• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    盆地地下水流模式及其转化与控制因素

    梁杏 牛宏 张人权 刘彦 靳孟贵

    梁杏, 牛宏, 张人权, 刘彦, 靳孟贵, 2012. 盆地地下水流模式及其转化与控制因素. 地球科学, 37(2): 269-275. doi: 10.3799/dqkx.2012.028
    引用本文: 梁杏, 牛宏, 张人权, 刘彦, 靳孟贵, 2012. 盆地地下水流模式及其转化与控制因素. 地球科学, 37(2): 269-275. doi: 10.3799/dqkx.2012.028
    LIANG Xing, NIU Hong, ZHANG Ren-quan, LIU Yan, JIN Meng-gui, 2012. Basinal Groundwater Flow Patterns and Their Transformation and Dominant Factors. Earth Science, 37(2): 269-275. doi: 10.3799/dqkx.2012.028
    Citation: LIANG Xing, NIU Hong, ZHANG Ren-quan, LIU Yan, JIN Meng-gui, 2012. Basinal Groundwater Flow Patterns and Their Transformation and Dominant Factors. Earth Science, 37(2): 269-275. doi: 10.3799/dqkx.2012.028

    盆地地下水流模式及其转化与控制因素

    doi: 10.3799/dqkx.2012.028
    基金项目: 

    国家重点基础研究发展计划"973计划" 2010CB428802

    中国地质调查局计划项目专题 12120733908

    详细信息
      作者简介:

      梁杏(1958-), 女, 教授, 从事地下水流系统理论与工程水文地质方向的教学科研工作.E-mail: xliang@cug.edu.cn

    • 中图分类号: X141

    Basinal Groundwater Flow Patterns and Their Transformation and Dominant Factors

    • 摘要: Tóth(1963)在复杂盆地给定上边界水头条件下, 推演出多级次地下水流系统.运用此方法探讨水流模式, 改变盆地介质或盆地深度等条件, 盆地水均衡会同步发生变化; 同时, 给定上边界水头也固化了盆地的势源与势汇的位置与数目, 这与实际条件不相符合, 也限制了地下水流模式的转化研究.在总结实验条件下多级水流系统特征的基础上, 提出了通量上边界的地下水流系统模拟方法(简称CUG-GWFS方法), 并进行了水流系统数值模拟.结果表明: (1)在多个可能势汇的盆地中, 可以发育5种地下水流模式, 即: 简单区域水流系统(RS)、局部+区域两级嵌套水流系统(LS+RS)、局部+中间+区域三级嵌套水流系统(LS+MS+RS)、局部+中间两级嵌套水流系统(LS+MS)和简单局部水流系统(LS).(2)盆地地下水流模式受盆地入渗强度、介质条件、盆地长度与深度比值, 以及盆地可能势汇的多少与位置的影响.(3)保持其他条件不变, 单独加大盆地入渗强度比Ric, 或加大盆地长深比Rld, 盆地水流模式按照上述5种模式呈现有序转化.

       

    • 图  1  小型潜水盆地二维剖面数学模型图示(Tóth, 1963)

      Fig.  1.  Idealized cross-section of a drainage basin's valley flank of the sinusoidal water table

      图  2  均质各向同性潜水盆地地下水流系统(Tóth, 1963;理论地形势垂向放大)

      图中1、3、5、7、9代表地形势源区;2、4、6、8、10代表地形势汇区

      Fig.  2.  Theoretical flow pattern and boundaries between different flow systems

      图  3  A类模型概化及势汇分布

      Fig.  3.  Model generalization, discretization and distribution of potential sinks for Model A

      图  4  一组改变入渗强度ε的盆地地下水流模式

      a.ε=0.05 mm/d;b.ε=0.2 mm/d;c.ε=0.5 mm/d;d.ε=1 mm/d;e.ε=1.25 mm/d

      Fig.  4.  Groundwater flow patterns for different infiltration intensities

      图  5  一组改变入盆地深度d的盆地地下水流模式

      a.等水头线取水头差0.2,且垂向比例显示减小了一倍;b~e为等水头线取水头差0.5;a.Rld=1;b.Rld=4;c.Rld=10;d.Rld=20;e.Rld=25

      Fig.  5.  Groundwater flow patterns under different basin depths

      表  1  不同入渗强度比Ric的地下水流模拟结果

      Table  1.   Simulated results for different ratios of infiltration intensity to hydraulic conductivity

      A类Ⅰ组 A类Ⅱ组 Ric(10-3) 地下水流模式
      渗透系数K(m/d) 入渗强度ε(mm/d) 渗透系数K(m/d) 入渗强度ε(mm/d)
      AⅠ-a 0.1 0.05 AⅡ-a 1.00 0.5 0.5 一级RS
      AⅠ-b 0.1 0.20 AⅡ-b 0.25 0.5 2.0 二级RS+LS
      AⅠ-c 0.1 0.50 AⅡ-c 0.10 0.5 5.0 三级RS+MS+LS
      AⅠ-d 0.1 1.00 AⅡ-d 0.05 0.5 10.0 二级MS+LS
      AⅠ-e 0.1 1.25 AⅡ-e 0.04 0.5 12.5 一级LS
      注:模拟的盆地长度与深度之比为10;Ric=ε/k
      下载: 导出CSV

