Cenozoic Uplift of the Northeastern Pamir: Evidence from the Gravel Counting Results of the Oytag Section
-
摘要: 砾岩相通常作为构造事件的标志,对探讨造山带隆升过程有着重要的意义.选取位于帕米尔构造带东北缘的奥依塔格剖面开展砾石统计分析.新生代不同时期砾石的统计结果显示,奥依塔格剖面砾石成分主要为火成岩和变质岩,这与帕米尔造山带岩性相符.其中,花岗岩砾石作为特征组分首次出现在上新统阿图什组底部.砾石主要为巨砾,且以长短轴比值为1~2的近圆状为主;砾石的磨圆度中等,绝大部分为次磨圆-次棱角状;分选中等-差.结合砾石所处地层的沉积环境和热年代学记录,认为帕米尔东北缘新生代可能存在3期构造隆升事件,包括渐新-中新世克孜洛依组沉积早期、中新世中期(安居安组中-上段和帕卡布拉克组下段沉积时期)和上新世以来(阿图什组下段沉积以来).Abstract: The study of gravel-facies, an important sedimentary indicator of tectonic event could facilitate the understanding of the evolution of the uplift in orogen. In this paper, the Cenozoic gravels in Oytag section located in the piedmont of northeastern Pamir, has been chosen to conduct gravel counting. The results show that gravels in Cenozoic are mainly igneous and metamorphic, indicating that they came from Pamir area. As the first occurrence of new gravel types, the granite gravel emerges at the bottom of Atushi Formation of Pliocene. The gravels are mainly of giant-size, sub-rounded and sub-angular, moderated and middling to bad sorted, with a ratio of the length of maximum axis to the minimum axis ranging from 1 to 2. Combined with Cenozoic depositing environment and thermochronology records, following uplifting periods have been identified in northeastern Pamir as Late Oligocene to Early Miocene, Mid Miocene and since Early Pliocene.
-
Key words:
- northeastern Pamir /
- Cenozoic /
- uplift /
- gravel counting /
- Oystag /
- sedimentology /
- tectonics
-
图 1 帕米尔东北缘地质简图(据Sobel and Dumitru, 1997;Yin et al., 2002;廖林,2010修改)
F1.帕米尔东北缘主冲断裂;F2.乌泊尔断裂;F3.库姆塔格断裂;JJS.金沙缝合线;ATF.阿尔金断裂;EKL.东昆仑断裂;KKE.喀喇昆仑断裂;WKL.西昆仑北缘断裂;TFF.塔拉斯费尔干纳断裂
Fig. 1. Simplified geological map in NE Pamir
图 3 奥依塔格剖面综合柱状图及统计点野外照片(古流据Sobel, 1995)
Site8.现今河滩(38°58′52.8″N、75°31′16.5″E)杂乱堆积,未成岩,以巨砾和中砾为主,多呈近圆状-长条状,多呈次棱角状磨圆,分选中等;Site7.Q2wq(39°01′06.3″N、75°33′33.4″E)杂乱堆积,未成岩,以巨砾和中砾为主,多呈近圆状-长条状,次棱角-次圆状磨圆,分选差;Site6.N2a1(38°59′20.1″N、75°32′11.4″E)以巨砾为主,多呈近圆状,次为长条状,次棱角-次圆状磨圆,分选中等,颗粒支撑,砂质填隙;Site5.N2a1(38°59′20.5″N、75°32′03.4″E)以巨砾为主,多呈近圆状,次为长条状,次圆-次棱角状磨圆,分选差,颗粒支撑,砂质填隙;Site4.N2a1(38°59′17.8″N、75°31′53.7″E)以巨砾为主,多呈次圆状,次为长条状,次棱角-次圆状磨圆,分选中等,颗粒支撑,砂质填隙;Site3.N1p(38°59′05.2″N、75°30′50.7″E)以巨砾为主,多呈近圆状,次圆状磨圆,分选差,颗粒支撑,砂泥质填隙;Site2.N1a(38°59′13.2″N、75°30′02.3″E)以巨砾为主,多呈近圆状,次为长条状,次棱角-棱角状磨圆,分选中等,颗粒支撑,砂泥质填隙;Site1.(E3-N1)k(38°59′13.3″N、75°29′30.9″E)以巨砾为主,多呈近圆状,次棱角-棱角状磨圆,分选中等,颗粒支撑,砂泥质填隙
Fig. 3. Stratigraphical column and photos of 8 sites in Oytag section
表 1 奥依塔格剖面不同层位砾石统计结果
Table 1. Gravel counting results of 8 sites in Oytag section
统计点 Site1 Site2 Site3 Site4 Site5 Site6 Site7 Site8 F F(%) F F(%) F F(%) F F(%) F F(%) F F(%) F F(%) F F(%) 岩性 火成岩 213 51.1 121 75.2 133 44.3 148 48.7 167 67.6 134 49.1 72 26.7 53 20.7 燧石 10 2.4 2 1.2 136 45.3 59 19.4 46 18.3 80 29.3 18 6.7 52 20.3 变质岩 102 24.4 21 13.0 27 9.0 97 31.9 36 14.3 33 12.1 84 31.1 133 51.9 砂岩 92 22.1 17 10.6 2 0.7 0 0.0 2 0.8 26 9.5 96 35.5 12 4.7 白云岩 0 0.0 0 0.0 2 0.7 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 灰岩 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 3 1.2 石膏 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1 0.4 泥岩 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 1 0.4 小计 417 100 161 100 300 100 