroleum inclusion

      No. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
      Thoil(℃) Fv (20 ℃) (%)
      20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
      30 0.21 0.38 0.58 0.68 0.96 1.20 1.42 1.93 3.15 6.05
      40 0.63 0.85 1.21 1.45 1.98 2.40 2.80 3.75 5.96 10.39
      50 0.97 1.25 1.84 2.23 2.95 3.61 4.22 5.47 8.47 13.97
      60 1.29 1.77 2.49 3.03 4.02 4.85 5.65 7.09 10.82 16.95
      70 1.79 2.30 3.16 3.78 5.03 6.06 7.01 8.66 12.97 19.71
      80 2.13 2.71 3.84 4.64 6.13 7.37 8.43 10.20 14.97 22.19
      90 2.49 3.27 4.65 5.51 7.18 8.64 9.83 11.67 16.91 24.61
      100 3.24 3.85 5.37 6.42 8.33 9.93 11.22 13.08 18.74 26.95
      110 3.43 4.44 6.11 7.26 9.43 11.26 12.60 14.48 20.56 29.01
      120 3.82 5.05 6.87 8.24 10.63 12.54 14.01 15.82 22.35 31.13
      130 4.43 5.68 7.78 9.14 11.78 13.93 15.41 17.18 24.04 33.39
      140 4.85 6.36 8.58 10.15 12.94 15.27 16.84 18.57 25.76 35.67
      150 5.35 7.03 9.40 11.19 14.22 16.64 18.26 19.95 27.50 37.89
      160 5.81 7.72 10.37 12.17 15.45 18.06 19.70 21.27 29.25 40.11
      170 6.52 8.43 11.23 13.27 16.69 19.48 21.12 22.66 30.98 42.33
      180 7.05 9.16 12.25 14.40 17.96 20.94 22.56 24.05 32.71 44.55
      190 7.56 9.91 13.15 15.45 19.25 22.34 23.98 25.41 34.44 46.77
      200 8.35 10.68 14.22 16.64 20.56 23.85 25.42 26.78 36.17 48.99
      下载: 导出CSV

      表  5  东营凹陷北带深层油包裹体均一温度(Thoil)与室温下(20 ℃)气泡充填度(Fv)数据

      Table  5.   The data of homogenization temperature (Thoil) and the degree of gaseous filling (Fv) under room temperature (20 ℃) of petroleum inclusions in the deep reservoir in North Dongying depression

