• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西南印度洋脊原位辉长岩元素地球化学特征及意义

    靳野 方念乔 杨蜀颖

    靳野, 方念乔, 杨蜀颖, 2012. 西南印度洋脊原位辉长岩元素地球化学特征及意义. 地球科学, 37(1): 57-68. doi: 10.3799/dqkx.2012.006
    引用本文: 靳野, 方念乔, 杨蜀颖, 2012. 西南印度洋脊原位辉长岩元素地球化学特征及意义. 地球科学, 37(1): 57-68. doi: 10.3799/dqkx.2012.006
    JIN Ye, FANG Nian-qiao, YANG Shu-ying, 2012. In Situ Gabbro Geochemical Characteristics and Implications from the Southwest Indian Ocean Ridge. Earth Science, 37(1): 57-68. doi: 10.3799/dqkx.2012.006
    Citation: JIN Ye, FANG Nian-qiao, YANG Shu-ying, 2012. In Situ Gabbro Geochemical Characteristics and Implications from the Southwest Indian Ocean Ridge. Earth Science, 37(1): 57-68. doi: 10.3799/dqkx.2012.006

    西南印度洋脊原位辉长岩元素地球化学特征及意义

    doi: 10.3799/dqkx.2012.006
    基金项目: 

    国家自然科学基金 40876029

    详细信息
      作者简介:

      靳野(1982-),男,博士研究生,海洋地质学专业.E-mail:YeahKing1982@163.com

      通讯作者:

      方念乔,E-mail:fangnq@yahoo.com.cn

    • 中图分类号: P736

    In Situ Gabbro Geochemical Characteristics and Implications from the Southwest Indian Ocean Ridge

    • 摘要: 通过对位于西南印度洋脊超慢速扩张脊东段的大洋钻探计划(ODP)ODP 735B钻孔上部岩心不同位置、不同岩性的样品进行全岩主、微量元素分析,并结合前人研究成果,对旋回内部及旋回之间的全岩地球化学特征差异进行了探讨,对其成因进行了约束.ODP 735B岩心全岩主量元素特征主要受控于分离结晶生成的矿物组合及比例.全岩主量元素之间的协变关系对反映玄武质熔体结晶演化过程中矿物生成及化学成分演化具有一定的指示意义.稀土元素的分析表明,除较明显的正Eu异常外,旋回1、2均表现出明显的LREE分馏,而HREE则未出现明显分馏.微量元素的分析表明,西南印度洋超低速洋脊的旋回1和旋回2中均表现出明显的Nb、Ta负异常和Sr、K正异常,但不能依靠其全岩微量元素Nb、Ta负异常特征对其源区地球化学特征成因和地质意义进行判断.

       

    • 图  1  西南印度洋脊平面展布形态及断裂带分布、ODP 735B孔位置(a) (据Dick et al., 1999) 及岩性剖面(b) (据Natland and Dick, 2001)

      粗黑线.ODP 735B孔上、中、下500 m的分界线;红色虚线.地球化学旋回间分界线;红色箭头.每个地球化学旋回内橄长岩和橄榄石辉长岩等基本未受后期富铁熔体影响的镁铁质岩石样品的Mg#随深度的变化趋势,其中Mg#=Mg/(Mg+Fe2+),假定Fe2+/(Fe2++Fe3+)=0.86(Natland and Dick, 2001);更多关于ODP 735B孔地球化学和岩相学讯息,参考Natland and Dick(2001)

      Fig.  1.  Distribution of fracrure zones and geometry of the Southwest Indian Ocean ridge, the section profile of ODP 735B hole (a) and the location (b)

      图  2  ODP 735B钻孔旋回1、2及岩性单元Ⅳ中典型岩石镜下岩相学特征

      a.旋回1中典型橄榄石辉长岩(29R-2W);b.旋回2中典型辉长岩(75R-4W);c.岩性单元Ⅳ中含钛铁氧化物的辉长岩(50R-2W)

      Fig.  2.  Microphotographs showing typical petrography of samples from cycle 1 and 2 and lithologic unit Ⅳ, ODP 735B hole

