Filling Architecture and Evolution of Upper Miocene Deep-Water Channel in Congo Fan Basin
-
摘要: 深水水道作为深水油气勘探的主力储层,其内部结构及演化特征的研究对于深水油气田勘探和开发都具有非常重要的意义.基于钻井及3D地震资料,对刚果扇盆地上中新世深水水道的内部充填期次、结构和演化特征进行了分析.从层序地层学的角度出发,将研究区内的水道划分为多个不同级别层序格架内形成的水道单体和水道复合体,从而对切谷内部的水道期次和组成特征进行精细表述.研究表明,研究区内水道单体自下而上发育底部滞留、滑塌充填、侵蚀水道、加积水道、天然堤和废弃水道6种沉积微相类型,整体表现为流体能量逐步降低的过程;三级水道复合体形成于复杂的多期侵蚀-充填过程,受到海平面变化、坡度及重力流流变学特征的影响,纵向演化可划分为初始侵蚀、初始充填、加积充填、后期充填和水道废弃5个阶段,各阶段切谷内充填结构和水道平面展布特征呈现有规律的变化.Abstract: Deep-water channels are recognized as the very important hydrocarbon reservoir types in the oil industry. The research on the filling structure and evolution of deep water channel is very important for deep-water oil & gas exploration and development. In this paper, based on the well and 3D seismic data, the epoch, structure and evolution of Upper Miocene deep water channel in Congo Fan basin is analyzed. For the purposes of describing the internal architecture clearly, we divided the channels system into different grade channel complex and individual channel, which based on their sequence stratigraphic setting. Individual channel is mainly composed by 6 microfacies. From bottom to up, there are basal lags, slumps, eroded channels, stacked channels, levee, abandoned channels, which is the process of fluid energy gradually reducing; the 3th channel complex in the research area formed in a multi-stage process of erosion and filling. It can be divided into five evolution stages, including initial erosion stage, the initial filling stage, the stacking-filling stage, the later filling stage and the abandon stage. The different stages show the different filling architecture and distribution of 3th channel complex, which is controlled by the sea-level changes, the slope gradient and the rheological properties of gravity flow.
-
Key words:
- deepwater channel /
- Congo Fan /
- Upper Miocene /
- filling epoch /
- filling architecture /
- evolution stage /
- sedimentation /
- hydrocarbon
-
图 2 研究区水道层序及期次划分(剖面以上新统底拉平,位置见图 1)
Fig. 2. Division of sequence and epoch of channel in the study area
图 3 T-1井单井层序划分及微相特征
1.泥质粉砂岩; 2.粉砂岩; 3.砂岩; 4.砂泥质碎屑流; 5.砂质砾岩; 6.泥基质砾岩; 7.砂基质砾岩; 8.波状交错层理; 9.斜层理; 10.平行层理; 11.块状; 12.正粒序递变; 13.反粒序递变; 14.侵蚀面; 15.水平/垂向侵入; 16.包卷层理; 17.砂质包卷; 18.泥质变形; 19.砾; 20.外源砂质碎屑; 21.外源碎屑; 22.砂质漂砾; 23.变形泥砾; 24.泥质漂砾; 25.定向排量; ①泥; ②泥质粉砂; ③粉砂; ④砂; ⑤细砾; ⑥中砾; ⑦粗砾
Fig. 3. Sequence division and microfacies character of well T-1
表 1 研究区水道单体沉积微相特征
Table 1. Microfacies character of individual channel in the study area
微相类型 岩性 沉积构造 厚度 测井曲线 地震反射特征 底部滞留 粉砂质泥岩或砂岩基质下混杂的粗砂、砾石、泥砾 混杂的块状,层理不明显 <5 m 低幅度齿状箱型 不连续弱振幅 滑塌充填 泥质粉砂岩、泥岩为主,局部含粗碎屑或泥砾 变形相关构造层理,局部见砂层侵入 <10 m 低幅度齿状 不连续弱振幅 侵蚀-充填水道 块状细砂至粗砂、砂砾岩为主;含砾级外源碎屑颗粒 正粒序递变层理、斜层理、平行层理、粗颗粒定向排列 10 cm至10 m 高幅度箱型或齿化箱型 不连续的中、强振幅 加积水道 泥质粉砂岩夹薄层砂岩,局部含砾级外源碎屑颗粒 变形相关构造层理,可见砂岩侵入 几十m 中高幅指状或齿状箱型 不连续的强振幅 废弃水道 泥质粉砂岩夹薄层砂岩 正粒序层序层理、平行层理、泄水构造 几十m 低幅度齿状曲线 中连续的中、强振幅 天然堤 泥质粉砂岩中夹分米级别细砂岩、粉砂岩薄层 波状层理、平行层理、正粒序递变层理、砂质包卷层理 中幅度指状或齿状曲线 连续性好的中、强振幅,平行、亚平行发射 -
[1] Beydoun, W., Kerdraon, Y., Lefeuvre, F., et al., 2002. Benefits of a 3DHR survey for Girassol field appraisal and development, Angola. The Leading Edge, 21: 1152-1155. doi: 10.1190/1.1523744 [2] Broucke, O., Temple, F., Rouby, D., et al., 2004. The role of deformation processes on the geometry of mud-dominated turbiditic systems, Oligocene and Lower-Middle Miocene of the Lower Congo basin (West African margin). Marine and Petroleum Geology, 21: 327-348. doi: 10.1016/j.marpetgeo.2003.11.013 [3] Fonnesu, F., 2003.3D seismic images of a low-sinuosity slope channel and related depositional lobe (West Africa deep-offshore). Marine and Petroleum Geology, 20(6-8): 615-629. doi: 10.1016/j.marpetgeo.2003.03.006 [4] Gardner, M.H., Borer, J.M., 2000. Submarine channel architecture along a slope to basin profile, Brushy Canyon Formation, West Texas. AAPG Memoir 72/SEPM Special Publication, 68: 195-211. http://www.researchgate.net/publication/303013788_Submarine_channel_architecture_along_a_slope_to_basin_profile_Permain_Brushy_Canyon_Formation_west_Texas_in_fine-grained_turbidite_systems [5] Jiang, S., Wang, H., Weimer, P., 2008. Sequence stratigraphy characteristics and sedimentary elements in deep-water. Earth Science—Journal of China University of Geosciences, 33(6): 825-833 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.099 [6] Kneller, B., 2003. The influence of flow parameters on turbidite slope