      包裹体编号 井号 深度(m) 产状 成因 荧光颜色 API° Thoil Fv(%) Thaqu 幕次 包裹体类型
      1 丰8 3 943.0 方解石脉 原生 淡黄-白色 33.8 47.5 3.1 134.3 第一幕
      2 丰8 3 943.0 方解石脉 原生 淡黄-白色 36.1 76.0 6.2 145.9 第一幕
      3 丰8 4 195.1 石英加大边 原生 淡黄-白色 37.3 102.5 10.5 156.7 第一幕
      4 丰深1 4 321.7 穿石英颗粒裂纹 次生 淡黄色 38.7 128.6 16.9 151.6 第一幕
      5 丰深1 4 321.7 穿石英颗粒裂纹 次生 蓝白色 42.4 139.3 25.6 156.7 第一幕
      6 丰深1 4 321.7 穿石英颗粒裂纹 次生 蓝色 49.0 150.3 72.5 178.7 第二幕 凝析油
      7 丰深1 4 321.7 穿石英颗粒裂纹 次生 不发荧光 161.0~176.0 第三幕 天然气
      下载: 导出CSV
    • [1] Ahmed, T.H., Cady, G.V., Story, A.L., 1985. A generalized correlation for characterizing the hydrocarbon heavy fractions. In: SPE 60th annual technical conference. SPE, Las Vegas, 14266. doi: 10.2118/14266-MS
      [2] Al-Meshari, A.A., Aramco, S., MaCain, W.D., 2007. Validation of splitting the hydrocarbon plus fraction: first step in tuning equation of state. In: Middle east oil and gas show and conference. SPE, Kingdom of Bahrain, 104631. doi: 10.2118/104631-MS
      [3] Aplin, A.C., Macleod, G., Larter, S.R., et al., 1999. Combined use of confocal laser scanning microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions. Marine and Petroleum Geology, 16(2): 97-110. doi: 10.1016/S0264-8172(98)00079-8
      [4] Bourdet, J., Pironon, J., Levresse, G., et al., 2008. Petroleum type determination through homogenization temperature and vapour volume fraction measurements in fluid inclusions. Geofluids, 8(1): 46-59. doi: 10.1111/j.1468-8123.2007.00204.x
      [5] Bourdet, J., Pironon, J., Levresse, G., et al., 2010. Petroleum accumulation and leakage in a deeply buried carbonate reservoir, Níspero field (Mexico). Marine and Petroleum Geology, 27(1): 126-142. doi: 10.1016/j.marpetgeo.2009.07.003
      [6] Cavett, R., 1962. Physical data for distillation calculations: vapor-liquid equilibria. In: Proc. 27th Annual Meeting. American Petroleum Institute, Dallas, 351-366.
      [7] Elsharkawy, A.M., 2003. An empirical model for estimating the saturation pressures of crude oils. Journal of Petroleum Science and Engineering, 38(1): 57-77. doi: 10.1016/S0920-4105(03)00035-4
      [8] George, S.C., Krieger, F.W., Eadington, P.J., et al., 1997. Geochemical comparison of oil-bearing fluid inclusions and produced oil from the Toro sandstone, Papua New Guinea. Organic Geochemistry, 26(3): 155-173. doi: 10.1016/S0146-6380(97)00004-1
      [9] Grimmer, J.O.W., Pironon, J., Teinturier, S., et al., 2003. Recognition and differentiation of gas condensates and other oil types using microthermometry of petroleum inclusions. Journal of Geochemical Exploration, 78-79: 367-371. doi: 10.1016/S0375-6742(03)00137-7
      [10] Guilhaumou, N., Szydlowskii, N., Pradier, B., 1990. Characterization of hydrocarbon fluid inclusions by infra-red and fluorescence microspectrometry. Mineralogical Magazine, 54(375): 311-324. doi: 10.1180/minmag.1990.054.375.17
      [11] Horsfield, B., McLimans, R.K., 1984. Geothermometry and geochemistry of aqueous and oil-bearing fluid inclusions from Fateh field, Dubai. Organic Geochemistry, 6: 733-740. doi: 10.1016/0146-6380(84)90094-9
      [12] Jacopy, R.H., Berry, Jr. V.J., 1958. A method for predicting pressure maintenance for reservoirs producing volatile oil. Petrol. Trans. AIME, 213: 59-65. doi: 10.2118/921-G
      [13] Jaubert, J.N., Avaullee, L., Souvay, J.F., 2002. A crude oil data bank containing more than 5 000 PVT and gas injection data. Journal of Petroleum Science and Engineering, 34(1-4): 65-107. doi: 10.1016/S0920-4105(02)00153-5
      [14] Jhaveri, B.S., Youngren, G.K., 1988. Three-parameter modification of the Peng-Robinson equation of state to improve volumetric predictions. SPE Reservoir Engineering, 3(3): 1033-1040. doi: 10.2118/13118-PA
