• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    扬子克拉通峡东地区新元古代-寒武纪黑色岩系Os同位素地球化学特征及其地质意义

    王浩 凌文黎 段瑞春 杨红梅 陈子万 秦雅东

    王浩, 凌文黎, 段瑞春, 杨红梅, 陈子万, 秦雅东, 2012. 扬子克拉通峡东地区新元古代-寒武纪黑色岩系Os同位素地球化学特征及其地质意义. 地球科学, 37(3): 451-462. doi: 10.3799/dqkx.2012.052
    引用本文: 王浩, 凌文黎, 段瑞春, 杨红梅, 陈子万, 秦雅东, 2012. 扬子克拉通峡东地区新元古代-寒武纪黑色岩系Os同位素地球化学特征及其地质意义. 地球科学, 37(3): 451-462. doi: 10.3799/dqkx.2012.052
    WANG Hao, LING Wen-li, DUAN Rui-chun, YANG Hong-mei, CHEN Zi-wan, QIN Ya-dong, 2012. Os Isotopic Geochemistry of Neoproterozoic-Cambrian Black Shales in Eastern Three Gorges of Yangtze Craton and Its Geological Significance. Earth Science, 37(3): 451-462. doi: 10.3799/dqkx.2012.052
    Citation: WANG Hao, LING Wen-li, DUAN Rui-chun, YANG Hong-mei, CHEN Zi-wan, QIN Ya-dong, 2012. Os Isotopic Geochemistry of Neoproterozoic-Cambrian Black Shales in Eastern Three Gorges of Yangtze Craton and Its Geological Significance. Earth Science, 37(3): 451-462. doi: 10.3799/dqkx.2012.052

    扬子克拉通峡东地区新元古代-寒武纪黑色岩系Os同位素地球化学特征及其地质意义

    doi: 10.3799/dqkx.2012.052
    基金项目: 

    国土资源部公益性行业科研专项 200911043-19

    国家自然科学基金项目 40673025

    国家自然科学基金项目 40873017

    教育部长江三峡库区地质灾害研究中心研究项目 TGRC201027

    详细信息
      作者简介:

      王浩(1986-), 男, 博士研究生, 地球化学专业.E-mail: wanghaocug014051@163.com

      通讯作者:

      凌文黎, E-mail: wlling@cug.edu.cn

    • 中图分类号: P595

    Os Isotopic Geochemistry of Neoproterozoic-Cambrian Black Shales in Eastern Three Gorges of Yangtze Craton and Its Geological Significance

    • 摘要: 报道了扬子克拉通峡东地区新元古代至寒武纪含碳黑色泥质岩的Re-Os同位素和微量元素地球化学组成特征, 并对地层沉积环境的演化性质及其地质意义进行了讨论.研究表明: (1)峡东地区新元古代晚期-寒武纪早期细粒碎屑沉积岩Os同位素初始比值呈规律变化, 且具高Os同位素初始比值的层位与前人研究中发现的C同位素负漂移地层相对应; (2)南沱组冰碛岩具高放射成因Os同位素组成特征, 而其上覆盖帽碳酸盐岩为低放射成因Os同位素比值, 向上地层Os同位素初始比值表现为局部波动、总体增高的演化趋势; (3)微量元素U/Th比值与δU值指示莲沱组砂岩与南沱组冰碛岩具氧化环境的特征, 而陡山沱组、灯影组以及水井沱组底部黑色泥质岩则形成于相对还原环境; (4)Y/Ho比值和δCe值的负相关性特征指示部分地层沉积过程中有海底热液物质参与, 应为导致剖面上部分层位出现低放射性成因Os同位素组成的重要原因之一.高Os同位素比值和深海的脉冲式演化以及古生物群的产出之间很好的对应关系为探讨大陆风化与大气和海洋中氧气含量增加的联系提供了新的地球化学证据.南沱组冰碛岩Os同位素以及微量元素特征暗示其并非形成于完全冰封的地球表面环境, 而是存在较强的大陆岩石风化作用.