304 100 251 100 273 100 270 100 256 100 磨圆度 磨圆状 0 0.0 0 0.0 0 0.0 0 0.0 1 0.4 0 0.0 0 0.0 0 0.0 次磨圆状 18 4.3 26 16.1 222 74.0 176 57.9 122 48.6 93 34.0 98 36.3 38 14.8 次棱角状 304 72.9 93 57.8 59 19.7 115 37.8 112 44.6 173 63.4 156 57.8 193 75.4 棱角状 95 22.8 42 26.1 19 6.3 13 4.3 16 6.4 7 2.6 16 5.9 25 9.8 小计 417 100 161 100 300 100 304 100 251 100 273 100 270 100 256 100 圆度X(砾石长短轴直径比) 1≤X<2 334 80.1 136 84.5 277 92.3 250 82.2 231 92.0 219 80.2 258 95.6 231 90.2 2≤X<3 59 14.1 25 15.5 23 7.7 48 15.8 18 7.2 50 18.3 10 3.7 23 9.0 3≤X 24 5.8 0 0.0 0 0.0 6 2.0 2 0.8 4 1.5 2 0.7 2 7.8 小计 417 100 161 100 300 100 304 100 251 100 273 100 270 100 256 100 粒径(块) 小砾 415 99.5 158 98.1 291 97.0 294 96.7 246 98.0 271 99.3 150 55.6 134 52.3 中砾 2 0.5 3 1.9 9 3.0 10 3.3 5 2.0 2 0.7 120 44.4 120 46.9 巨砾 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 2 0.8 小计 417 100 161 100 300 100 304 100 251 100 273 100 270 100 256 100 表 2 奥依塔格剖面砾石长轴长度Φ值分布统计量
Table 2. Distribution of length counting data (Φ) in Oytag section
Site1 Site2 Site3 Site4 Site5 Site6 Site7 Site8 均值 -4.18 -4.52 -4.15 -4.32 -4.26 -4.18 -5.82 -6.00 标准方差 0.90 0.93 1.00 1.15 1.03 0.90 1.11 0.97 偏斜度 -0.24 0.56 0.81 0.79 0.19 -0.24 -0.37 0.24 峰度 1.11 0.78 0.60 1.06 0.60 0.52 0.70 0.75 -
[1] Armstrong, F.C., Steven, S.O., 1965. Tectonic development of Idaho-Wyoming thrust belt. AAPG Bulletin, 49(10): 1847-1866. doi: 10.1306/A663386E-16C0-11D7-8645000102C1865D [2] Arnaud, N.O., 1992. Rapport de la thermochronologie 40Ar/39Ar sur feldspath potassique a la connaissance de la tectonique cenozoique d'Asie; etude des mecanismes d accommodation de la collision continentale Contribution of 40Ar/39Ar thermochronology on potassic feldspar to the knowledge of Cenozoic tectonics in Asia; study of the accommodation mechanisms involved in continental collision(Dissertation). Universite Blaise Pascal, Clermont-Ferrand II, Clermont-Ferrand, France. [3] Arnaud, N.O., Brunel, M., Cantagrel, J.M., et al., 1993. High cooling and denudation rates at Kongur Shan, eastern Pamir (Xinjiang, China) revealed by 40Ar/39Ar alkali feldspar thermochronology. Tectonics, 12(6): 1335-1346. doi: 10.1029/93TC00767 [4] Burbank, D.W., Beck, R.A., Raynolds, R.G.H., et al., 1988. Thrusting and gravel progradation in foreland basins: a test of post-thrusting gravel dispersal. Geology, 16(12): 1143-1146. doi: 10.1130/0091-7613(1988)016<1143:TAGPIF>2.3.CO;2 [5] Cao, K., Wang, G.C., Liu, C., et al., 2009. Thermochronological evidence of the Cenozoic differential uplift processes of the West Kunlun and its adjacent area. Earth Science—Journal of China University of Geosciences, 34(6): 895-906 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.102 [6] Chen, J., Qu, G.S., Hu, J., et al., 1997. Arcuate thrust tectonics and its contemporary seismicity in the eastern section of the external zone of the Pamir. Seismology and Geology, 19(4): 301- 312 (in Chinese with English abstract). [7] Chen, J., Yin, J.H., Qu, G.S., et al., 2000. Timing, lower boundary, genesis, and deformation of Xiyu Formation around the western margins of the Tarim basin. Seismology and Geology, 22(Suppl. 