      图  3  ODP 735B孔旋回1、2岩石全岩全碱-SiO2(TAS)图解(a)和AFM图解(b)

      1.ODP 735B科研报告数据;2.7D-2W;3.18R-1W;4.29R-2W;5.50R-2W;6.ODP 735B科研报告数据;7.75R-4W;8.86R-3W;图中旋回1、2的ODP 735B科研报告元素数据均引自Snow, 2002, 下同

      Fig.  3.  TAS (a) and AFM (b) diagrams of samples from cycles 1 and 2, ODP 735B hole

      图  4  ODP 735B孔旋回1、2元素协变图解

      旋回1和旋回2的数据均选TiO2含量小于0.7%的样品,图例同图 3

      Fig.  4.  Harker diagrams of cycles 1 and 2, ODP 735B hole

      图  5  玄武质熔体结晶演化过程中残余熔体与生成矿物间关系(据Niu, 2005; Stone and Niu, 2009)

      Fig.  5.  Proportions of residual melt and minerals crystallized during MORB melt evolution

      图  6  ODP 735B钻孔不同旋回样品稀土元素标准化模式(a)和微量元素标准化模式(b)

      1.7D-2W;2.18R-1W;3.29R-2W;4.50R-2W;5.75R-4W;6.86R-3W;球粒陨石标准化值据Boynton(1984);原始地幔标准化值据McDonough et al.(1992)

      Fig.  6.  Chondrite-normalized REE patterns (a) and spidergrams (b) of samples from different cycles, ODP 735B hole

