• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    浙江天台中新统润楠属化石及其古环境指示

    丁素婷 孙柏年 吴靖宇 李相传

    丁素婷, 孙柏年, 吴靖宇, 李相传, 2012. 浙江天台中新统润楠属化石及其古环境指示. 地球科学, 37(1): 35-46. doi: 10.3799/dqkx.2012.004
    引用本文: 丁素婷, 孙柏年, 吴靖宇, 李相传, 2012. 浙江天台中新统润楠属化石及其古环境指示. 地球科学, 37(1): 35-46. doi: 10.3799/dqkx.2012.004
    DING Su-ting, SUN Bai-nian, WU Jing-yu, LI Xiang-chuan, 2012. Machilus Fossil from Miocene in Tiantai, Zhejiang Province, China, and Its Paleoenvironmental Implications. Earth Science, 37(1): 35-46. doi: 10.3799/dqkx.2012.004
    Citation: DING Su-ting, SUN Bai-nian, WU Jing-yu, LI Xiang-chuan, 2012. Machilus Fossil from Miocene in Tiantai, Zhejiang Province, China, and Its Paleoenvironmental Implications. Earth Science, 37(1): 35-46. doi: 10.3799/dqkx.2012.004

    浙江天台中新统润楠属化石及其古环境指示

    doi: 10.3799/dqkx.2012.004
    基金项目: 

    国家重点基础研究发展计划"973"项目 2012CB822000

    国家自然科学基金 41172022

    高等学校博士学科点专项科研基金 20100211110019

    现代古生物学与地层学国家重点实验室基金(中国科学院南京地质古生物研究所) 103108

    "中央高校基本科研业务费专项资金"自由探索项目 lzujbky-2009-132

    详细信息
      作者简介:

      丁素婷(1981-),女,博士后,研究方向为古植物学与环境变化.E-mail: dingst@lzu.edu.cn

      通讯作者:

      孙柏年,E-mail: bnsun@lzu.edu.cn

    • 中图分类号: Q914

    Machilus Fossil from Miocene in Tiantai, Zhejiang Province, China, and Its Paleoenvironmental Implications

    • 摘要: 对浙江天台中新统下南山组6块叶片压型化石——天台润楠Machilus tiantaiensis Ding S. T. et Sun B. N. sp. nov.,并对其叶结构和表皮构造特征进行了详细的研究.其主要特征为:叶椭圆形,全缘,顶端渐尖,基部楔形,侧脉羽状;表皮细胞垂周壁浅波状,单细胞毛基多集中于脉络区;气孔下生式,气孔器短平列型,副卫细胞1~2个.通过与现生植物进行对比分析,发现当前标本的叶结构和表皮构造特征与樟科润楠属(Machilus)十分一致.利用PAST(palaeontological statistics)软件对我国润楠属68种植物叶片的形态特征进行聚类分析,结果表明当前化石与M. pingii Cheng ex Yang最为接近;角质层分析也表明二者的表皮构造最为相似.利用化石与其现存最近亲缘种M. pingii的气孔比率,恢复了天台晚中新世的古大气CO2体积分数为407.9×10-6.此外,依据现生润楠属主要分布于亚洲东南部和南部的热带、亚热带地区,推断天台地区中新世的古气候较为温暖湿润.

       

    • 图  1  化石采集点地理位置

      Fig.  1.  Locality of Machilus fossils in Zhejiang Province, China

      图  2  Machilus tiantaiensisM. pingii的叶结构特征

      a~g.M. tiantaiensis手标本;a.标本号:JH14147;b.标本号:JH14276;c.标本号:JH14271;d.标本号:JH14282;e.标本号:JH14643A;f.标本号:JH14643B;g.标本号:JH14585;h.M. pingii;标本号:LUP080918;i.M. tiantaiensis,示脉络结构,标本号:JH14585;j.化石叶片素描图,标本号:JH14147;k.现生叶片素描图,标本号:LUP080918.a~h, j, k的标尺=1.0 cm;i的标尺=0.5 cm

      Fig.  2.  Leaf architectures of Machilus tiantaiensis and M. pingii

      图  3  在光学显微镜(LM)下M. tiantaiensisM. pingiiM. yunnanensis角质层特征

      a.M. tiantaiensis上表皮,箭头示垂周壁,标本号:JH14643;b.M. tiantaiensis下表皮,箭头示气孔器,标本号:JH14147;c.M. tiantaiensis下表皮,箭头分别示脉络和毛状体,标本号:JH14585;d.M. pingii上表皮,箭头示垂周壁,标本号:LUP080918;e.M. pingii下表皮,箭头分别示气孔器和毛状体,标本号:LUP080918;f.M. pingii下表皮,箭头示脉络,标本号:LUP080918;g.M. pingii下表皮,箭头示气孔器,标本号:LUP080918;h.M. yunnanensis上表皮,箭头示垂周壁,标本号:LUP061012;i.M. yunnanensis下表皮,箭头示气孔器,标本号:LUP061012.a, b, d, e, h, i的标尺=50 μm;c, f的标尺=100 μm;g的标尺=10 μm