1): 104-116 (in Chinese with English abstract). [8] Chen, J., Lu, Y.C., Ding, G.Y., 2001. Records of Late Cenozoic mountain building in western Tarim basin: molasses, growth strata and growth unconformity. Quaternary Sciences, 21(6): 528-539 (in Chinese with English abstract). [9] Chen, J., Heermance, R.V., Burbank, D.W., et al., 2007. Magnetochronology and its implications of the Xiyu conglomerate in the southwestern Chinese Tianshan foreland. Quaternary Sciences, 27(4): 576-587 (in Chinese with English abstract). [10] Chen, H.L., Zhang, F.F., Cheng, X.G., et al., 2010. The deformation features and in the northeastern basin-range coupling structure Pamir tectonic belt. Chinese Journal of Geology, 45(1): 102-112 (in Chinese with English abstract). [11] Chen, Z.L., Gong, H.L., Li, L., et al., 2006a. Cenozoic uplifting and exhumation process of the Altyn Tagh Mountains. Earth Science Frontiers, 13(4): 91-102(in Chinese with English abstract). [12] Chen, Z.L., Wan, J.L., Liu J., et al., 2006b. Multi-Stage uplift and exhumation of the West Tianshan Mountain: evidence from the apatite fission-track dating. Acta Geoscientica Sinica, 27(2): 97-106 (in Chinese with English abstract). [13] Cowgill, E., Yin, A., Wang, X.F., et al., 2000. Is the north Altyn fault part of a strike-slip duplex along the Altyn Tagh fault system? Geology, 28(3): 255-258. doi: 10.1130/0091-7613(2000) [14] Ding, L., Zhong, D.L., Pan, Y.S., et al., 1995. Fission track dating evidence on fast uplifting since Pliocene of the eastern Himalayan syntaxis. Chinese Science Bulletin, 40(16): 1497-1500(in Chinese with English abstract). doi: 10.1360/csb1995-40-16-1497 [15] Du, Z.L., Wang, Q.C., 2007. Mesozoic and Cenozoic uplifting history of the Tianshan region: insight from apatite fission track. Acta Geologica Sinica, 81(8): 1081-1101 (in Chinese with English abstract). [16] Folk, R.L., Ward, W.C., 1957. Brazos River bar [Texas]: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27(1): 3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D [17] Heller, P.L., Bowdler, S.S., Chambers, H.P., et al., 1986. Time of initial thrusting in the Sevier orogenic belt, Idaho-Wyoming and Utah. Geology, 14(5): 388-391. doi:10.1130/0091-7613 (1986) 14<388:TOITIT>2.0.CO;2 [18] Heller, P.L., Angevine, C.L., Winslow, N.S., 1988. Two-phase stratigraphic model of foreland-basin sequences. Geology, 16(6): 501-504. doi: 10.1130/0091-7613(1988)016<0501:TPSMOF>2.3.CO;2 [19] Jin, X.C., Wang, J., Chen, B.W., et al., 2003. Cenozoic depositional sequences in the piedmont of the West Kunlun and their paleogeographic and tectonic implications. Journal of Asian Earth Sciences, 21(7): 755-765. doi: 10.1016/S1367-9120(02)00073-1 [20] Ke, S., Luo, Z.H., Mo, X.X., et al., 2008. The geochronology of Taxkorgan alkalic complex, Pamir syntax. Acta Petrologica Sinica, 24(2): 315-324(in Chinese with English abstract). [21] Khan, P.K., 2003. Stress state, seismicity and subduction geometries of the descending lithosphere below the Hindukush and Parmir. Gondwana Research, 6(4): 867-877. doi: 10.1016/S1342-937X(05)71031-5 [22] Lacassin, R., Valli, F., Arnaud, N., et al., 2004. Largescale geometry, offset and kinematic evolution of the Karakorum fault, Tibet. Earth and Planetary Science Letters, 219(3-4): 