Main Factors Controlling the Formation of Excellent Marine Source Rocks in Permian Maokou Formation of Northwest Sichuan, China
-
摘要: 中国南方茅口组地层为区域性烃源岩. 茅口组底部和顶部均发育硅质岩, 顶部地层残余有机碳高达10.90%, 其厚度16 m, 为优质烃源岩层, 而该组底部为差烃源岩.通过岩石学、碳同位素和微量元素分析, 表明华南川西北地区茅口期存在2期上升流, 分别发育于茅口组沉积早期和晚期; 上升流所带来的营养盐有利于生物的发育, 产生高的初级生产力.结合碳同位素资料, 发现茅口期古海洋生物产率呈现出高-低-高的变化过程, 而大气中CO2含量变化也呈现高-低-高的变化过程.虽然茅口期底部为高初级生产力层段, 但是由于该沉积及早期成岩阶段为常氧环境, 不利于沉积有机质保存, 形成了差烃源岩, 而茅口组顶部沉积时期存在大的海侵事件, 海平面的上升导致厌氧环境形成, 沉积有机质大量保存下来, 形成优质烃源岩层段.该套烃源岩形成与发育主控因素分析是中国南方海相优质烃源岩分布预测和油气成藏研究的基础.Abstract: The Permian Maokou Formation in southern China is taken as regional source rocks. Both the bottom and the top layers of Maokou Formation at the Shangsi section in Guangyuan, Northwest Sichuan developed siliceous rocks, however, only the top layer is taken as excellent source rocks with a thickness of 16 m and the maxium residual organic carbon of 10.90%. Based on the analysis of petrology, carbon isotopes and trace elements, it suggests the existence of upwelling in both the Wordian and Capitanian periods. Nutrient elements brought by upwelling are beneficial to form high primary productivity. The paleo-oceanic phytoplankton growth rate became from high to low and finally to high which coincided with the changes of atmospheric pCO2. The lower Maokou Formation with high primary productivity is poor source rock. The reason is that normoxic environment during the deposition and earlier diagenesis stages of the lower Maokou Formation went against the conservation of organic matter. While the upper Maokou Formation with high primary productivity is taken as excellent source rocks, as a great transgression event during Late Maokou period result in the occurrence of anaerobic environment which led to the formation of excellent source rock layer. The study on the controlling factors in the formation of excellent source rocks in the Maokou Formation is the base of distribution prediction of marine excellent source rocks and hydrocarbon reservoirs prediction in southern China.
-
Key words:
- excellent marine source rock /
- petrology /
- carbon isotope /
- upwelling /
- Maokou Formation /
- Permian /
- Northwest Sichuan /
- stratigraphy
-
图 2 四川广元上寺剖面茅口组δ13Ccarb、δ13Corg、Δ13C和TOC分布(Δ13C=δ13Ccarb-δ13Corg)(生境型的划分据Yan et al., 2008)
Fig. 2. Paired carbon isotope and total organic carbon (TOC) from Maokou Formation at the Shangsi section in Guangyuan, Northwest Sichuan (Δ13C=δ13Ccarb-δ13Corg)
图 3 光合作用(εp)、大气CO2含量和现代海洋浮游生物产率(μm/d)关系(Hayes et al., 1999, 有修改)
大气CO2浓度(280×10-6)采用前工业水平(PIL)
Fig. 3. Generalized relationship between the photosynthetic fractionation effect (εp), atmospheric CO2 levels, and modern marine phytoplankton growth rates (μm/d)
表 1 四川广元上寺剖面茅口组样品微量元素数据
Table 1. Trace elements data from Maokou Formation at the Shangsi section in Guangyuan, Sichuan
