Sedimentary Controlling Factor of Unattached Multiple Superimposed Coalbed-Methane System Formation
-
摘要: 基于黔西地区晚二叠世含煤地层的实测资料, 初步探讨了"多层叠置独立含煤层气系统"形成的沉积控制因素.研究表明, 含煤地层的沉积条件奠定了"多层叠置独立含煤层气系统"的物质及物性基础, 层序地层格架特点限定了含气单元间含气性的连通性.最大海泛面附近的菱铁质泥岩等低渗透岩层控制了垂向次级含气单元间的含气性相对独立, 且煤层含气量与海平面升降之间存在一定的相关性, 即最大海侵面附近煤层含气量相对较低, 此界面似乎可作为含煤层气系统内独立含气单元的成藏边界; 层序界面沟通了含气单元间的含气联系, 使得靠近层序界面附近的煤层具有相似的含气性特征.Abstract: Based on the measured data of Late Permian coal-bearing strata in western Guizhou Province, the sedimentary controlling factor of "unattached multiple superimposed coalbed-methane system" formation is preliminarily discussed in this paper. It shows that the depositional conditions of coal-bearing strata have laid the material physical properties foundation for "unattached multiple superimposed coalbed-methane system". The characteristics of sequence stratigraphic framework limit gas connectivity between gas units. The siderite mudstone with low-permeability, which is distributed near the maximum flooding surface, makes the vertical sub-strata of gas between the gas-bearing units relatively independent. There is correlation between coalbed methane contents and the sea level. Coalbed methane contents near to the maximum flooding surface are relatively low. The interface can be regarded as a stand-alone boundary for gas-forming units in the coalbed-methane system. The sequence boundary connects the gas units, making the coal seams near to sequence boundary with the similar gas bearing characteristics.
-
图 4 海相沉积铁矿床铁矿物相分带示意(据姚凤良和郑明华,1983)
Fig. 4. Iron mineral phase zonation in marine sedimentary iron
表 1 ZZ1001孔岩石孔隙度测试结果
Table 1. Porosity test results of well ZZ1001
样品编号 岩性 层位 埋深(m) 块体密度(g/cm3) 体积密度(g/cm3) 蜡封法孔隙度(%) 压汞孔隙度(%) 1 碳质泥岩 3煤底板 115.21~117.20 2.46 2.64 6.818 181 818 3.195 7 2 泥质粉砂岩 5煤顶板 125.21~121.91 2.60 2.80 7.142 857 143 3.779 8 3 石灰岩 K3下 130.91~132.41 2.76 2.82 2.127 659 574 0.890 7 4 菱铁岩 6煤顶板 136.71~139.71 3.12 3.20 2.50 2.169 7 5 砂质泥岩 K5 5.561 3 6 泥岩 157.21~159.81 2.69 2.81 4.270 462 633 5.906 8 7 泥岩 157.21~159.81 2.61 2.76 5.434 782 609 5.5390 8 泥岩 13煤顶板 208.21~210.81 2.57 2.70 4.814 814 815 3.013 5 9 泥岩 14煤顶板 212.21~214.11 2.99 3.10 3.548 387 097 2.996 9 10 泥岩 22煤顶板 281.21~282.91 2.24 2.43 7.818 930 041 5.730 5 11 泥岩 22煤顶板 282.91~284.21 2.5 2.70 7.407 407 407 5.910 1 12 石灰岩 K7 290.27~293.01 2.68 2.77 3.249 097 473 1.095 5 13 粉砂岩 25煤顶板 299.01~ 2.76 2.91 5.154 639 175 3.590 4 14 泥岩 26煤顶板 314.2~317.21 2.59 2.74 5.474 452 555 3.419 3 15 泥质粉砂岩 27煤顶板 320.21~323.21 2.61 2.84 8.098 591 549 3.485 9 16 细砂岩 30煤顶板 344.21~347.01 2.68 2.81 4.626 334 52 2.537 2 17 泥岩 30煤顶板 347.01~350.01 2.54 2.70 5.925 925 926 2.155 7 18 石灰岩 K11 364.71~367.71 2.88 2.96 2.702 702 703 2.621 1 注:据杨兆彪,2011. -