255-269. doi: 10.1016/S0012-821X(04)00006-8 [23] Lei, G.L., Liao, L., Shi, J., et al., 2011. Sedimentary records of uplifting in West Kunlun during Late Miocene-Early Pliocene: evidence from the heavy mineral assemblages of Well Qibei-3 in the southwestern Tarim. Acta Geologica Sinica, 85(8): 1334-1342 (in Chinese with English abstract). [24] Li, H.B., Valli, F., Xu, Z.Q., et al., 2006. Deformation and tectonic evolution of the Karakorum fault, western Tibet. Geology in China, 33(2): 239-255(in Chinese with English abstract). [25] Li, D.P., Zhao, Y., Hu, J.M., et al., 2007a. Fission track thermochronologic constraints on plateau surface and geomorphic relief formation in the northwestern margin of the Tibetan plateau. Acta Petrologica Sinica, 23(5): 900-910 (in Chinese with English abstract). [26] Li, D.P., Zhao, Y., Hu, J.M., et al., 2007b. Zircon TIMS U-Pb dating of the Qitaidaban granite in the West Kunlun Mountains and its thermal evolution history. Geology in China, 34(6): 1013- 1021 (in Chinese with English abstract). [27] Liao, L., 2010. Cenozoic tectonic events and their sedimentary records in the West Kunlun (Dissertation). Zhejiang University, Hangzhou (in Chinese with English abstract). [28] Liao, L., Cheng, X.G., Wang, B.Q., et al., 2010. Reconstruction of Mesozoic sedimentary paleoenvironment in the southwestern Tarim basin, Northwestern China. Acta Geologica Sinica, 84 (8): 1195-1207(in Chinese with English abstract). [29] Lin, X.B., Chen, H.L., Wyrwoll, K.H., et al., 2009. Uplift of the northeastern Tibetan plateau: evidences from the Xiaohonggou section in Tongxin, Ningxia. Acta Geologica Sinica, 83(4): 454-467(in Chinese with English abtract). [30] Liu, X., 2001. Sedimentary-tectonic evolutionary history of the Tianshan to West Kunlun area in West China: the sedimentary-tectonic evolution of the terranes in the corridor of the Xinjiang geotransect and its adjacent areas. Journal of Palaeogeography, 3(3): 21-31(in Chinese with English abtract). [31] Luo, Z.H., Mo, X.X., Ke, S., 2003. Ages of Taxkorgan alkaline intrusive complex and their geological implications. Xinjiang Geology, 21(1): 46-50 (in Chinese with English abtract). [32] Matte, P., Tapponnier, P., Arnaud, N., et al., 1996. Tectonics of western Tibet, between the Tarim and the Indus. Earth and Planetary Science Letters, 142(3-4): 311-330. doi: 10.1016/0012-821X(96)00086-6 [33] McLane, M., 1995. Sedimentology. Oxford University Press, New York, 12-46. [34] Molnar, P., Tapponnier, P., 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science, 189(4201): 419-426. doi: 10.1126/science.189.4201.419 [35] Molnar, P., Tapponnier, P., 1978. Active tectonics of Tibet. Journal of Geophysical Research, 83(B11): 5361-5375. doi: 10.1029/JB083iB11p05361 [36] Murphy, M.A., Yin, A., Kapp, P., et al., 2000. Southward propagation of the Karakoram fault system, Southwest Tibet: timing and magnitude of slip. Geology, 28(5): 451- 454. doi: 10.1130/0091-7613(2000) 28<451:SPOTKF>2.0.CO;2 [37] Negredo, A.M., Replumaz, A., Villaseñor, A., et al., 2007. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region. Earth and Planetary Science Letters, 259(1-2): 212-225. doi: 10.1016/j.epsl.2007.04.043 [38] Robinson, A.C., Yin, A., Manning, C.E., et al., 2004. Tectonic evolution of the northeastern Pamir: constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China. GSA Bulletin, 116(7-8): 953-973. doi: 10.1130/B25375.1 [39] Robinson, A.C., Yin, A., Manning, C.E., et al., 2007. Cenozoic evolution of the eastern Pamir: implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen. GSA Bulletin, 119(7-8): 882-896. doi: 10.1130/B25981.1 [40] Sobel, E., 1995. Basin analysis and apatite fission-track thermochronology of the Jurassic-Paleogene southwest Tarim basin, northwest China(Dissertation). Stanford University, California. [41] Sobel, E.R., Dumitru, T.A., 1997. Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision. Journal of Geophysical Research, 102(B3): 5043- 5063. doi: 10.1029/96JB03267 [42] Shen, C.B., Mei, L.F., Zhang, S.W., et al., 2008. Fission-track dating evidence on space-time difference of Mesozoic-Cenozoic uplift of the Yilianhabierga Mountain and Bogeda Mountain. J. Mineral Petrol. , 28(2): 63-70(in Chinese with English abstract). [43] Shen, J., Wang, Y.P., Zhao, R.B., et al., 2001. Propagation of Cenozoic arcuate structures in northeast Pamir and northwest Tarim basin. Seismology and Geology, 23(3): 381-389(in Chinese with English abstract). [44] Wan, J.L., Wang, E.Q., 2002. FT evidence of West Kunlun uplift in Pulu. Nuclear Techniques, 25(7): 565-567(in Chinese with English abstract). [45] Wang, J., 1998. Uplift of the Karibasheng and Kuzigan granite in the West Kunlun Mountains —evidence from apatite fission track analysis. Geology Review, 44(4): 435-442 (in Chinese with English abstract). [46] Wang, J., Jin, X.C., Ren, L.D., et al., 1999. Apatite fission track study of Cenozie deposits of the Keliyang section, West Kunlun. Acta Geoscientia Sinica, 20(Suppl. ): 159-164(in Chinese with English abstract). [47] Wang, E.Q., Wan, J.L., Liu, J.Q., 2003. Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area: constraints on timing of uplift of northern margin of the Tibetan plateau. Journal of Geophysical Research, 108(2401): 1-13. doi: 10.1029/2002JB001877 [48] Wittlinger, G., Masson, F., Poupinet, G., et al., 1996. Seismic tomography of northern Tibet and Kunlun: evidence for crustal blocks and mantle velocity contrasts. Earth and Planetary Science Letters, 139(1-2): 263-279. doi: 10.1016/0012-821X(95)00235-5 [49] Wittlinger, G., Vergne, J., Tapponnier, P., et al., 2004. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet. Earth and Planetary Science Letters, 221(1-4): 117-130. doi:101.1016/S0012-821X(03)00723-4 [50] Wu, X.F., Liu, S., Wang, X., et al., 2004. Analysis on structural sections in the Cenozoic Pamir-western Kunlun foreland fold-and-thrust belt. Chinese Journal of Geology, 39(2): 260- 271(in Chinese with English abstract). [51] Xiao, A.C., Yang, S.F., Chen, H.L., et al., 2000. Structural characteristics of thrust system in the front of the West Kunlun Mountains. Earth Science Frontiers, 7(Suppl. 