编号 地层 岩性 深度(m) Sc Co Ni La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th U 117-1 吴家坪组 灰岩 70.54 0.67 0.53 3.38 2.39 3.65 0.52 1.99 0.40 0.10 0.49 0.07 0.41 0.09 0.27 0.04 0.25 0.04 0.35 2.25 106-2 茅口组 硅质岩 60.24 0.32 1.77 25.60 9.37 11.80 0.27 1.00 0.20 0.05 0.24 0.03 0.17 0.04 0.11 0.02 0.07 0.02 0.11 3.57 106-1 茅口组 灰岩 60.14 0.69 0.63 28.20 5.19 2.80 0.59 2.28 0.42 0.10 0.47 0.07 0.44 0.11 0.30 0.05 0.28 0.04 0.18 6.14 105-3 茅口组 页岩 59.48 1.54 1.81 114.0 10.70 8.30 1.41 5.49 0.96 0.22 1.06 0.15 0.87 0.21 0.56 0.08 0.50 0.07 0.79 15.70 105-2 茅口组 页岩 58.92 1.45 2.11 122.0 9.56 7.64 1.34 5.24 0.88 0.18 0.96 0.14 0.84 0.19 0.50 0.07 0.44 0.07 0.74 10.60 105-1 茅口组 灰岩 58.26 1.20 1.22 51.70 8.62 6.12 1.13 4.41 0.78 0.16 0.82 0.12 0.72 0.16 0.46 0.06 0.43 0.06 0.45 9.12 104-1 茅口组 灰岩 57.52 3.22 3.19 75.40 16.70 17.30 2.22 8.25 1.44 0.31 1.40 0.21 1.21 0.26 0.69 0.11 0.64 0.10 1.75 8.00 103-1 茅口组 灰岩 56.76 1.66 2.06 128.0 11.50 9.06 1.68 6.53 1.19 0.25 1.23 0.17 1.02 0.23 0.64 0.09 0.53 0.08 0.83 14.40 102-1 茅口组 灰岩 56.32 0.49 0.45 13.80 2.11 1.18 0.27 1.03 0.18 0.04 0.19 0.03 0.18 0.05 0.13 0.02 0.14 0.02 0.11 4.37 101-1 茅口组 灰岩 54.84 1.30 0.55 9.53 6.88 6.80 0.78 3.00 0.52 0.10 0.52 0.07 0.42 0.09 0.23 0.04 0.21 0.03 0.99 2.55 100-2 茅口组 灰岩 54.42 0.44 0.44 10.90 2.49 1.30 0.25 0.98 0.19 0.03 0.18 0.03 0.18 0.04 0.11 0.02 0.09 0.02 0.09 4.01 100-1′ 茅口组 页岩 53.52 1.52 1.59 53.10 18.90 19.40 1.48 5.85 1.07 0.21 1.11 0.16 0.97 0.22 0.58 0.08 0.48 0.08 1.07 12.00 100-1 茅口组 灰岩 53.44 0.79 0.75 21.10 5.56 4.74 0.81 3.00 0.50 0.09 0.59 0.08 0.50 0.11 0.29 0.04 0.28 0.04 0.45 6.18 95-4 茅口组 灰岩 47.1 1.21 2.72 45.70 4.82 5.31 0.80 2.92 0.55 0.14 0.57 0.09 0.52 0.12 0.32 0.05 0.29 0.05 0.58 5.64 95-3 茅口组 灰岩 46.1 1.07 2.43 33.70 3.57 3.40 0.55 2.12 0.38 0.10 0.41 0.07 0.38 0.08 0.26 0.03 0.25 0.03 0.70 5.87 95-2 茅口组 灰岩 44.5 0.40 0.86 11.00 0.87 0.74 0.10 0.41 0.09 0.02 0.08 0.01 0.07 0.02 0.06 0.01 0.05 0.01 0.10 2.09 95-1′ 茅口组 页岩 43.5 1.63 5.10 78.80 6.23 6.72 0.99 3.50 0.61 0.14 0.68 0.10 0.60 0.15 0.42 0.07 0.38 0.07 1.36 12.80 95-1 茅口组 灰岩 43.5 0.45 0.72 7.94 0.89 0.96 0.13 0.44 0.08 0.02 0.08 0.01 0.08 0.02 0.07 0.01 0.06 0.01 0.13 2.03 94-3 茅口组 灰岩 41.95 0.48 0.86 10.80 1.03 1.16 0.18 0.68 0.14 0.03 0.15 0.02 0.15 0.04 0.09 0.02 0.10 0.02 0.13 1.40 94-2 茅口组 硅质岩 41.75 0.42 0.97 11.00 0.74 0.85 0.14 0.52 0.11 0.03 0.12 0.02 0.11 0.03 0.07 0.01 0.05 0.01 0.15 1.65 94-1 茅口组 灰岩 40.55 0.42 0.98 8.74 1.15 1.18 0.15 0.56 0.10 0.02 0.11 0.02 0.10 0.03 0.07 0.01 0.07 0.01 0.13 1.46 93-1 茅口组 灰岩 38.1 0.71 1.46 10.60 1.39 1.85 0.26 0.97 0.18 0.04 0.19 0.03 0.17 0.04 0.11 0.02 0.10 0.02 0.24 2.30 92-7 茅口组 灰岩 35.9 0.39 0.46 4.78 0.59 0.70 0.11 0.41 0.07 0.02 0.09 0.01 0.09 0.02 0.05 0.01 0.04 0.01 0.06 2.56 92-5 茅口组 灰岩 32.9 0.37 0.49 5.57 0.67 0.75 0.10 0.42 0.08 0.02 0.09 0.02 0.09 0.02 0.06 0.01 0.05 0.01 0.07 3.70 92-3 茅口组 灰岩 30.9 0.47 0.61 6.00 0.66 1.00 0.14 0.51 0.13 0.02 0.11 0.02 0.09 0.03 0.06 0.01 0.06 0.01 0.12 3.07 86-3 茅口组 灰岩 2.8 0.61 1.48 4.16 1.11 1.84 0.21 0.85 0.15 0.04 0.20 0.03 0.21 0.05 0.13 0.02 0.11 0.02 0.22 2.60 86-2 茅口组 灰岩 1.7 0.42 1.42 3.85 0.59 1.00 0.11 0.43 0.09 0.03 0.10 0.02 0.09 0.02 0.05 0.01 0.06 0.01 0.12 1.33 85-7 栖霞组 灰岩 -0.1 0.61 1.70 4.77 1.54 2.45 0.26 0.96 0.16 0.04 0.17 0.02 0.13 0.03 0.07 0.01 0.08 0.01 0.29 1.73 *注:深度单位为m,其他单位为10-6. 表 2 四川广元上寺剖面二叠系茅口组TOC(%)数据统计