       

    • 图  1  峡东地区新元古代-寒武纪地层区域分布简图及剖面位置(据张永清等,2008)

      Fig.  1.  Geological sketch map of the eastern Three Gorges showing sampling profile location

      图  2  研究区新元古代-寒武纪地层采样位置示意(据Zhu, 2004)

      Fig.  2.  Stratigraphic column of the Neoproterozoic-Cambrian strata for the eastern Three Gorges and sampling positions

      图  3  Os同位素标样DTM的187Os/188Os比值测定结果

      Fig.  3.  Measured 187Os/188Os ratios for DTM standard

      图  4  秭归泗溪剖面新元古代晚期-寒武纪早期黑色岩系Re-Os含量关系

      Fig.  4.  Re-Os correlation plot for late Neoproterozoic-early Cambrian black shales from the eastern Three Gorges

      图  5  峡东地区新元古代-寒武纪剖面Os-C-Sr同位素初始比值变化示意

      C同位素数据来自Condon et al., 2005;Sr同位素数据来自Yang et al., 1999

      Fig.  5.  Variation trends of Os, C and Sr isotopes for the Neoproterozoic-Cambrian strata in the eastern Three Gorges

      图  6  峡东地区新元古代晚期-寒武纪早期细碎屑沉积岩氧化还原环境δU-U/Th判别

      Fig.  6.  U/Th-δU plot for the late Neoproterozoic-early Cambrian fine-grained sedimentary rocks from the eastern Three Gorges

      图  7  峡东地区新元代晚期-寒武纪早期细碎屑沉积岩Y/Ho-δCe(a)和δEu-δCe(b)关系

      Fig.  7.  Plots of δCe versus Y/Ho (a) and δEu (b) for the late Neoproterozoic-early Cambrian black shales from the eastern Three Gorges

      表  1  实验室标样XG26与ZG08-13的187Os/188Os比值分析结果及其与文献值对比

      Table  1.   187Os/188Os ratios of the in-house standard XG26 and sample ZG08-13 and comparison with literature

      序号 样号 岩性 187Os/188Os比值 文献来源
      1 XG26 橄榄岩 0.115 82±19 Yuan et al., 2007
      2 XG26 橄榄岩 0.114 84±27 同上
      3 XG26 橄榄岩 0.115 93±36 本文
      4 XG26 橄榄岩 0.115 89±8 本文
      5 XG26 橄榄岩 0.114 66±12 本文
      6 ZG08-13 碳质页岩 2.606 8±3 本文(CrO3-H2SO4溶液溶样)
      7 ZG08-13 碳质页岩 2.606 1±12 本文(反王水溶液溶样)
      下载: 导出CSV

      表  2  峡东泗溪剖面新元古代-寒武纪黑色岩系Re-Os同位素分析数据

      Table  2.   Re-Os isotopic compositions of the Neoproterozoic-Cambrian black shales from the Sixi profiles of the eastern Three Gorges