channel architecture. Marine and Petroleum Geology, 20: 901-910. doi: 10.1016/j.marpetgeo.2003.03.001 [7] Kolla, V., Bourges, P., Urrity, J.M., et al., 2001. Evolution of deep-water tertiary sinuous channels offshore Angola (West Africa) and implications to reservoir architecture. AAPG Bulletin, 85: 1373-1405. doi: 10.1306/8626CAC3-173B-11D7-8645000102C1865D [8] Mayall, M., Stewart, I.J., 2000. The architecture of turbidite slope channels. GCSSEPM foundation 20th annual research conference deep-water reservoirs of the world, Houston, 578-586. [9] Mulder, T., Syvitski, J.P.M., Migeon, S., et al., 2003. Marine hyperpycnal flows: initiation, behavior and related deposits (A review). Marine and Petroleum Geology, 20: 861-882. doi: 10.1016/j.marpetgeo.2003.01.003 [10] Navarre, J.C., Claude, D., Librelle, F., et al., 2002. Deepwater turbidite system analysis, West Africa: sedimentary model and implications for reservoir model construction. The Leading Edge, 21(11): 1132-1139. doi: 10.1190/1.1523754 [11] Pang, X., Chen, C.M., Zhu, M., et al., 2007. Frontier of the deep water deposition study. Geological Review, 53(1): 36-43 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200701005.htm [12] Peakall, J., McCaffrey, W.D., Kneller, B., 2000. A process model for the evolution, morphology, and architecture of sinuous submarine channels. Journal of Sedimentary Research, 70(3): 434-448. doi: 10.1306/2DC4091C-0E47-11D7-8643000102C1865D [13] Pirmez, C., Imran, J., 2003. Reconstruction of turbidity currents in Amazon Channel. Marine and Petroleum Geology, 20: 823-849. doi: 10.1016/j.marpetgeo.2003.03.005 [14] Posamentier, H.W., 2003. Depositional elements associated with a basin floor chanel-levee system: case study from the gulf of Mexico. Marine and Petroleum Geology, 20: 677-690. doi: 10.1016/j.marpetgeo.2003.01.002 [15] Posamentier, H.W., Kolla, V., 2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 73(3): 367-388. doi: 10.1306/111302730367 [16] Prather, B.F., 2003. Controls on reservoir distribution, architecture and stratigraphic trapping in slope settings. Marine and Petroleum Geology, 20: 529-545. doi: 10.1016/j.marpetgeo.2003.03.009 [17] Schoellkopf, N.B., Patterson, B.A., 2000. Petroleum systems of offshore Cabinda, Angola. Petroleum Systems of South Atlantic Margins, AAPG Memoir, 73: 361-376. http://archives.datapages.com/data/specpubs/memoir73/m73ch25/m73ch25.htm [18] Weimer, P., 2004. Petroleum systems of deepwater settings. EAGE, Distinguished Instructor, 7: 470. http://www.researchgate.net/publication/344889722_Petroleum_Systems_of_Deepwater_Settings [19] Wu, J.F., Xu, Q., Zhu, Y.H., 2010. Generation and evolution of the shelf-edge delta in oligocene and miocene of Baiyun sag in the South China Sea. Earth Science—Journal of China University of Geosciences, 35(4): 681-690 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.083 [20] Yao, G.H., Yuan, S.Q., Ma, Y.B., et al., 2009. Deepwater mass transport deposition system of Huaguang depression, Qiongdongnan basin and its significance for hydrocarbon exploration. Earth Science—Journal of China University of Geosciences, 34(3): 471-476 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.052 [21] Yuan, S.Q., Yao, G.H., Lu, F.L., et al., 2009. Features of Late Cenozoic deepwater sedimentation in southern Qiongdongnan basin, northwestern South China Sea. Journal of Earth Science, 20(1): 172-179. doi: 10.1007/s12583-009-0017-0 [22] Zhang, S.L., Deng, Y.H., 2009. Oil and gas exploration strategy of Lower Congo basin. Marine Geology Letters, 25(9): 24-29 (in Chinese with English abstract). http://www.researchgate.net/publication/284026024_Oil_and_gas_exploration_strategy_of_Lower_Congo_basin [23] 蒋恕, 王华, Weimer, P., 2008. 深水沉积层序特点及构成要素. 地球科学——中国地质大学学报, 33(6): 825-833. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806011.htm [24] 庞雄, 陈长民, 朱明, 等, 2007. 深水沉积研究前缘问题. 地质论评, 53(1): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200701005.htm [25] 吴景富, 徐强, 祝彦贺, 2010. 南海白云凹陷深水区渐新世-中新世陆架边缘三角洲形成及演化. 地球科学——中国地质大学学报, 35(4): 681-690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004021.htm [26] 姚根顺, 袁圣强, 马玉波, 等, 2009. 琼东南华光凹陷深水重力搬运沉积体系及其油气勘探. 地球科学——中国地质大学学报, 34(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903011.htm [27] 张树林, 邓运华, 2009. 下刚果盆地油气勘探策略. 海洋地质动态, 25(9): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT200909004.htm