Table 2. TOC content (%) in different lithologies, Maokou Formation at the Shangsi section in Guangyuan, Sichuan
岩性 样品数 最小值 最大值 平均值 薄层状灰岩 5 1.22 10.90 5.16 中层状灰岩 26 0.14 2.24 0.78 厚层状灰岩 4 0.11 0.75 0.39 巨厚层状灰岩 7 0.10 0.41 0.21 硅质岩 4 0.45 0.96 0.78 钙质页岩 6 2.43 5.07 4.19 -
[1] Bai, X., Luo, G.M., Wu, X., et al., 2008. Carbon isotope records indicative of paleoceanographical events at the Latest Permian Dalong Formation at Shangsi, Northeast Sichuan, China. Journal of China University of Geosciences, 19(5): 481-487. doi: 10.1016/S1002-0705(08)60053-9 [2] Cai, K.P., Wang, Y.R., Yang, Y.M., et al., 2003. Evaluation of hydrocarbon source rocks in Permian and Triassic at Guangyuan-Wangcang region in Northwest Sichuan basin and a primary discussion on gas source. Natural Gas Industry, 23(2): 10-14 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_natural-gas-industry_thesis/0201218757175.html [3] Chen, J.F., Zhang, S.C., Bao, Z.D., et al., 2006. Main Sedimentary environments and influencing factors for development of marine organic-rich source rocks. Marine Origin Petroleun Geology, 11(3): 49-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ200603009.htm [4] David, Z.P., Paul, K.L., 2002. An upwelling model for the Phosphoria sea: a Permian ocean-margin sea in the Northwest United States. AAPG Bulletin, 86(7): 1217-1235. doi: 10.1306/61EEDC60-173E-11D7-8645000102C1865D [5] Demaision, G.J., Moore, G.T., 1980. Anoxic environments and oil source bed genesis. AAPG Bulletin, 64(8): 1179-1209. [6] Feng, H.Z., Erdtmann, B.D., Wang, H.F., 2000. Sea-level change and Ce anomaly in the whole rock from the Early Palaeonzoic in the upper Yangtze region. Science in China (Ser. D), 30(1): 66-72 (in Chinese with English abstract). [7] Francois, R., Altabet, M.A., Goericke, R., et al., 1993. Changes in the δ13C of surface water particulate organic matter across the subtropical convergence in the SW Indian Ocean. Global Biogeochemical Cycles, 7(3): 627-644. doi: 10.1029/93GB01277 [8] Freeman, K.H., Hayes, J.M., 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochemical Cycles, 6(2): 185-198. doi: 10.1029/92GB00190 [9] Haskin, M.A., Haskin, L.A., 1966. Rare earth in European shales: a redetermination. Science, 154(3748): 507-509. doi: 10.1126/science.154.3748.507 [10] Hatch, J.R., Leventhal, J.S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the dennis limestone, Wabaunsee County, Kansas, U.S.A. . Chemical Geology, 99: 65-82. doi: 10.1016/0009-2541(92)90031 [11] Hayes, J.M., Strauss, H., Kaufman, A.J., 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology, 161: 103-125. doi: 10.1016/S0009-2541(99)00083-2 [12] Jones, B.J., Manning, A.C., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111: 111-129. doi: 10.1016/0009-2541(94)90085 [13] Ma, L.Q., Dong, Y., Tu, X.L., et al., 2007. Petroleum prospect of marine sequences in South China. Acta Petrolei Sinica, 28(3): 1-7 (in Chinese with English abstract). [14] McLennan, S.M., Taylor, S.R., 1980. Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature, 285: 621-624. doi: 10.1038/285621a0 [15] McLennan, S.M., Taylor, S.R., 1991. Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Geology, 99(1): 1-21. doi: 10.1086/629470 [16] McLennan, S.M., Taylor, S.R., McCulloch, M.T., et al., 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54: 2015-2052. doi: 10.1016/0016-7037(90)90269-Q [17] Murray, R.W., Buchholtz ten Brink, M.R., Jones, D.L., et al., 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18: 268-271. doi: 10.1130/0091-7613(1990) [18] Parrish, J.T., 1982. Upwelling and petroleum source beds with, reference to Paleozoic. AAPG Bulletin, 66(6): 70-774. http://www.researchgate.net/publication/230888688_Upwelling_and_Petroleum_Source_Beds_With_Reference_to_Paleozoic [19] Pedersen, T.F., Calvert, S.E., 1990. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rock?AAPG Bulletin, 74(4): 454-466. http://www.researchgate.net/publication/230892121_Anoxia_vs_productivity_what_controls_the_formation_of_organic-_carbon-rich_sediments_and_sedimentary_rocks [20] Popp, B.N., Laws, E.A., Bidigare, R.R., et al., 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et Cosmochimica Acta, 62: 69-77. doi: 10.1016/S0016-7037(97)00333-5 [21] Qin, J.Z., Zheng, L.J., Teng, G.E., 2007. Study on the restitution coefficient of original total organic carbon for high mature marine hydrocarbon source rocks. Earth Science—Journal of China University of Geosciences, 32(6): 853-860 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_11707200704016627.aspx [22] Sun, Y.D., Lai, X.L., Jiang, H.S., et al., 2008. Guadalupian (Middle Permian) conodont faunas at Shangsi section, Northeast Sichuan Province. Journal of China University of Geosciences, 19(5): 451-460. doi: 10.1016/S1002-0705(08)60050-3 [23] Teng, G.E., Liu, W.H., Xu, Y.C., et al., 2005. Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment. Advances in Earth Science, 20(2): 193-199 (in Chinese with English abstract). http://www.researchgate.net/publication/285837325_Correlative_study_on_parameters_of_inorganic_geochemistry_and_hydrocarbon_source_rocks_formative_environment [24] Teng, G.E., Qin, J.Z., Fu, X.D., et al., 2008. Basic conditions of marine hydrocarbon accumulation in Northwest Sichuan basin: high guality source rocks. Petroleum Geology & Experiment, 30(5): 478-483 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200805013.htm [25] Xie, X.N., Li, H.J., Xiong, X., et al., 2008. Main controlling factors of organic matter richness in a Permian section of Guangyuan, Northeast Sichuan. Journal of China University of Geosciences, 19(5): 507-517. doi: 10.1016/S1002-0705(08)60056-4 [26] Yan, J.X., Liu, X.Y., 2007. Geobiological interpretation of the oxygen-deficient deposits of the Middle Permian marine source rocks in South China: a working hypothesis. Earth Science—Journal of China University of Geosciences, 32(6): 789-796 (in