      样号 ZG08-9-2 ZG08-12 ZG08-13 ZG08-14-1 ZG08-14-2 ZG08-14-3 ZG08-14-4 ZG08-23-1 ZG08-23-2 ZG08-23-3 ZG08-24 ZG08-25 ZG08-29
      地层单元 水井沱组 灯影组 灯影组 陡山沱组 陡山沱组 陡山沱组 陡山沱组 陡山沱组 陡山沱组 陡山沱组 陡山沱组 南沱组 莲沱组
      岩性 黑色页岩 泥质灰岩 碳质页岩 黑色页岩 黑色页岩 沥青 黑色页岩 黑色页岩 黑色页岩 黑色页岩 泥质灰岩 冰碛岩 粉砂质泥质岩
      187Re/188Os 39.5 125.0 186.2 96.6 245.6 240.9 188.1 197.0 215.1 157.1 63.2 43.9 47.8
      187Os/188Os 1.155 0 1.822 8 2.606 1 1.705 0 3.066 0 3.441 5 2.360 5 2.860 4 2.695 4 2.032 6 1.065 2 1.233 5 0.885 3
      m 0.000 6 0.003 3 0.001 2 0.001 2 0.007 0 0.001 4 0.009 0 0.008 7 0.002 4 0.002 1 0.003 4 0.004 0 0.000 9
      Re/Os 7.23 21.24 29.19 16.62 36.84 34.90 30.23 30.14 33.44 26.10 11.69 7.96 9.02
      Re含量(ng/g) 2.49 0.43 21.03 7.90 5.07 12.46 2.57 5.34 6.77 7.29 0.28 0.09 0.10
      Os含量(ng/g) 0.344 0.020 0.721 0.475 0.137 0.357 0.085 0.177 0.202 0.279 0.024 0.011 0.011
      TMA(Ga) 1.56 0.81 0.80 0.98 0.72 0.82 0.71 0.83 0.71 0.73 0.89 1.51 0.95
      IOs 0.80 0.69 0.89 0.81 0.80 1.22 0.63 0.88 0.53 0.45 0.39 0.77 0.31
      注:①187Re/188Os比值据样品187Os/188Os比值及Re和Os含量计算获得;②187Os/188Os误差2σm为测量误差;③Re/Os为样品的Re、Os含量比;④TMA=1/λ*ln[((187Os/188Os)sample-(187Os/188Os)chond)/((187Re/188Os)sample-(187Re/188Os)chond)],(187Re/188Os)chond=0.401 86,(187Os/188Os)chond=0.127(Walker and Morgan, 1989);⑤IOs为样品的Os同位素初始比值,其计算公式为187Os/188Os-187Re/188Os×(eλt-1),λ=1.666×10-11a-1(Smoliar et al., 1996);莲沱组样品t取值为724 Ma(高维和张传恒,2009),南沱组样品t取值为635 Ma(Condon et al., 2005),陡山沱组样品t取值为635~551 Ma(Condon et al., 2005),灯影组上部样品t取值为542 Ma,下部样品t取值为551 Ma(Condon et al., 2005),寒武纪水井沱组样品t取值为535 Ma(Jiang et al., 2007).
      下载: 导出CSV

      表  3  峡东泗溪剖面新元古代-寒武纪黑色岩系微量元素组成(μg/g)

      Table  3.   Trace element compositions of the Neoproterozoic-Cambrian black shales from the Sixi profile of the eastern Three Gorges