      表  1  ODP 735B岩心样品岩相学描述

      Table  1.   Petrographic description of the samples from ODP 735B

      样品号 7D-2W 18R-1W 29R-2W
      取样深度(mbsf) 29 70 134
      样品岩性 辉长岩 弱叶理化变辉长岩 橄榄石辉长岩
      斜长石 约50%~60%.大部分斜长石疑因受外力作用而破碎.粒径约1~2 mm,他形;未发生破碎者表现出一定的晶体扭曲现象,矿物颗粒约10~20 mm,半自形至他形.具卡钠复合双晶及聚片双晶 约70%,无明显定向排列,几乎全部他形.疑因受外力作用影响,部分斜长石破碎.粒径约1~2 mm;未发生破碎者粒径约10~15 mm 约70%~75%,无明显定向排列,半自形至他形.粒径从约1 mm至约3~4 mm,具明显卡钠复合双晶和聚片双晶
      橄榄石 约10%~15%,基本伊丁石化 未见橄榄石 约5%~10%,粒径从0.5~2.0 mm,半自形至他形,裂纹发育,无蛇纹石化及伊丁石化蚀变
      辉石 约30%,单斜辉石基本均受角闪石化蚀变作用影响 约15%,单斜辉石他形,无定向,基本均受角闪石化蚀变作用影响,可见角闪石蚀变反应边 约占15%~20%.单斜辉石半自形至他形无定向,粒径约3~4 mm.可见较明显解理,有些可见裂纹.均受一定程度角闪石化蚀变作用影响,可见角闪石蚀变反应边
      角闪石 约10%~20%,主要呈针状或簇状,部分包围暗色矿物分布 约15%,有些呈单斜辉石蚀变反应边,或呈针状、簇状,甚至还有些片状角闪石矿物分布于单斜辉石周围.有些则完全以角闪石簇集合体的形式大面积分布 约5%~10%,其基本均围绕暗色矿物分布,形成角闪石化蚀变反应边.还有部分呈细针状沿矿物裂隙或矿物间隙脉状充填
      副矿物 基本无其他副矿物 基本无其他副矿物 基本无其他副矿物
      其他描述及推断 所有矿物因受到外力作用影响而破碎或变形 部分矿物因受到外力作用影响而破碎或变形 总体来讲,蚀变程度要相对弱于旋回1的其他2样品
      样品号 50R-2W 75R-4W 86R-3W
      取样深度(mbsf) 239 389 484.5
      样品岩性 氧化物辉长岩 辉长岩 橄榄石辉长岩
      斜长石 约50%,无定向排列,粒径约3~20 mm,主要为他形,部分斜长石可能因受外力作用而破碎.具明显卡钠复合双晶 约60%~70%,无明显定向排列.粒径约2~15 mm,大部分≥10 mm.主要为半自形,个别近自形.具明显聚片双晶,个别具卡钠复合双晶 约40%~50%,无明显定向排列.粒径约2~10 mm,主要为他形,个别呈半自形.具明显卡钠复合双晶,基本未见明显聚片双晶.斜长石上有较明显裂纹,裂纹附近斜长石晶体明显破碎,表明晶体形成之后受到一定的外力作用影响
      橄榄石 未见橄榄石 未见橄榄石 约5%.粒径约2 mm,他形,表面见不规则裂缝,且裂缝边缘均较磨圆
      辉石 约30~40%.单斜辉石基本他形,粒径约2~30 mm.可见明显解理,还有些不规则裂纹,一小部分矿物破碎并与斜长石破碎晶体混杂于一起.具角闪石化蚀变反应边 约30%~40%,单斜辉石主要为半自形,个别他形,粒径约2~20 mm.主要表现为充填在斜长石晶体颗粒之间.受蚀变作用影响微弱,主要蚀变类型为角闪石化,表现为单斜辉石的蚀变反应边 约占25%~30%.单斜辉石晶体大小范围从2~10 mm,半自形至他形.可见角闪石化蚀变反应边
      角闪石 约5%,主要为暗色矿物蚀变反应边 约1%,主要为暗色矿物蚀变反应边 约15%~25%.部分角闪石颗粒晶形较明显,呈纤维状至柱状,基本包围所有暗色矿物分布.部分为单斜辉石的蚀变反应变.部分则呈角闪石脉状,宽约1 mm,贯穿多个矿物
      副矿物 钛铁氧化物(主要为磁铁矿或钛铁矿),约10%,无定向排列,部分弥散分布于岩石中,但大部分充填于矿物颗粒间隙中 基本无其他副矿物 基本无其他副矿物
      其他描述及推断 钛铁氧化物的分布特点可能暗示其形成于后期富Fe、Ti流体的充填 单斜辉石与斜长石间的共生关系,表现出典型的堆晶岩结构特征,说明部分单斜辉石结晶应晚于斜长石结晶 角闪石脉体的存在表明后期海水沿岩心中构造裂隙渗入并与暗色矿物发生蚀变反应
      下载: 导出CSV

      表  2  ODP 735B岩心样品主量元素(%)、微量元素(μg/g)和稀土元素(μg/g)化学成分

      Table  2.   Chemical compositions of the major (%), trace (μg/g), and rare earth (μg/g) elements of the samples from ODP 735B