Chinese with English abstract). [27] Yan, J.X., Ma, Z.X., Xie, X.N., et al., 2008. Subdivision of Permian fossil communities and habitat types in Northeast Sichuan, South China. Journal of China University of Geosciences, 19(5): 441-450. doi: 10.1016/S1002-0705(08)60049-7 [28] Yan, J.X., Zhao, K., 2001. Permo-Triassic paleogeographic, paleoclimatic and paleoceanographic evolutions in eastern Tethys and their coupling. Science in China (Ser. D), 44(11): 968-978. doi: 10.1007/BF02875390 [29] Yang, Y.Q., Feng, Z.Z., 1997. Formation and significance of the bedded siliceous rocks of the Lower Permian in South China. Acta Petrologica Sinica, 13(1): 111-120 (in Chinese with English abstract). [30] Yu, B.S., Chen, J.Q., Li, X.W., et al., 2003. Geochemistry of black shale at the bottom of the Lower Cambrian in Tarim basin and its significance for lithosphere evolution. Science in China (Ser. D), 46(5): 498-507. [31] Zhang, S.C., Zhang, B.M., Bian, L.Z., et al., 2005. Development constraints of marine source rocks in China. Earth Science Frontiers, 12(3): 39-48 (in Chinese with English abstract). http://www.researchgate.net/publication/288260432_Development_constraints_of_marine_source_rocks_in_China [32] Zhang, Y.G., Ma, Z.J., Yang, K.M., 2007. The forecast of natural oil & gas potential in marine strata, western Sichuan basin, Southwest China. Acta Geologica Sinica, 81(8): 1041-1047 (in Chinese with English abstract). [33] 蔡开平, 王应蓉, 杨跃明, 等, 2003. 川西北广旺地区二、三叠系烃源岩评价及气源初探. 天然气工业, 23(2): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200302003.htm [34] 陈践发, 张水昌, 鲍志东, 等, 2006. 海相优质烃源岩发育的主要影响因素及沉积环境. 海相石油地质, 11(3): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200603009.htm [35] 冯洪真, Erdtman, B.D., 王海峰, 2000. 上扬子区早古生代全岩Ce异常与海平面长缓变化. 中国科学(D辑), 30(1): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200001009.htm [36] 马立桥, 董庸, 屠小龙, 等, 2007. 中国南方海相油气勘探前景. 石油学报, 28(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200703000.htm [37] 秦建中, 郑伦举, 腾格尔, 2007. 海相高演化烃源岩总有机碳恢复系数研究. 地球科学——中国地质大学学报, 32(6): 853-860. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706017.htm [38] 腾格尔, 刘文汇, 徐永昌, 等, 2005. 无机地球化学参数与有效烃源岩发育环境的相关研究. 地球科学进展, 20(2): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200502008.htm [39] 腾格尔, 秦建中, 付小东, 等, 2008. 川西北地区海相油气成藏物质基础——优质烃源岩. 石油实验地质, 30(5): 478-483. doi: 10.3969/j.issn.1001-6112.2008.05.010 [40] 颜佳新, 刘新宇, 2007. 从地球生物学角度讨论华南中二叠世海相烃源岩缺氧沉积环境成因模式. 地球科学——中国地质大学学报, 32(6): 789-796. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706010.htm [41] 杨玉卿, 冯增昭, 1997. 华南下二叠统层状硅岩的形成及意义. 岩石学报, 13(1): 111-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB701.009.htm [42] 于炳松, 陈建强, 李兴武, 等, 2003. 塔里木盆地下寒武统底部黑色页岩地球化学及其岩石圈演化意义. 中国科学(D辑), 32(5): 374-382. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200205003.htm [43] 张水昌, 张宝民, 边立曾, 等, 2005. 中国海相烃源岩发育控制因素. 地学前缘, 12(3): 39-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200503006.htm [44] 张永刚, 马宗晋, 杨克明, 等, 2007. 川西坳陷中段海相层系油气勘探潜力分析. 地质学报, 81(8): 1041-1047. doi: 10.3321/j.issn:0001-5717.2007.08.003