      样号 ZG08-8 ZG08-9-2 ZG08-12 ZG08-13 ZG08-14-1 ZG08-14-2 ZG08-14-3 ZG08-14-4
      层位 水井沱组 水井沱组 灯影组 灯影组 陡山沱组 陡山沱组 陡山沱组 陡山沱组
      岩性 黑色页岩 黑色页岩 泥质灰岩 碳质页岩 黑色页岩 黑色页岩 沥青 黑色页岩
      Ni 85.4 31.9 3.06 5.76 50.6 16.3 42.9 23.0
      Y 30.9 51.5 1.49 11.1 44.0 33.0 76.7 14.3
      La 19.4 49.9 1.22 9.36 48.2 33.7 95.9 12.7
      Ce 25.3 53.2 1.02 11.2 65.6 31.9 99.5 21.2
      Pr 3.72 10.6 0.26 1.85 16.9 8.63 25.9 3.51
      Nd 14.8 43.6 1.06 6.94 77.1 38.3 115 14.3
      Sm 2.90 8.18 0.20 1.19 13.9 6.71 19.4 2.97
      Eu 0.64 1.63 0.057 0.24 2.02 1.40 3.63 0.65
      Gd 3.04 7.79 0.21 1.05 10.7 6.02 15.7 2.78
      Tb 0.46 1.12 0.036 0.18 1.35 0.84 2.08 0.42
      Dy 2.95 6.40 0.20 1.45 7.26 4.48 11.3 2.45
      Ho 0.72 1.35 0.043 0.38 1.39 0.91 2.25 0.50
      Er 2.09 3.59 0.10 1.34 3.67 2.35 5.79 1.34
      Tm 0.29 0.51 0.014 0.22 0.47 0.30 0.74 0.16
      Yb 1.82 2.68 0.076 1.63 2.80 1.51 4.20 1.07
      Lu 0.27 0.41 0.010 0.26 0.43 0.21 0.58 0.16
      Hf 1.57 3.03 0.032 1.44 2.67 1.22 2.52 1.48
      Ta 0.29 0.82 0.016 0.32 0.55 0.22 0.51 0.31
      Pb 7.34 10.9 0.65 3.01 18.8 4.98 16.9 6.37
      Th 3.65 8.33 0.075 2.50 7.54 2.39 7.24 2.47
      U 35.5 5.87 1.73 4.52 10.1 1.85 7.32 1.00
      Y/Ho 43.1 38.1 34.3 29.1 31.5 36.3 34.1 28.7
      U/Th 9.72 0.71 23.0 1.81 1.35 0.77 1.01 0.41
      δU 34.3 3.10 1.70 3.68 7.63 1.05 4.90 0.18
      ∑REE 78.4 191 4.50 37.3 252 137 402 64.2
      (La/Yb)N 7.54 13.2 11.3 4.06 12.2 15.8 16.1 8.44
      δCe 0.70 0.56 0.43 0.64 0.58 0.46 0.50 0.79
      δEu 0.63 0.59 0.81 0.62 0.47 0.64 0.59 0.66
      样号 ZG08-15 ZG08-23-1 ZG08-23-2 ZG08-23-3 ZG08-24 ZG08-25 ZG08-26 ZG08-29
      层位 陡山沱组 陡山沱组 陡山沱组 陡山沱组 陡山沱组 南沱组 莲沱组 莲沱组
      岩性 黑色页岩 黑色页岩 黑色页岩 黑色页岩 泥质灰岩 冰碛岩 长石石英砂岩 粉砂质泥岩
      Ni 36.3 39.9 40.5 44.3 3.08 21.4 1.73 13.4
      Y 25.2 20.8 22.3 28.5 1.90 29.7 16.2 46.8
      La 18.1 17.9 17.3 19.3 1.30 28.4 35.2 46.6
      Ce 27.5 28.1 27.2 28.9 1.13 56.2 57.9 91.4
      Pr 4.61 4.22 4.44 4.81 0.27 7.16 6.17 12.0
      Nd 19.3 17.1 18.5 20.6 1.25 27.5 21.9 47.5
      Sm 4.01 3.53 3.84 4.22 0.27 5.87 3.38 9.61
      Eu 0.97 0.89 0.95 1.07 0.055 1.14 0.81 2.49
      Gd 4.19 3.49 3.77 4.42 0.27 5.46 3.01 9.31
      Tb 0.63 0.55 0.56 0.67 0.038 0.89 0.44 1.42
      Dy 3.66 3.25 3.27 3.94 0.22 5.45 2.57 8.44
      Ho 0.77 0.67 0.70 0.81 0.045 1.13 0.53 1.68
      Er 2.04 1.83 1.89 2.23 0.13 3.20 1.50 4.61
      Tm 0.29 0.26 0.26 0.30 0.017 0.49 0.24 0.68
      Yb 1.60 1.62 1.58 1.74 0.10 3.16 1.59 4.46
      Lu 0.24 0.23 0.22 0.25 0.013 0.47 0.25 0.67
      Hf 2.03 2.04 1.92 1.42 0.033 4.93 2.93 7.37
      Ta 0.41 0.41 0.40 0.34 0.014 0.73 0.35 0.69
      Pb 6.73 6.65 5.92 4.88 0.52 11.1 12.8 15.0
      Th 3.13 2.92 2.94 2.54 0.096 8.83 4.04 7.73
      U 2.82 2.08 2.30 3.44 1.98 1.46 0.67 1.45
      Y/Ho 33.0 31.2 32.0 35.1 42.0 26.3 30.6 27.9
      U/Th 0.90 0.71 0.78 1.35 21.0 0.17 0.17 0.19
      δU 1.77 1.10 1.32 2.59 1.95 -1.49 -0.68 -1.13
      ∑REE 87.9 83.7 84.4 93.3 5.11 146 136 241
      (La/Yb)N 8.02 7.85 7.75 7.82 9.20 6.36 15.7 7.41
      δCe 0.74 0.79 0.77 0.74 0.46 0.97 0.91 0.95
      δEu 0.69 0.74 0.73 0.72 0.58 0.58 0.73 0.77
      注:①δU=U-Th/3;②∑REE表示为稀土元素总含量;③下标N代表球粒陨石标准化(Sun and McDonough, 1989);④δCe=2×CeN/(LaN+PrN);⑤δEu=2×EuN/(SmN+GdN).