2): 128-136(in Chinese with English abstract). [52] Xiao, W.J., Windley, B.F., Fang, A.M., et al., 2001. Palaeozoic-Early Mesozoic accretionary tectonics of the western Kunlun range, NW China. Gondwana Research, 4(4): 826-827. doi: 10.1016/S1342-937X(05)70611-0 [53] Xiao, W.J., Windley, B.F., Chen, H.L., et al., 2002. Carboniferous-Triassic subduction and accretion in the western Kunlun, China: implications for the collisional and accretionary tectonics of the northern Tibetan plateau. Geology, 30(4): 295-298. doi:10.1130/0091-7613(2002) 030<0295:CTSAAI>2.0.CO;2 [54] Yi, H.S., Wang, C.S., Li, Y.L., et al., 2001. Sedimentary response to tectonic events: reconstructed spatio-temporal scale of the Indo-Asian continental collision and Qinghai-Xizang plateau uplift. Sedimentary Geology and Tethyan Geology, 21(2): 1-15 (in Chinese with English abstract). [55] Yin, A., Rumelhart, P.E., Butler, R., et al., 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. GSA Bulletin, 114(10): 1257-1295. doi: 10.1130/0016-7606(2002) 114<1257:THOTAT>2.0.CO;2 [56] Zhang, P.Z., Molnar, P., Downs, W.R., 2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature, 410(6831): 861-897. [57] Zhang, X.K., Zhao, J.R., Zhang, C.K., et al., 2002. Crustal structure at the northeast side of the Pamirs. Chinese Journal of Geophysics, 45(5): 665-671(in Chinese with English abstract). [58] Zheng, H.B., Powell, C.M., An, Z.S., et al., 2000. Pliocene uplift of the northern Tibetan plateau. Geology, 28(8): 715-718. doi:10.1130/0091-7613(2000) 28<715:PUOTNT>2.0.CO;2 [59] Zheng, H.B., Huang, X.T., Butcher, K., 2006. Lithostratigraphy, petrography and facies analysis of the Late Cenozoic sediments in the foreland basin of the West Kunlun. Palaeogeography, Palaeoclimatology, Palaeoecology, 214(1): 61-78. doi: 10.1016/j.palaeo.2006.06.015 [60] Zheng, H.B., Jia, J.T., Wang, K., 2009. Cenozoic sedimentation in the southern Tarim basin: implications for the uplift of northern Tibet and evolution of the Taklimakan desert. Earth Science Frontiers, 16(6): 154-161(in Chinese with English abstract). [61] Zhou, Y., Xu, R.H., Yan, Y.H., et al., 2000. Characteristics of magnetic fabrics of the Karakoram fault belt and its tectonic significance. Acta Petrologica Sinica, 16(1): 134-144(in Chinese with English abstract). [62] 曹凯, 王国灿, 刘超, 等, 2009. 西昆仑及邻区新生代差异隆升的热年代学证据. 地球科学——中国地质大学学报, 34(6): 895-906. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200906004.htm [63] 陈杰, 曲国胜, 胡军, 等, 1997. 帕米尔北缘弧形推覆构造带东段的基本特征与现代地震活动. 地震地质, 19(4): 301-312. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ704.002.htm [64] 陈杰, 尹金辉, 曲国胜, 等, 2000. 塔里木盆地西缘西域组的底界、时代、成因与变形过程的初步研究. 地震地质, 22(增刊1): 104-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ2000S1014.htm [65] 陈杰, 卢演俦, 丁国瑜, 2001. 塔里木西缘晚新生代造山过程的记录——磨拉石建造及生长地层和生长不整合. 第四纪研究, 21(6): 528-539. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200106009.htm [66] 陈杰, Heermance, R.V., Burbank, D.W., 等, 2007. 中国西南天山西域砾岩的磁性地层年代与地质意义. 第四纪研究, 27(4): 576-587. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200704013.htm [67] 陈汉林, 张芬芬, 程晓敢, 等, 2010. 帕米尔东北缘地区构造变形特征与盆山结构. 地质科学, 45(1): 102-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201001011.htm [68] 陈正乐, 宫红良, 李丽, 等, 2006a. 阿尔金山脉新生代隆升-剥露过程. 地学前缘, 13(4): 91-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604007.htm [69] 陈正乐, 万景林, 刘健, 等, 2006b. 西天山山脉多期次隆升-剥露的裂变径迹证据. 