Effect of High Salinity on CO2 Geological Storage: A Case Study of Qianjiang Depression in Jianghan Basin
-
摘要: 江汉盆地潜江凹陷卤水资源十分丰富,潜江组泥膏岩、泥岩和砂岩交替沉积,构成CO2地质储存的潜在场所.但是潜江组卤水层矿化度非常高,平均值高达283.25 g/L.以高盐度卤水为对象,探讨了高盐度卤水对CO2封存过程中产生的物理化学影响.结果表明,往高盐度卤水层中单纯地注入CO2会造成CO2溶解量和矿物捕集量的显著降低,不利于CO2的储存安全.高盐度会造成注入井附近发生盐岩大量沉淀,不利于CO2的持续注入,同时造成近井周围压力严重积累,降低了封闭安全系数.采用CO2与卤水联合注采模式,可有效缓解CO2单纯地注入过程中的压力严重积累和盐岩沉淀问题,实现资源和地下空间最大化利用,收获经济和环保的双重效益.Abstract: The brine resource in the Qianjiang depression in Jianghan basin is rich in the brine resource because alternating deposits of gypsum mudstone, mudstone as well as sandstone of Qianjiang Formation form the potential sites for CO2 geological storage. However, the salinity in Qianjiang Formation is very high with the average value up to 283.25 g/L. The purpose of this study is to investigate the physical and chemical responses under the condition of high salinity. The results show that the CO2 dissolved in brine and sequestered in minerals decline significantly as a result of directly injecting CO2 into the brine with high salinity, which may affect the storage safety. Moreover, high salinity will lead to serious salt precipitation around the injection well which may reduce the injectivity. High salinity can also cause the high pressure build up around the injection well. The method of CO2 injection combined with brine production can effectively mitigate the severe pressure build up and salt precipitation. In this way, we can maximize the utilization of brine resource and the underground space and achieve both the econimic benifits and the environmental benefits.
-
Key words:
- CO2 geological storage /
- brine /
- high salinity /
- CO2 injection with brine production /
- pollution control /
- hydrogeology
-
图 1 潜江凹陷蚌湖向斜带王83井膏岩层与地层压力、孔隙度、温度随深度分布(据贾颖等(2011)修改)
Fig. 1. Distribution with depth of gypsum bed and formation pressure, porosity, temperture of the well Wang 83 of the Banghu synclines of Qianjiang depression, Jianghan basin
图 2 CO2在卤水与纯水中溶解度比值随盐度变化(据Enick and Klara(1990)修改)
Fig. 2. CO2 solubility relative to pure water varies with salinity
表 1 江汉盆地潜江凹陷潜江组沉积地层及卤水层组划分(据于升松(1994)、王庆胜(2011)修改)
Table 1. Sedimentary stratigraphy and brine formation division of Qianjiang depression, Jianghan basin
表 2 潜北地区深层地下卤水化学成分(mg/L)(据于升松,1994)
Table 2. Chemical composition of deep saline in Qianbei area
含量 Na Ca Mg K B Li Cl SO4 HCO3 CO3 Br I Rb 最大值 134 500 2 830 898 6 830 448 108 198 000 36 700 5 764 1 680 913 25 19.3 最小值 50 900 123 15 120 5 12 44 800 1 750 99 0 55 3.5 0.9 平均值 110 473 899.4 173.8 1 457.5 145.5 58.9 160 000 9 665.8 1 018.4 1 482 364.7 11.9 3.68 水样数 105 95 95 88 82 75 105 105 95 95 95 92 19 含量 Cs Sr Mn Fe Cu Ag Pb Cr Ni Zn Mo Ga NO2 NO3 NH4 最大值 10.1 63 1.2 1.8 1.2 0.006 0.06 0.012 0.12 1.2 0.02 1 100 最小值 0.1 14 0.06 1.2 0.006 0.002 0.006 0 0 0.6 0 194 平均值 1.22 34.3 0.64 1.5 0.23 0.003 6 0.038 0.006 0.036 0.84 0.003 0 0 30 734.5 水样数 19 4 6 2 6 5 6 5 4 5 6 4 1 1 5 -
[1] Alkan, H., Cinar, Y., Ulker, E., 2011. Impact of capillary pressure, salinity and in situ condition on CO2 injection into saline aqfuiers. Transport in Porous Media, 84(3): 799-819. doi: 10.1007/s11242-010-9541-8 [2] Bacci, G., Korre, A., Durucan, S., 2011a. Experimental investigation into salt precipitation during CO2 injection in saline aquifers. Energy Procedia, 4: 4450-4456. doi: 10.1016/j.egypro.2011.02.399 [3] Bacci, G., Korre, A., Durucan, S., 2011b. An experimental and numerical investigation into the impact of dissolution/precipitation mechanisms on CO2 injectivity in the wellbore and far field regions. International Journal of Greenhouse Gas Control, 5(3): 579-588, doi: 10.1016/j.ijggc.2011.05.007 [4] Bachu, S., 2002. Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion Management, 43(1): 87-102. doi: 10.1016/S0196-8904(01)00009-7 [5] Enick, R.M., Klara, S.M., 1990. CO2 solubility in water and brine under reservoir conditions. Chem. Eng. Comm., 90: 23-33. doi: 10.1080/00986449008940574 [6] Fang, Z.X., 2002. Hydrocarbon exploration signification of intersalt sediments in Qianjiang saline lake basin. Acta Sedimentologica Sinica, 20(4): 608-613 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200204011.htm [7] Giorgis, T., Carpita, M., Battistelli, A., 2007.2D modelling of salt precipitation during the injection of dry CO2 in a depleted gas reservoir. Energy Conversion and Management, 48(6): 1816-1826. doi:/ 10.1016/j.enconman.2007.01.012 [8] Holloway, S., 2005. Underground sequestration of carbon dioxide—a viable greenhouse gas migration option. Energy, 30(11-12): 2318-2333. doi: 10.1016/j.energy.2003.10.23 [9] Jia, Y., Li, P.J., Fu, X., et al., 2011. Characteristics of gypsolyte-salt rock and its influence on formation pressure of Qianjiang Formation in Qianjiang depression. Geological Science and Technology Information, 30(4): 50-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201104008.htm [10] Kim, K.Y., Han, W.S., Oh, J., et al., 2011. Characteristics of salt-precipitation and the assoicated pressure build-up during CO2 storage in saline aquifers. Transport in Porous Media, 84(2), online first. doi: 10.1007/s11242-011-9909-4 [11] Lu, M.G., Chen, F.L., Liu, J., 2007. Characteristics of the Jianghan salt lake. China Mining Magazine, 16(4): 102-104 (in Chinese with English abstract). http://www.researchgate.net/publication/313661363_Characteristics_of_the_Jianghan_salt_lake [12] Mert, M., Davidson, O., de Coninck H., et al., 2005. IPCC report on carbon dioxide capture and storage. Cambridge University Press, London. [13] Pooladi-Darvish, M., Moghdam, S., Xu, D., 2011. Multiwell injectivity for storage of CO2 in aquifers. Energy Procedia, 4: 4252-4259. doi: 10.1016/j.egypro.2011.02.374 [14] Wang, Y.X., Mao, X.M., DePaolo, D., 2011. Nanoscale fluid-rock interaction in CO2 geological storage. Earth Science—Journal of China University of Geosciences, 36(1): 163-171 (in Chinese with English abstract). doi: 10.3799/dqkx.2011.017 [15] Wang, Q.S., 2011. The reservoir evaluation and development technology of nonsandstone reservoirs between salt beds in Qianjiang depression (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [16] Yu, S.S., 1994. The hydrochemical characteristics of the deep brines in Jianghan basin, Hubei. Journal of Salt Lake Science, 2(1): 6-17 (in Chinese with English abstract). http://www.researchgate.net/publication/285511142_The_hydrochemical_characteristics_of_the_deep_brines_in_Jianghan_basin_Hubei [17] Yuan, D.X., 1997. Modern karstology and global change study. Earth Science Frontiers, 4(1-2): 17-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY7Z1.003.htm [18] Zhang, W., Li, Y.L., Omambia, A.N., 2010. Reactive transport modeling of effects of convective mixing on long-term CO2 geological storage in deep saline formations. International Journal of Greenhouse Gas Control, 5(2): 241-256. doi: 10.1016/j.ijggc.2010.10.007 [19] 方志雄, 2002. 潜江盐湖盆地盐间沉积的石油地质特征. 沉积学报, 20(4): 608-613. doi: 10.3969/j.issn.1000-0550.2002.04.012 [20] 贾颖, 李培军, 付鑫, 等, 2011. 潜江凹陷潜江组膏层特征及其对地层压力的影响. 地质科技情报, 30(4): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201104008.htm [21] 卢明国, 陈凤玲, 刘俊, 2007. 江汉盐湖盆地沉积特征. 中国矿业, 16(4): 102-104. doi: 10.3969/j.issn.1004-4051.2007.04.032 [22] 王庆胜, 2011. 潜江凹陷盐间非砂岩油藏评价与开发技术研究(学位论文). 北京: 中国地质大学. [23] 王焰新, 毛绪美, DePaolo, D., 2011. CO2地质储存的纳米尺度流体-岩石相互作用研究. 地球科学——中国地质大学学报, 36(1): 163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201101018.htm [24] 于升松, 1994. 湖北江汉盆地潜江凹陷深层地下卤水水文地球化学研究. 盐湖研究, 2(1): 6-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ401.001.htm [25] 袁道先, 1997. 现代岩溶学和全球变化研究. 地学前缘, 4(1-2): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY7Z1.003.htm