      下载: 导出CSV
    • [1] Allen, P.A., Etienne, J.L., 2008. Sedimentary challenge to snowball earth. Nature Geoscience, 1(12): 817-825. doi: 10.1038/ngeo355
      [2] Anbar, A.D., Knoll, A.H., 2002. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science, 297(5584): 1137-1142. doi: 10.1126/science.1069651
      [3] Bao, H.M., Lyons, J.R., Zhou, C.M., 2008. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature, 453(7194): 504-506. doi: 10.1038/nature06959
      [4] Bau, M., 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. doi: 10.1007/s004100050159
      [5] Campbell, I.H., Allen, C.M., 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1(8): 554-558. doi: 10.1038/ngeo259
      [6] Cohen, A.S., 2004. The rhenium-osmium isotope system: applications to geochronological and palaeoenvironmental problems. Journal of the Geological Society, London, 161(4): 729-734. doi: 10.1144/0016-764903-084
      [7] Cohen, A.S., Coe, A.L., Bartlett, J.M., et al., 1999. Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater. Earth and Planetary Science Letters, 167(3-4): 159-173. doi: 10.1016/S0012-821X(99)00026-6
      [8] Condon, D., Zhu, M.Y., Bowring, S., et al., 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95-98. doi: 10.1126/science.1107765
      [9] Dobrzinski, N., Bahlburg, H., Strauss, H., 2003. Geochemistry of Sinian tillites from Hunan Province, South China—a test of the snowball earth hypothesis. Progress in Natural Science, 13(11): 867-874. doi: 10.1080/10020070312331344570
      [10] Esser, B.K., Turekian, K.K., 1993. The osmium isotopic composition of the continental crust. Geochimica et Cosmochimica Acta, 57(13): 3093-3104. doi: 10.1016/0016-7037(93)90296-9
      [11] Fike, D.A., Grotzinger, J.P., Pratt, L.M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444(7120): 744-747. doi: 10.1038/nature05345
      [12] Gao, W., Zhang, C.H., 2009. Zircon SHRIMP U-Pb ages of the Huangling granite and the tuff beds from Liantuo Formation in the Three Gorges area of Yangtze River, China and its geological significance. Geological Bulletin of China, 28(1): 45-50 (in Chinese with English abstract).
      [13] Hoffman, P.F., 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 252(5011): 1409-1412. doi: 10.1126/science.252.5011.1409
      [14] Hoffman, P.F., Kaufman, A.J., Halverson, G.P., et al., 1998. A Neoproterozoic snowball earth. Science, 281(5381): 1342-1346. doi: 10.1126/science.281.5381.1342
      [15] Jiang, G.Q., Kennedy, M.J., Christie-Blick, N., 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426(6968): 822-826. doi: 10.1038/nature02201
      [16] Jiang, S.Y., Chen, Y.Q., Ling, H.F., et al., 2006. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in lower Cambrian strata, Yangtze Platform, South China. Mineralium Deposita, 41(5): 453-467. doi: 10.1007/s00126-006-0066-6
      [17] Jiang, S.Y., Yang, J.H., Ling, H.F., et al., 2007. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in lower Cambrian black shales of South China: an Os isotope and PGE geochemical investigation. Palaeogeography, Palaeoclimatology Palaeoecology, 254(1-2): 217-228. doi: 10.1016/j.palaeo.2007.03.024