      [15] Katz, D.L., Firoozabadi, A., 1978. Predicting phase behavior of condensate/crude-oil systems using methane interaction coefficients. Journal of Petroleum Technology, 30(11): 1649-1655. doi: 10.2118/6721-PA
      [16] Kay, W.B., 1936. Gases and vapors at high temperature and pressure-density of hydrocarbon. Ind. Eng. Chem. Res. , 28(8): 1014-1019. doi: 10.1021/ie50321a008
      [17] Kihle, J., 1995. Adaptation of fluorescence excitation-emission micro-spectroscopy for characterization of single hydrocarbon fluid inclusions. Organic Geochemistry, 23(11-12): 1029-1042. doi: 10.1016/0146-6380(95)00091-7
      [18] Liu, D.H., Xiao, X.M., Mi, J.K., et al., 2003. Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software: a case study of Lower Ordovician carbonates from the Lunnan low uplift, Tarim basin. Marine and Petroleum Geology, 20(1): 29-43. doi: 10.1016/S0264-8172(03)00047-3
      [19] Moharam, H.M., Fahim, M.A., 1995. Prediction of viscosity of heavy petroleum fractions and crude oils using a corresponding states method. Ind. Eng. Chem. Res. , 34(11): 4140-4144. doi: 10.1021/ie00038a061
      [20] Munz, I., Johansen, H., Johanse, I., 1999. Characterisation of composition and PVT properties of petroleum inclusions: implications of reservoir filling and compartmentalisation. Society of Petroleum Engineers, 56519: 1-7. doi: 10.2118/56519-MS
      [21] Neau, E., Jaubert, J.N., Rogalski, M., 1993. Characterization of heavy oils. Industrial & Engineering Chemistry Research, 32(6): 1196-1203. doi: 10.1021/ie00018a027
      [22] Pang, L.S.K., George, S.C., Quezada, R.A., 1998. A study of the gross compositions of oil-bearing fluid inclusions using high performance liquid chromatography. Organic Geochemistry, 29(5-7): 1149-1161. doi: 10.1016/S0146-6380(98)00135-1
      [23] Pedersen, K.S., Thomassen, P., Fredenslund, A., 1988. On the dangers of "tuning" equation of sate parameters. Chem. Eng. Sci. , 43(2): 269-278. doi: 10.1016/0009-2509(88)85039-5
      [24] Peng, D.R., Robinson, D.B., 1976. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1): 59-64. doi: 10.1021/i160057a011
      [25] Ping, H.W., Chen, H.H., 2011. Main controlling factors on oil inclusion homogenization temperatures and their geological significance. Earth Science—Journal of China University of Geosciences, 36(1): 131-138 (in Chinese with English abstract).
      [26] Ping, H.W., Chen, H.H., Song, G.Q., et al., 2012. Contributions degree of petroleum charging to oil and gas accumulation and its significance. Earth Science—Journal of China University of Geosciences, 37(1): 163-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201201020.htm
      [27] Ping, H.W., Thiéry, R., Chen, H.H., 2011. Thermodynamic modeling of petroleum inclusions: the prediction of the saturation pressure of crude oils. Geofluids, 11(3): 328-340. doi: 10.1111/j.1468-8123.2011.00343.x
      [28] Pironon, J., Barres, O., 1990a. FT-IR microanalysis of hydrocarbon fluid inclusions. Chemical Geology, 84(1-4): 224-226. doi: 10.1016/0009-2541(90)90220-2
      [29] Pironon, J., Barres, O., 1990b. Semi-quantitative FT-IR microanalysis limits: evidence from synthetic hydrocarbon fluid inclusions in sylvite. Geochimica et Cosmochimica Acta, 54(3): 509-518. doi: 10.1016/0016-7037(90)90348-O
      [30] Pironon, J., Canals, M., Dubessy, J., et al., 1998. Volumetric reconstruction of individual oil inclusions by confocal scanning laser microscopy. Eur. J. Mineral. , 10(6): 1143-1150. doi: 10.1127/ejm/10/6/1143
      [31] Przyjalgowski, M.A., Ryder, A.G., Feely, M., et al., 2005. Analysis of hydrocarbon-bearing fluid inclusions(HCFI) using time-resolved fluorescence spectroscopy. In: Proceedings of SPIE. International Society Optical Engineering, 5826: 173-184.