      样品 7D-2W 18R-1W 29R-2W 50R-2W 75R-4W 86R-3W
      所属旋回/岩性单元 旋回1 旋回1 旋回1 岩性单元Ⅳ 旋回2 旋回2
      SiO2 51.45 52.72 49.25 38.78 52.16 51.41
      TiO2 0.27 0.34 0.14 7.80 0.37 0.41
      Al2O3 17.66 13.83 19.84 9.26 17.63 12.97
      Fe2O3T 4.64 7.43 5.72 24.57 4.55 6.68
      FeO 3.00 5.00 1.05 15.80 3.60 4.40
      MnO 0.10 0.08 0.08 0.28 0.09 0.11
      MgO 7.21 8.95 8.72 8.08 5.81 10.45
      CaO 13.96 11.00 11.39 8.13 15.06 13.21
      Na2O 3.36 3.67 3.35 2.41 3.59 2.95
      K2O 0.120 0.091 0.170 0.059 0.068 0.058
      P2O5 0.027 0.034 0.015 0.018 0.033 0.048
      LOI 1.09 1.71 1.25 0.05 0.45 1.71
      Total 99.887 99.855 99.925 99.437 99.811 100.006
      Mg# 0.757 0.707 0.753 0.397 0.719 0.758
      Na2O+K2O 3.480 3.761 3.520 2.469 3.658 3.008
      La 1.020 2.450 0.807 0.573 0.661 1.590
      Ce 2.88 6.99 1.99 2.22 2.16 4.41
      Pr 0.465 1.120 0.271 0.477 0.414 0.659
      Nd 2.47 5.93 1.17 3.44 2.72 3.70
      Sm 0.881 1.910 0.297 1.680 1.140 1.210
      Eu 0.645 0.869 0.443 0.951 0.719 0.563
      Gd 1.110 2.210 0.332 2.310 1.520 1.560
      Tb 0.235 0.517 0.066 0.575 0.353 0.358
      Dy 1.530 3.050 0.426 3.550 2.220 2.170
      Ho 0.319 0.662 0.081 0.762 0.449 0.444
      Er 0.920 2.05 0.267 2.280 1.410 1.380
      Tm 0.135 0.325 0.041 0.337 0.210 0.221
      Yb 0.889 2.070 0.279 2.320 1.320 1.450
      Lu 0.135 0.299 0.045 0.359 0.187 0.231
      Be 1.980 1.540 1.690 0.879 1.220 1.630
      Sc 36.6 28.1 8.81 64.4 50.2 43.0
      V 154.0 171.0 51.8 1 026.0 194.0 183.0
      Cr 312.0 401.0 113.0 34.0 508.0 418.0
      Co 31.6 44.1 43.5 96.6 29.0 42.5
      Cu 24.60 25.50 6.63 131.00 60.60 13.80
      Zn 41.3 26.7 28.4 186.0 70.8 24.6
      Ga 15.0 15.6 14.1 20.3 15.2 13.3
      Rb 0.813 0.326 1.230 0.224 0.243 0.274
      Sr 188 184 192 109 174 176
      Y 8.70 18.40 2.43 20.50 12.80 12.90
      Zr 18.80 47.00 5.95 92.60 29.90 47.60
      Nb 0.249 0.666 0.194 1.880 0.155 0.491
      Cs 0.022 0.008 0.013 0.010 0.004 0.006
      Ba 7.37 8.75 5.51 4.56 3.68 3.80
      Hf 0.565 1.490 0.187 2.680 0.974 1.200
      Ta 0.020 0.066 0.016 0.179 0.012 0.047
      Ti 0.006 0.001 0.006 未检出 0.001 0.001
      Pb 6.98 9.06 2.60 4.00 3.19 1.71
      Bi 0.136 0.157 0.069 0.024 0.061 0.048
      Th 0.111 0.121 0.15 0.032 0.032 0.105
      U 0.090 0.197 0.027 0.012 0.023 0.033
      LREE/HREE 1.59 1.72 3.24 0.75 1.02 1.55
      (La/Yb)N 0.77 0.80 1.95 0.17 0.34 0.74
      (La/Sm)N 0.73 0.81 1.71 0.21 0.36 0.83
      (Gd/Yb)N 1.01 0.86 0.96 0.80 0.93 0.87
      δEu 1.99 1.29 4.30 1.48 1.67 1.25
      注:球粒陨石标准化值据Boynton, 1984.
      下载: 导出CSV
    • [1] Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson, P., ed., Rare earth element geochemistry. Elsevier, Amsterdam, 63-114.
      [2] Chen, L., Ma, C.Q., She, Z.B., et al., 2006. Liulin Gabbro in the Beihuaiyang tectonic belt of the Dabie orogen: a witness of the Late Neoproterozoic rifting event. Earth Science Frontiers, 31(4): 578-584 (in Chinese with English abstract). http://www.researchgate.net/publication/283167567_Liulin_gabbro_in_the_Beihuaiyang_tectonic_belt_of_the_Dabie_orogen_A_witness_of_the_late_neoproterozoic_rifting_event
      [3] Dick, H.J.B., Lin, J., Schouten, H., 2003. An ultraslow-spreading class of ocean ridge. Nature, 426: 405-412. doi: 10.1038/nature02128