      [18] Kendall, B., Creaser, R.A., Selby, D., 2006. Re-Os geochronology of postglacial black shales in Australia: constraints on the timing of "Sturtian" glaciation. Geology, 34(9): 729-732. doi: 10.1130/G22775.1
      [19] Knoll, A.H., Walter, M.R., Narbonne, G.M., et al., 2006. The Ediacaran Period: a new addition to the geologic time scale. Lethaia, 39(1): 13-30. doi: 10.1080/00241160500409223
      [20] Koeberl, C., Farley, K.A., Peucker-Ehrenbrink, B., et al., 2004. Geochemistry of the end-Permian extinction event in Austria and Italy: no evidence for an extraterrestrial component. Geology, 32(12): 1053-1056. doi: 10.1130/G20907.1
      [21] Konhauser, K.O., Pecoits, E., Lalonde, S.V., et al., 2009. Oceanic nickel depletion and a methanogen famine before the great oxidation event. Nature, 458(7239): 750-753. doi: 10.1038/nature07858
      [22] Li, M.J., Wang, T.G., 2007. Molecular geochemical evidence for the paleoenvironment of the Late Neoproterozoic "snowball earth" age in the Yangtze region. Acta Geologica Sinica, 81(2): 220-229 (in Chinese with English abstract). http://www.researchgate.net/publication/281700069_Molecular_geochemical_evidence_for_the_paleoenvironment_of_the_Late_Neoproterozoic_Snowball_Earth_age_in_the_Yangtze_Region
      [23] Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85-109. doi: 10.1016/S0301-9268(02)00208-5
      [24] Ling, H.F., Feng, H.Z., Pan, J.Y., et al., 2007. Carbon isotope variation through the neoproterozoic Doushantuo and Dengying formations, South China: implications for chemostratigraphy and paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 158-174. doi: 10.1016/j.palaeo.2007.03.023
      [25] Ling, W.L., Gao, S., Zhang, B.R., et al., 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break-up of the Rodinia supercontinent. Precambrian Research, 122(1-4): 111-140. doi: 10.1016/S0301-9268(02)00222-X
      [26] Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008. Geochemistry and magmatic history of eclogues and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2007.10.016
      [27] McFadden, K.A., Huang, J., Chu, X.L., et al., 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 105(9): 3197-3202. doi: 10.1073/pnas.0708336105
      [28] McFadden, K.A., Xiao, S.H., Zhou, C.M., et al., 2009. Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China. Precambrian Research, 173(1-4): 170-190. doi: 10.1016/j.precamres.2009.03.009
      [29] Oxburgh, R., 1998. Variations in the osmium isotope composition of sea water over the last 200 000 years. Earth and Planetary Science Letters, 159(3-4): 183-191. doi: 10.1016/S0012-821X(98)00057-0
      [30] Palmer, M.R., Edmond, J.M., 1989. The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters, 92(1): 11-26. doi: 10.1016/0012-821X(89)90017-4
      [31] Pattan, J.N., Pearce, N.J.G., Mislankar, P.G., 2005. Constraints in using cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: a case study from the Central Indian Ocean basin. Chemical Geology, 221(3-4): 260-278. doi: 10.1016/j.chemgeo.2005.06.009
      [32] Selby, D., Creaser, R.A., 2003. Re-Os geochronology of organic rich sediments: an evaluation of organic matter analysis methods. Chemical Geology, 200(3-4): 225-240. doi: 10.1016/S0009-2541(03)00199-2