地球学报, 27(2): 97-106 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200602000.htm [70] 丁林, 钟大赉, 潘裕生, 等, 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据. 科学通报, 40(16): 1497-1500. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199516017.htm [71] 杜治利, 王清晨, 2007. 中新生代天山地区隆升历史的裂变径迹证据. 地质学报, 81(8): 1081-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200708008.htm [72] 柯珊, 罗照华, 莫宣学, 等, 2008. 帕米尔构造结塔什库尔干碱性杂岩同位素年代学研究. 岩石学报, 24(2): 315-324. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802013.htm [73] 雷刚林, 廖林, 师俊, 等, 2011. 西昆仑中新世晚期-上新世早期隆升活动的沉积记录: 来自塔西南棋北3井沉积物重矿物的证据. 地质学报, 85(8): 1334-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201108008.htm [74] 李海兵, Valli, F., 许志琴, 等, 2006. 喀喇昆仑断裂的变形特征及构造演化. 中国地质, 33(2): 239-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200602002.htm [75] 黎敦朋, 赵越, 胡健民, 等, 2007a. 青藏高原西北缘高原面与陡坡地貌形成过程的裂变径迹热年代学约束. 岩石学报, 23(5): 900-910. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705005.htm [76] 黎敦朋, 赵越, 胡健民, 等, 2007b. 西昆仑山奇台达坂花岗岩锆石TIMSU-Pb测年及热演化历史分析. 中国地质, 34(6): 1013-1021. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200706006.htm [77] 廖林, 2010. 西昆仑新生代构造事件及其沉积响应(博士学位论文). 杭州: 浙江大学. [78] 廖林, 程晓敢, 王步清, 等, 2010. 塔里木盆地西南缘中生代沉积古环境恢复. 地质学报, 84(8): 1195-1207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008013.htm [79] 林秀斌, 陈汉林, Wyrwoll, K.H., 等, 2009. 青藏高原东北部隆升: 来自宁夏同心小洪沟剖面的证据. 地质学报, 83(4): 454-467. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200904002.htm [80] 刘训, 2001. 天山-西昆仑地区沉积-构造演化史——新疆地学断面走廊域及邻区不同地体的沉积-构造演化. 古地理学报, 3(3): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200103002.htm [81] 罗照华, 莫宣学, 柯珊, 2003. 塔什库尔干碱性杂岩体形成时代及其地质意义. 新疆地质, 21(1): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200301014.htm [82] 沈传波, 梅廉夫, 张士万, 等, 2008. 依连哈比尔尕山和博格达山中新生代隆升的时空分异: 裂变径迹热年代学的证据. 矿物岩石, 28(2): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200802013.htm [83] 沈军, 汪一鹏, 赵瑞斌, 等, 2001. 帕米尔东北缘及塔里木盆地西北部弧形构造的扩展特征. 地震地质, 23(3): 381-389. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200103006.htm [84] 万景林, 王二七, 2002. 西昆仑北部山前普鲁地区山体抬升的裂变径迹研究. 核技术, 25(7): 565-567. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU200207018.htm [85] 王军, 1998. 西昆仑卡日巴生岩体和苦子干岩体的隆升——来自磷灰石裂变径迹分析的证据. 地质论评, 44(4): 435-442. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804013.htm [86] 王军, 金小赤, 任留东, 等, 1999. 西昆仑北坡克里阳剖面新生代沉积的磷灰石裂变径迹研究. 地球学报, 20(增刊): 159-164. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ199910001026.htm [87] 伍秀芳, 刘胜, 汪新, 等, 2004. 帕米尔-西昆仑北麓新生代前陆褶皱冲断带构造剖面分析. 地质科学, 39(2): 260-271. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200402012.htm [88] 肖安成, 杨树锋, 陈汉林, 等, 2000. 西昆仑山前冲断系的结构特征. 地学前缘, 7(增刊2): 128-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2000S2019.htm [89] 伊海生, 王成善, 李亚林, 等, 2001. 构造事件的沉积响应——建立青藏高原大陆碰撞、隆升过程时空坐标的设想和方法. 沉积与特提斯地质, 21(2): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200102000.htm [90] 张先康, 赵金仁, 张成科, 等, 2002. 帕米尔东北侧地壳结构研究. 地球物理学报, 45(5): 665-671. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200205007.htm [91] 郑洪波, 贾军涛, 王可, 2009. 塔里木盆地南缘新生代沉积: 对青藏高原北缘隆升和塔克拉玛干沙漠演化的指示. 地学前缘, 16(6): 154-161. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200906023.htm [92] 周勇, 许荣华, 阎月华, 等, 2000. 喀喇昆仑断裂带磁组构特征及其构造意义. 岩石学报, 16(1): 134-144. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200001015.htm