      [4] Dick, H.J.B., Natland, J.H., Alt, J.C., et al., 2000. A long in situ section of the lower ocean crust: results of ODP leg 176 drilling at the Southwest Indian ridge. Earth and Planetary Science Letters, 179(1): 31-51. doi: 10.1016/S0012-821X(00)00102-3
      [5] Dick, H.J.B., Natland, J.H., Miller, D.J., et al., 1999. Proceedings of the ocean drilling program, Initial Reports, 176. Ocean drilling program, Texas A & M University, College Station, TX 77845-9547, U.S.A. http://www.researchgate.net/publication/312968078_Proceedings_of_the_Ocean_Drilling_Program_Initial_Reports_135
      [6] Dick, H.J.B., Ozawa, K., Meyer, P.S., et al., 2002. Primary silicate mineral chemistry of a 1.5 km section of very slow spreading lower ocean crust: ODP hole 735B, Southwest Indian ridge. In: Natland, J.H., Dick, H.J.B., Miller, D.J., et al., eds., Proceedings of the ocean drilling program. Scientific Results, 176: 1-61. doi: 10.2973/odp.proc.sr.176.001.2002
      [7] Grindlay, N.R., Madsen, J.A., Rommevaux-Jestin, C., et al., 1998. A different pattern of ridge segmentation and mantle Bouguer gravity anomalies along the ultra-slow spreading Southwest Indian ridge (15°30′E to 25°E). Earth and Planetary Science Letters, 161: 243-253. doi: 10.1016/S0012-821X(98)00154-X
      [8] Guo, X., Zhu, Y.F., 2011. Petrologic and geochemical research of Xiaohalajunshan gabbro in Southwest Tianshan Mts., Xinjiang. Earth Science Frontiers, 18(2): 180-190 (in Chinese with English abstract). http://www.researchgate.net/publication/279014114_Petrologic_and_geochemical_research_of_Xiaohalajunshan_gabbro_in_Southwest_Tianshan_Mts._Xinjiang
      [9] Gutierrez, F., Parada, M.A., 2010. Numerical modeling of time-dependent fluid dynamics and differentiation of a shallow basaltic magma chamber. Journal of Petrology, 51(3): 731-762. doi: 10.1093/petrology/egp101
      [10] Hart, S.R., Davis, K.E., 1978. Nickel partitioning between olivine and silicate melt. Earth and Planetary Science Letters, 40(2): 203-219. doi: 10.1016/0012-821X(78)90091-2
      [11] Hertogen, J., Emmermann, R., Robinson, P.T., et al., 2002. Lithology, mineralogy, and geochemistry of the lower ocean crust, ODP hole 735B, Southwest Indian ridge. In: Natland, J.H., Dick, H.J.B., Miller, D.J., et al., eds., Proceedings of the ocean drilling program. Scientific Results, 176: 1-82. doi: 10.2973/odp.proc.sr.176.003.2002
      [12] Holm, P.M., 2002a. Sr, Nd and Pb isotopic composition of in situ lower crust at the Southwest Indian ridge: results from ODP leg 176. Chemical Geology, 184: 195-216. doi: 10.1016/S0009-2541(01)00364-3
      [13] Holm, P.M., 2002b. Data report: on the composition of the lower ocean crust-major and trace element analyses of gabbroic rocks from hole 735B. In: Natland, J.H., Dick, H.J.B., Miller, D.J., et al., eds., Proceedings of the ocean drilling program. Scientific Results, 176: 1-13. doi: 10.2973/odp.proc.sr.176.004.2002
      [14] Li, X.H., Chu, F.Y., Lei, J.J., et al., 2008. Advances in slow-ultraslow-spreading Southwest Indian ridge. Advances in Earth Science, 23(6): 595-603 (in Chinese with English abstract).
      [15] Maeda, J., Naslund, H.R., Jang, Y.D., et al., 2002. High-temperature fluid migration within oceanic Layer 3 gabbros, hole 735B, Southwest Indian ridge: implications for the magmatic-hydrothermal transition at slow-spreading mid-ocean ridges. In: Natland, J.H., Dick, H.J.B., Miller, D.J., eds., Proceedings of the ocean drilling program. Scientific Results, 176: 1-56. doi: 10.2973/odp.proc.sr.176.020.2002