      [33] Selby, D., Creaser, R.A., 2005. Direct radiometric dating of the Devonian-Mississippian time-scale boundary using the Re-Os black shale geochronometer. Geology, 33(7): 545-548. doi: 10.1130/G21324.1
      [34] Sharma, M., Papanastassiou, D.A., Wasserburg, G.J., 1997. The concentration and isotopic composition of osmium in the oceans. Geochimica et Cosmochimica Acta, 61(16): 3287-3299. doi: 10.1016/S0009-2541(03)00199-2
      [35] Shen, Y., Schidlowski, M., 2000. New C isotope stratigraphy from Southwest China: Implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations. Geology, 28(7): 623-626. doi: 10.1130/0091-7613(2000)28<623:NCISFS>2.0.CO;2
      [36] Shirey, S.B., Walker, R.J., 1995. Carius tube digestion for low-blank rhenium-osmium analysis. Analytical Chemistry, 67(13): 2136-2141. doi: 10.1021/ac00109a036
      [37] Singh, S.K., Trivedi, J.R., Krishnaswam, S., 1999. Re-Os isotope systematics in black shales from the Lesser Himalaya: their chronology and role in the 187Os/188Os evolution of seawater. Geochimica et Cosmochimica Acta, 63(16): 2381-2392. doi: 10.1016/S0016-7037(99)00201-X
      [38] Smoliar, M.I., Walker, R.J., Morgan, J.W., 1996. Re-Os isotope ages of Group IIA, IIIA, IVA, and IVB iron meteorites. Science, 271(5252): 1099-1102. doi: 10.1126/science.271.5252.1099
      [39] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Sanders, A.D., Norry, M.J., ed., Magmatism in the ocean basins. Geological Society Special Publications, London, 313-345.
      [40] Sun, W.D., Bennett, V.C., Eggins, S.M., et al., 2003. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas. Nature, 422(6929): 294-297. doi: 10.1038/nature01482
      [41] Turgeon, S.C., Creaser, R.A., 2008. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature, 454(7202): 323-329. doi: 10.1038/nature07076
      [42] Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161(1-3): 59-88. doi: 10.1016/S0009-2541(99)00081-9
      [43] Walker, R.J., Morgan, J.W., 1989. Rhenium-osmium isotope systematics of carbonaceous chondrites. Science, 243(4890): 519-522. doi: 10.1126/science.243.4890.519
      [44] Wilde, P., Quinby-Hunt, M., Erdtmann, B., 1996. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sedimentary Geology, 101(1-2): 43-53. doi: 10.1016/S0009-2541(99)00081-9
      [45] Xie, S.W., Gao, S., Liu, X.M., et al., 2009. U-Pb ages and Hf isotopes of detrital zircons of Nanhua sedimentary rocks from the Yangtze Gorges: implications for genesis of Neoproterozoic magmatism in South China. Earth Science—Journal of China University of Geosciences, 34(1): 117-126 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.011
      [46] Yang, H.M., 2009. An improved analytical method of Re-Os isotopes for the basic to intermediate basic igneous rocks and its application to the study of the Mesozoic lithospheric thinning in Shandong Province (Dissertation). China University of Geosciences, Wuhan, 27-56 (in Chinese).
      [47] Yang, J.D., Sun, W.G., Wang, Z.Z., et al., 1999. Variations in Sr and C isotopes and Ce anomalies in successions from China: evidence for the oxygenation of Proterozoic seawater. Precambrian Research, 93(2-3): 215-233. doi: 10.1016/S0301-9268(98)00092-8