[1] Chen, H.D., Wang, C.S., Liu, W.J., et al., 1999. Permian sequence stratigraphy and basin evolution in south of China. Acta Sedimentologica Sinica, 17(4): 529-535 (in Chinese with English abstract). http://www.researchgate.net/publication/285010868_Permian_sequence_stratigraphy_and_basin_evolution_in_south_of_China [2] Huang, T.K., 1932. Permian corals of southern China. Palaeont. Sin. (Ser. B), 8(2): 1-163. [3] Jin, Y.G., Shang, Q.H., Hou, J.P., et al., 2000. Stratigraphic lexicon: Permian. Geological Publishing House, Beijing, 13-39 (in Chinese). [4] Li, X.Y., Wu, L., Chen, J.L., 2004. Primary discussion on the coalbed methane resources forecast in Pingdingshan mine. Zhongzhou Coal, 1: 17, 27 (in Chinese). [5] Mei, M.X., Ma, Y.S., Deng, J., et al., 2007. Sequence stratigraphy and palaeogeography of the Permian of Dian-Qian-Gui basin and its adjacent areas. Science in China (Ser. D), 37(5): 605-617 (in Chinese). [6] Qin, Y., Song, Q.Y., Fu, X.H., 2005. Discussion on reliability for co-mining the coalbed gas and normal petroleum and natural gas: absorptive effect of deep coal reservoir under condition of balanced water. Natural Gas Geoscience, 16(4): 492-498 (in Chinese with English abstract). http://www.researchgate.net/publication/285463950_Discussion_on_reliability_for_co-mining_the_coalbed_gas_and_normal_petroleum_and_natural_gas_Absorptive_effect_of_deep_coal_reservoir_under_condition_of_balanced_water [7] Qin, Y., Xiong, M.H., Yi, T.S., et al., 2008. On unattached multiple superposed coalbed-methane system: in a case of Shuigonghe syncline, Zhijin-Nayong coalfield, Guizhou. Geological Review, 54(1): 65-70 (in Chinese with English abstract). [8] Shao, Y.B., Guo, Y.H., Qin, Y., et al., 2011. Distribution characteristic and geological significance of rare earth elements in Lopingian mudstone of Permian, Panxian country, Guizhou Province. Mining Science and Technology (China), 21(4): 469-476. doi: 10.1016/j.mstc.2011.06.002 [9] Shi, X.Y., Mei, S.L., Sun, Y., et al., 1999. Permian sequence successions of slope facies in southern Guizhou and their chronostratigraphic correlation. Geoscience, 13(1): 1-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ901.000.htm [10] Wang, C.S., Li, X.H., Chen, H.D., et al., 1999. Permian sea-level changes and rising-falling events in South China. Acta Sedimentologica Sinica, 17(4): 536-541 (in Chinese with English abstract). http://www.researchgate.net/publication/313545044_Permian_sea-level_changes_and_rising-falling_events_in_South_China [11] Wang, H., Shao, L.Y., Hao, L.M., et al., 2011. Sedimentology and sequence stratigraphy of Lopingian (Late Permian) coal measures in southwestern China. International Journal of Coal Geology, 85(1): 168-183. doi: 10.1016/j.coal.2010.11.003 [12] Wang, H.Z., Shi, X.Y., Wang, X.L., 2000. Research on the sequence stratigraphy of China. Guangdong Science & Technology Press, Guangzhou, 206-226 (in Chinese). [13] Wang, S.W., Zhang, Z.J., Wu, X.M., et al., 2008. Reservoir-forming mechanism of coalbed methane in Jincheng anthracite. Earth Science—Journal of China University of Geosciences, 33(6): 807-812 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.097 [14] Xu, B.B., He, M.D., 2003. Coal geology of Guizhou Province. China University of Mining and Technology Press, Xuzhou (in Chinese). [15] Yang, Z.B., 2011. Coalbed methane reservoiring process under condition of multi-coalbeds overlay (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). [16] Yao, F.L., Zheng, M.H., 1983. Mineral deposits tutorial. Geological