      表  2  逐渐减小盆地深度的地下水流模拟结果

      Table  2.   Simulated results for different ratios of basin length to depth

      B类 长度l(m) 深度d(m) S1坐标(x, z) S2坐标(x, z) S3坐标(x, z) Rld 地下水流模式
      B-a 500 515 (0,500) (200,503) (400,506) 1 一级RS
      B-b 500 140 (0,125) (200,128) (400,131) 4 二级RS+LS
      B-c 500 65 (0,50) (200,53) (400,56) 10 三级RS+MS+LS
      B-d 500 40 (0,25) (200,28) (400,31) 20 二级MS+LS
      B-e 500 35 (0,20) (200,23) (400,26) 25 一级LS
      下载: 导出CSV

      表  3  入渗强度比Ric×长深比Rld相等时的水流模式

      Table  3.   Flow patterns for different Ric×Rld

      A类改变入渗强度比Ric B类改变长深比Rld 地下水流模式
      Rld Ric(10-3) Ric×Rld Ric(10-3) Rld Ric×Rld
      10 0.5 5 5 1 5 一级RS
      10 2.0 20 5 4 20 二级RS+LS
      10 5.0 50 5 10 50 三级RS+MS+LS
      10 10.0 100 5 20 100 二级MS+LS
      10 12.5 125 5 25 125 一级LS
      下载: 导出CSV
    • [1] Engelen, G.B., Jones, G.P., 1986. Developments in the analysis of groundwater flow sytems, No. 163. IAHS Publication, Wallingford.
      [2] Engelen, G.B., Kloosterman, F.H., 1996. Hydrological systems analysis: methods and applications. Kluwer Academic Publisher, Dordrecht.
      [3] Eótvós Loránd University. (ed. ), 2008. From the artesian paradigm to basin hydraulics—the contribution of József Tóth to hungarian hydrogeology. Publishing Company of Budapest University of Technology and Economics, Budapest.
      [4] Freeze, R.A., Witherspoon, P.A., 1966. Theoretical analysis of regional groundwater flow: 1. analytical and numerical solutions to the mathematical model. Water Resource. Res., 2(4): 641-656. doi: 10.1029/WR002i004p00641
      [5] Freeze, R.A., Witherspoon, P.A., 1967. Theoretical analysis of regional groundwater flow: 2. effect of water-table configuration and subsurface permeability variations. Water Resource. Res., 3(2): 623-634. doi: 10.1029/WR003i002p00623
      [6] Freeze, R.A., Witherspoon, P.A., 1968. Theoretical analysis of regional groundwater flow: 3. quantitative interpretation. Water Resource. Res., 4: 581-590. doi: 10.1029/WR004i003p00581
      [7] Jiang, X.W., Wan, L., Cardenas, M.B., et al., 2010. Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity. Geophysical Research Letters, 37(5): L05403, doi: 10.1029/2010GL042387
      [8] Jiang, X.W., Wan, L., Wang, X.S., et al., 2009. Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow. Geophysical Research Letters, 36(24): L24402. doi: 10.1029/2009GL041251
      [9] Liang, X. Liu, Y., Jin, M.G., et al., 2010. Direct observation of complex Tóthian groundwater flow systems in the laboratory. Hydrological Processes, 24: 3568-3573. doi: 10.1002/hyp.7758
      [10] Liang, X., Shen, Z.Z., Liu, Y., et al., 2008. A multi-level sub-groundwater flow system demonstrator, China. National utility model patent, 200820066726, 2009-01-14 (in Chinese).
      [11] Liu, Y., Jia, J., 2009. Study of groundwater flow system simulation of small drainage basin based on matlab. Groundwater, 31(3): 1-3 (in Chinese with English abstract).
      [12] Liu, Y., Liang, X., Dong, Q.J., et al., 2010. Experiment of groundwater flow patterns under changes of infiltration intensity. Earth Science Frontiers, 17(6): 111-116 (in Chinese with English abstract). http://www.ingentaconnect.com/content/el/18725791/2010/00000017/00000006/art00015
      [13] Tóth, J., 1963. Theoretical analysis of groundwater flow in small drainage basin. Journal of Geophysical Research, 67(11): 4375-4387. http://www.researchgate.net/publication/335339434_A_theoretical_analysis_of_groundwater_flow_in_small_drainage_basins
      [14] Tóth, J., 1980. Cross-formation gravity flow of groundwater: a mechanism of the transport and accumulation of petroleum (The generalized hydraulic theory of petroleum migration). In: Robert Ⅲ, W., H., Cordell, R., J., eds., Problems of petroleum migration. AAPG Studies in Geology, 10: 121-167.
      [15] Tóth, J., 1999. Groundwater as a geological agent: an overview of the cause, process, and manifestations. Hydrogeology Journal, 7(1): 1-14. doi: 10.1016/j.jcrs.2009.07.023
      [16] Tóth, J., 2009. Gravitational system of groundwater: theory, evaluation, utilization. Cambridge University Press, New York, 297.
      [17] Zijl, W., 1999. Scale aspects of groundwater flow and transport systems. Hydrogeology Journal, 7(1): 139-150. doi: 10.1007/s100400050185
      [18] 刘宇, 贾静, 2009. 基于Matlab小型潜水盆地地下水流动系统模拟研究. 地下水, 31(3): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU200903002.htm
      [19] 刘彦, 梁杏, 权董杰, 等, 2010. 改变入渗强度的地下水流模式实验. 地学前缘, 17(6): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006015.htm
      [20] 梁杏, 沈仲智, 刘宇, 等, 2008. 一种多级次地下水流系统演示仪. 中国国家实用新型专利, 200820066726, 2009-01-14.
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  3604
    • HTML全文浏览量:  228
    • PDF下载量:  96
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-09-20
    • 刊出日期:  2012-03-15

    目录

      /

      返回文章
      返回