      [16] McDonough, W.F., Sun, S.S., Ringwood, A.E., et al., 1992. Potassium, rubidium, and cesium in the earth and moon and the evolution of the earth's mantle. Geochimica et Cosmochimica Acta, 56(3): 1001-1021. doi: 10.1016/0016-7037(92)90043-I
      [17] McKenzie, D., O'Nions, R.K., 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021-1091. doi: 10.1093/petrology/32.5.1021
      [18] Natland, J.H., Dick, H.J.B., 2001. Formation of the lower ocean crust and the crystallization of gabbroic cumulates at a very slowly spreading ridge. Journal of Volcanology and Geothermal Research, 110(3-4): 191-233. doi: 10.1016/S0377-0273(01)00211-6
      [19] Natland, J.H., Dick, H.J.B., 2002. Stratigraphy and composition of gabbros drilled in ocean drilling program hole 735B, Southwest Indian ridge: a synthesis of geochemical data. In: Natland, J.H., Dick, H.J.B., Miller, D.J., et al., eds., Proceedings of the ocean drilling program. Scientific Results, 176: 1-69. doi: 10.2973/odp.proc.sr.176.002.2002
      [20] Nielsen, R.L., Gallahan, W.E., Newberger, F., 1992. Experimentally determined mineral-melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite. Contributions to Mineralogy and Petrology, 110(4): 488-499. doi: 10.1007/BF00344083
      [21] Niu, Y.L., 2005. Generation and evolution of basaltic magmas: some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geological Journal of China Universities, 11 (1): 9-46. http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200501001.htm
      [22] Niu, Y.L., Gilmore, T., Mackie, S., et al., 2002. Mineral chemistry, whole-rock compositions, and petrogenesis of leg 176 gabbros: data and discussion. In: Natland, J.H., Dick, H.J.B., Miller, D.J., et al., eds., Proceedings of the ocean drilling program. Scientific Results, 176: 1-60. doi: 10.2973/odp.proc.sr.176.011.2002
      [23] Ozawa, K., Meyer, P.S., Bloomer, S.H., 1991. Mineralogy and textures of iron-titanium oxide gabbros and associated olivine gabbros from hole 735B. In: Robinson, P.T., von, Herzen, R.P., et al., eds., Proceedings of the ocean drilling program. Scientific Results, 118: 41-73. doi: 10.2973/odp.proc.sr.118.128.1991
      [24] Robinson, P.T., Dick, H.J.B., Natland, J.H., et al., 2000. Lower oceanic crust formed at an ultra-slow-spreading ridge: ocean drilling program hole 735B, Southwest Indian ridge. In: Dilek, Y., Moores, E., Elthon, D., eds., Ophiolites and oceanic crust: new insights from field studies and the ocean drilling program. Geological Society of America Special Paper, 349: 75-86. doi: 10.1130/0-8137-2349-3.75
      [25] Robinson, P.T., von Herzen, R.P., et al., 1989. Proceedings of the ocean drilling program. Initial Reports, 118.
      [26] Rollinson, H.R., 1993. Using geochemical data: evaluation, presentation, Intepretation. Longman Scientific & Technical Limited, New York.
      [27] Snow, J.E., 2002. Major and trace element evolution of hole 735B gabbros. In: Natland, J.H., Dick, H.J.B., Miller, D.J., et al., eds., Proceedings of the ocean drilling program. Scientific Results, 176: 1-18. doi: 10.2973/odp.proc.sr.176.019.2002
      [28] Stone, S., Niu, Y.L., 2009. Origin of compositional trends in clinopyroxene of oceanic gabbros and gabbroic rocks: a case study using data from ODP hole 735B. Journal of Volcanology and Geothermal Research, 184(3-4): 313-322. doi: 10.1016/j.jvolgeores.2009.04.009