Publishing House, Beijing (in Chinese). [17] Yao, Y.B., Liu, D.M., Tang, D.Z., et al., 2007. Coal reservoir physical characteristics and prospective areas for CBM exploitation in Pingdingshan coalfield. Earth Science—Journal of China University of Geosciences, 32(2): 285-290 (in Chinese with English abstract). [18] Ye, J.P., Qin, Y., Lin, D.Y., 1998. Coalbed methane resources of China. China University of Mining and Technology Press, Xuzhou (in Chinese). [19] Yin, H.F., Tong, J.N., Ding, M.H., et al., 1994. Late Permian-Middle Triassic sea level changes of Yangtze Platform. Earth Science—Journal of China University of Geosciences, 19(5): 627-632 (in Chinese with English abstract). [20] Zhao, L.J., Qin, Y., Lin, Y.C., 2010. Abnormal relation and its geological controls of coalbed methane content to buried depth of coal seams. Journal of China Coal Society, 35(7): 1165-1169 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201007023.htm [21] Zhou, Z.L., Cai, M.J., Shi, Z.Z., et al., 2009. Time-space relation study of diagenesis and sequence stratigraphy for clastic rock. Xinjiang Geology, 27(4): 377-382 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=XJDI200904019&dbcode=CJFD&year=2009&dflag=pdfdown [22] 陈洪德, 王成善, 刘文均, 等, 1999. 华南二叠纪层序地层与盆地演化. 沉积学报, 17(4): 529-535. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199904003.htm [23] 金玉玕, 尚庆华, 侯静鹏, 等, 2000. 中国地层典: 二叠系. 北京: 地质出版社, 13-39. [24] 李雪雁, 吴亮, 陈俊亮, 2004. 平顶山矿区煤层气资源量预测浅探. 中州煤炭, 1: 17, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT200401010.htm [25] 梅冥相, 马永生, 邓军, 等, 2007. 滇黔桂盆地及邻区二叠系乐平统层序地层格架及其古地理背景. 中国科学(D辑), 37(5): 605-617. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200705003.htm [26] 秦勇, 宋全友, 傅雪海, 2005. 煤层气与常规油气共采可行性探讨——深部煤储层平衡水条件下的吸附效应. 天然气地球科学, 16(4): 492-498. doi: 10.3969/j.issn.1672-1926.2005.04.017 [27] 秦勇, 熊孟辉, 易同生, 等, 2008. 论多层叠置独立含煤层气系统——以贵州织金-纳雍煤田水公河向斜为例. 地质论评, 54(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200801009.htm [28] 史晓颖, 梅仕龙, 孙岩, 等, 1999. 黔南斜坡相区二叠系层序地层序列及其年代地层对比. 现代地质, 13(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ901.000.htm [29] 王成善, 李祥辉, 陈洪德, 等, 1999. 中国南方二叠纪海平面变化及升降事件. 沉积学报, 17(4): 536-541. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199904004.htm [30] 王鸿祯, 史晓颖, 王训练, 2000. 中国层序地层研究. 广州: 广东科技出版社, 206-226. [31] 王生维, 章泽军, 乌效鸣, 等, 2008. 晋城煤层气藏成藏机制. 地球科学——中国地质大学学报, 33(6): 807-812. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806009.htm [32] 徐彬彬, 何明德, 2003. 贵州煤田地质. 徐州: 中国矿业大学出版社. [33] 杨兆彪, 2011. 多煤层叠置条件下的煤层气成藏作用(博士学位论文). 徐州: 中国矿业大学. [34] 姚凤良, 郑明华, 1983. 矿床学基础教程. 北京: 地质出版社. [35] 姚艳斌, 刘大锰, 汤达祯, 等, 2007. 平顶山煤田煤储层物性特征与煤层气有利区预测. 地球科学——中国地质大学学报, 32(2): 285-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702019.htm [36] 叶建平, 秦勇, 林大扬, 1998. 中国煤层气资源. 徐州: 中国矿业大学出版社. [37] 殷鸿福, 童金南, 丁梅华, 等, 1994. 扬子区晚二叠世-中三叠世海平面变化. 地球科学——中国地质大学学报, 19(5): 627-632. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199405009.htm [38] 赵丽娟, 秦勇, 林玉成, 2010. 煤层含气量与埋深关系异常及其地质控制因素. 煤炭学报, 35(7): 1165-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201007023.htm [39] 周宗良, 蔡明俊, 石占中, 等, 2009. 碎屑岩层序地层与成岩作用时空关系研究新进展. 新疆地质, 27(4): 377-382. doi: 10.3969/j.issn.1000-8845.2009.04.016