      [32] Rao, D., Qin, J.Z., Zhang, Z.R., et al., 2010. Composition analyses of individual hydrocarbon inclusion. Petroleum Geology & Experiment, 32(1): 67-70 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201001014.htm
      [33] Riazi, M.R., Al-Sahhaf, T.A., 1996. Physical properties of heavy petroleum fractions and crude oils. Fluid Phase Equilibria, 117(1): 217-224. doi: 10.1016/0378-3812(95)02956-7
      [34] Stasiuk, L.D., Snowdon, L.R., 1997. Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions: crude oil chemistry, density and application to petroleum migration. Applied Geochemistry, 12(3): 229-241. doi: 10.1016/S0883-2927(96)00047-9
      [35] Thiéry, R., Pironon, J., Walgenwitz, F., et al., 2000. PIT (petroleum inclusion thermodynamic): a new modeling tool for the characterization of hydrocarbon fluid inclusions from volumetric and microthermometric measurements. Journal of Geochemical Exploration, 69-70: 701-704. doi: 10.1016/S0375-6742(00)00085-6
      [36] Thiéry, R., Pironon, J., Walgenwitz, F., et al., 2002. Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy: inferences from applied thermodynamics of oils. Marine and Petroleum Geology, 19(7): 847-859. doi: 10.1016/S0264-8172(02)00110-1
      [37] Thomassen, P., Pedersen, K.S., Fredenslund, A., 1987. Adjustment of C7+ molecular weights in the characterization of petroleum mixtures containing heavy hydrocarbons. SPE, 16036-MS. http://www.onepetro.org/general/SPE-16036-MS
      [38] Tseng, H.Y., Pottorf, R.J., 2002. Fluid inclusion constraints on petroleum PVT and compositional history of the greater Alwyn-South Brent petroleum system, northern North Sea. Marine and Petroleum Geology, 19(7): 797-809. doi: 10.1016/S0264-8172(02)00088-0
      [39] Volk, H., Fuentes, D., Fuerbach, A., et al., 2010. First on-line analysis of petroleum from single inclusion using ultrafast laser ablation. Organic Geochemistry, 41(2): 74-77. doi: 10.1016/j.orggeochem.2009.05.006
      [40] Whitson, C.H., 1984. Effect of C7+ properties on equation-of-state predictions. Soc. Pet. Eng. J. , 24(6): 685-696. doi: 10.2118/11200-PA
      [41] Wu, R., Rosenegger, L., 1999. Intergrated oil PVT data characterization-lessons from four case histories. J. Can. Petrol. Technol. , 38(Specl. 13): 97-105. http://www.researchgate.net/publication/240780849_Integrated_Oil_PVT_Characterization_-_Lessons_From_Four_Case_Histories
      [42] Zhang, Z.R., Zhang, Q., Xi, B.B., et al., 2011. On-line analysis of oil-bearing fluid inclusions with laser ablation GC-MS. Petroleum Geology & Experiment, 33(4): 437-440(in Chinese with English abstract).
      [43] Zurita, R.A.A., McCain, Jr. W.D., 2002. An efficient tuning strategy to calibrate cubic EOS for compositional simulation, SPE annual technical conference and exhibition. SPE, San Antonio, Texas, 77382. doi: 10.2118/77382-MS
      [44] 平宏伟, 陈红汉, 2011. 影响油包裹体均一温度的主要控制因素及其地质涵义. 地球科学——中国地质大学学报, 36(1): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101015.htm
      [45] 平宏伟, 陈红汉, 宋国奇, 等, 2012. 油气充注成藏贡献度及其意义. 地球科学——中国地质大学学报, 37(1): 163-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201201020.htm
      [46] 饶丹, 秦建中, 张志荣, 等, 2010. 单体烃包裹体成分分析. 石油实验地质, 32(1): 67-70. doi: 10.3969/j.issn.1001-6112.2010.01.013
      [47] 张志荣, 张渠, 席斌斌, 等, 2011. 含油包裹体在线激光剥蚀色谱-质谱分析. 石油实验地质, 33(4): 437-440. doi: 10.3969/j.issn.1001-6112.2011.04.020
    • 加载中
    图(3) / 表(5)
    计量
    • 文章访问数:  265
    • HTML全文浏览量:  123
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-03-22
    • 网络出版日期:  2021-10-13
    • 刊出日期:  2012-07-15

    目录

      /

      返回文章
      返回