      [29] Villemant, B., Jaffrezic, H., Joron, J.L., et al., 1981. Distribution coefficients of major and trace elements; fractional crystallization in the alkali basalt series of Chaîne des Puys (Massif Central, France). Geochimica et Cosmochimica Acta, 45 (11): 1997-2016. doi: 10.1016/0016-7037(81)90055-7
      [30] Wang, B.Z., Zhang, Z.Y., Zhang, S.Q., et al., 2011. Geological features of Lower Paleozoic ophiolite in Kuhai-Saishitang region, eastern section of eastern Kunlun. Earth ScienceJournal of China University of Geosciences, 25(6): 592-598 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200006009.htm
      [31] Wang, S.M., Ma, C.Q., Wang, L.Y., et al., 2010. SHRIMP Zircon U-Pb dating, geochemistry and genesis of Early Cretaceous basic dykes from the Dabie orogen. Earth ScienceJournal of China University of Geosciences, 35(4): 572-584. doi: 10.3799/dqkx.2010.073
      [32] Zhang, Z.G., Fang, N.Q., Gao, L.F., et al., 2007. The ultra-slow-spreading ridge: new filed of the marine geology. Marine Geology Letters, 23(4): 17-20 (in Chinese with English abstract).
      [33] Zhao, J.H., Hu, R.Z., Liu, S., 2004. Geochemistry and genesis of Daiqianshan gabbro, Fujian Province. Acta Mineralogica Sinica, 24(3): 245-252 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200403006.htm
      [34] Zhou, C.Y., Ge, W.C., Wu, F.Y., et al., 2005a. Petrological characteristics and tectonics implications of the Tahe gabbro in the north part of the Great Xing'an range. Journal of Jilin University (Earth Science Edition), 35(2): 143-149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200502001.htm
      [35] Zhou, C.Y., Wu, F.Y., Ge, W.C., et al., 2005b. Age, geochemistry and petrogenesis of the cumulate gabbro in Tahe, northern Da Hinggan Mountain. Acta Petrologica Sinica, 21(3): 763-775(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200503017.htm
      [36] 陈玲, 马昌前, 佘振兵, 等, 2006. 大别山北淮阳构造带柳林辉长岩: 新元古代晚期裂解时间的纪录. 地球科学——中国地质大学学报, 31(4): 578-584. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200604017.htm
      [37] 郭璇, 朱永锋, 2011. 新疆西南天山小哈拉军山辉长岩体岩石学及地球化学研究. 地学前缘, 18(2): 180-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102022.htm
      [38] 李小虎, 初凤友, 雷吉江, 等, 2008. 慢速-超慢速扩张西南印度洋中脊研究进展. 地球科学进展, 23(6): 595-603. doi: 10.3321/j.issn:1001-8166.2008.06.006
      [39] 王秉璋, 张智勇, 张森琦, 等, 2011. 东昆仑东端苦海-赛什塘地区晚古生代蛇绿岩的地质特征. 地球科学——中国地质大学学报, 25(6): 592-598. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200006009.htm
      [40] 王世民, 马昌前, 王琳燕, 等, 2010. 大别山早白垩世基性脉岩SHRIMP锆石U-Pb定年、地球化学特征及成因. 地球科学——中国地质大学学报, 35(4): 572-584. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004011.htm
      [41] 张振国, 方念乔, 高莲凤, 等, 2007. 超慢速扩张洋脊: 海洋地学研究新领域. 海洋地质动态, 23(4): 17-20. doi: 10.3969/j.issn.1009-2722.2007.04.005
      [42] 赵军红, 胡瑞忠, 刘燊, 2004. 福建岱前山辉长岩体的地球化学特征与成因探讨. 矿物学报, 24(3): 245-252. doi: 10.3321/j.issn:1000-4734.2004.03.006
      [43] 周长勇, 葛文春, 吴福元, 等, 2005a. 大型安岭北段塔河辉长岩的岩石学特征及其构造意义. 吉林大学学报(地球科学版), 35(2): 143-149.
      [44] 周长勇, 吴福元, 葛文春, 等, 2005b. 大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因. 岩石学报, 21(3): 763-775. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503017.htm
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  3467
    • HTML全文浏览量:  72
    • PDF下载量:  128
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-11-03
    • 刊出日期:  2012-01-15

    目录

      /

      返回文章
      返回