      [48] Yang, J.H., Jiang, S.Y., Ling, H.F., et al., 2005. Re-Os isotope tracing and dating of black shales and oceanic anoxic events. Earth Science Frontiers, 12(2): 143-150(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DXQY20050200J&dbcode=CJFD&year=2005&dflag=pdfdown
      [49] Ye, J., Fan, D.L., 2000. Characteristics and mineralization of ore deposits related to black shale series. Bulletin of Mineralogy, Petrology and Geochemistry, 19(2): 95-102(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200002003.htm
      [50] Yin, L.M., Zhu, M.Y., Knoll, A.H., et al., 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446(7136): 661-663. doi: 10.1038/Nature05682
      [51] Yuan, H.L., Gao, S., Rudnick, R.L., et al., 2007. Re-Os evidence for the age and origin of peridotites from the Dabie-Sulu ultrahigh pressure metamorphic belt, China. Chemical Geology, 236(3-4): 323-338. doi: 10.1016/j.chemgeo.2006.10.009
      [52] Zhang, Q.R., Chu, X.L., Bahlburg, H., et al., 2003. Stratigraphic architecture of the Neoproterzoic glacial rocks in the"Xiang-Qian-Gui"region of the central Yangtze block, South China. Progress in Natural Science, 13(10): 783-787. doi: 10.1080/10020070312331344430
      [53] Zhang, Y.Q., Ling, W.L., Li, F.L., 2008. Elemental and Sr-Nd isotopic mobility during weathering process of the Nanhua-Cambrian sedimentary strata in the eastern Three Gorges and its geochemical implication. Earth Science—Journal of China University of Geosciences, 33(3): 301-312(in Chinese with English abstract). doi: 10.3799/dqkx.2008.040
      [54] Zheng, Y.F., Fu, B., Gong, B., et al., 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth-Science Reviews, 62(1-2): 105-161. doi: 10.1016/S0012-8252(02)00133-2
      [55] Zhu, M.Y., 2004. Biological and geological processes of the cambrian explosion: evidence from the Yangtze platform of South China introduction. Progress in Natural Science, V-X.
      [56] 高维, 张传恒, 2009. 长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义. 地质通报, 28(1): 45-50. doi: 10.3969/j.issn.1671-2552.2009.01.006
      [57] 李美俊, 王铁冠, 2007. 扬子区新元古代"雪球"时期古环境的分子地球化学证据. 地质学报, 81(2): 220-229. doi: 10.3321/j.issn:0001-5717.2007.02.011
      [58] 谢士稳, 高山, 柳小明, 等, 2009. 扬子克拉通南华纪碎屑锆石U-Pb年龄、Hf同位素对华南新元古代岩浆事件的指示. 地球科学——中国地质大学学报, 34(1): 117-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901012.htm
      [59] 杨红梅, 2009. 基性-中基性岩浆岩Re-Os同位素分析测试技术及其在山东中生代岩石圈减薄事件研究中的应用(博士学位论文). 武汉: 中国地质大学, 27-56.
      [60] 杨兢红, 蒋少涌, 凌洪飞, 等, 2005. 黑色页岩与大洋缺洋事件的Re-Os同位素示踪与定年研究. 地学前缘, 12(2): 143-150. doi: 10.3321/j.issn:1005-2321.2005.02.016
      [61] 叶杰, 范德廉, 2000. 黑色岩系型矿床的形成作用及其在我国的产出特征. 矿物岩石地球化学通报, 19(2): 95-102. doi: 10.3969/j.issn.1007-2802.2000.02.004
      [62] 张永清, 凌文黎, 李方林, 2008. 峡东地区南华纪-寒武纪地层风化过程元素及Sr-Nd同位素演化特征及其地球化学意义. 地球科学——中国地质大学学报, 33(3): 301-312. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200803003.htm
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  236
    • HTML全文浏览量:  95
    • PDF下载量:  10
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-04-10
    • 网络出版日期:  2021-11-09
    • 刊出日期:  2012-05-01

    目录

      /

      返回文章
      返回