      Fig.  3.  Cuticular characteristics of Machilus tiantaiensis, M. pingii and M. yunnanensis under the light microscopy

      图  4  在扫描电镜(SEM)下M. tiantaiensisM. pingii角质层特征

      a.M. tiantaiensis下表皮内面观,标本号:JH14147;b.M. tiantaiensis下表皮内面观,标本号:JH14147;c.M. tiantaiensis下表皮外面观,标本号:JH14282;d.M. pingii下表皮外面观,标本号:LUP080918;e.M. tiantaiensis下表皮,示气孔器,标本号:JH14147;f.M. pingii下表皮,示气孔器,标本号:LUP080918.a的标尺=100 μm;b~d的标尺= 50 μm;e, f的标尺=10 μm

      Fig.  4.  Cuticular characteristics of M. tiantaiensis and M. pingii under the scanning electron microscope

      图  5  润楠属植物叶片形态特征数量分析聚类

      Fig.  5.  Cluster analysis dendrogram by PAST showing the relationship of the species of the genus Machilus and M. tiantaiensis (Distance measure-Gower; Linkage algorithm-Paired group)

      表  1  分类性状及编码

      Table  1.   Taxonomic characters and codes

      序号 分类性状及编码
      1 叶片长度(cm)
      2 叶片宽度(cm)
      3 叶片长/叶片宽
      4 叶基形状:楔形(0);宽楔形或圆形(1);钝(2);下延或急短尖(3)
      5 叶顶:渐尖(0);尾状渐尖(1);短尖(2);钝或圆(3)
      6 叶片质地:坚纸质(0);薄革质(1);革质(2);厚革质(3)
      7 叶侧脉数(对):<7(0);7~9(1);9~12(2);>12(3)
      8 侧脉与中脉的夹角:<30°(0);30°~45°(1);45°~60°(2);>60°(3)
      下载: 导出CSV

      表  2  润楠属叶化石记录

      Table  2.   Leaf fossil records of genus Machilus

      种名 叶形 大小(cm) 叶顶 叶基 叶缘 侧脉(对) 时代 地点 参考文献
      M. thunbergii 披针形、椭圆形 (10.3~11.5)×(1.9~5.0) 短尖 楔形 全缘 9~10 早更新世 广西百色 刘裕生,1993
      M. oreophila 披针形 15.2×3.8 短尖 楔形 全缘 15 早更新世 广西百色 刘裕生,1993
      M. leplophylla 倒卵状长圆形 15.0×5.0 - 楔形 全缘 >10 上新世 云南腾冲 吴靖宇等,2008
      M. cf. longipedicellata 长椭圆形 18.0×5.0 渐尖 楔形 全缘 10 上新世 云南腾冲 吴靖宇等,2008
      M. americana 椭圆状披针形 4.7×1.9 - 楔形 全缘 - 晚中新世 云南开远 周浙昆,2000
      M. ugoana 椭圆状倒披针形 5.9×1.8 - 楔形 全缘 >8 晚中新世 云南开远 周浙昆,2000
      M. ugoana - 8.0×2.5 - 楔形 全缘 - 中中新世 日本岐阜 Ina, 2004
      M. nathorsti 卵圆形 8.0×3.0 渐尖 狭楔 全缘 6 中中新世 日本岐阜 Ina, 2004
      M. ugoana 椭圆形,长椭圆形,椭圆状披针形 (4.8~11.2)×(1.7~4.0) 渐尖 楔形 全缘 10~12 中新世 日本兵库 Uemura, 2005
      M. ugoana 披针形 9.7×2.3 短尖 狭楔 全缘 9 早中新世 日本本州 Yabe, 2008
      M. nathorsti - - 渐尖 全缘 - 早中新世 日本本州 Yabe, 2008
      M. ugoana 椭圆状披针形 7.0×1.7 - - 全缘 7 渐新世 云南景谷 中国新生代植物编写组,1978
      M. tiantaiensis 椭圆形,卵状椭圆形 (4.1~6.5)×(2.0~2.8) 渐尖 楔形 全缘 7~9 晚中新世 浙江天台 本文
      下载: 导出CSV

      表  3  植物化石M. tiantaiensis与3种叶结构关系较近的现生润楠属植物叶片角质层特征

      Table  3.   Characteristics and correlations of the cuticle from M. tiantaiensis and extant three species of Machilus

      种类 上表皮 下表皮 参考文献
      细胞形状 垂周壁 细胞形状 垂周壁 气孔密度(个/mm2) 气孔器长(μm) (μm) 气孔器长宽比 气孔器分布 表皮毛
      M. pingii 不规则 浅波状 不规则 弧形或浅波状 430 22.5 20.6 1.09 星状 本文
      M. yunnanensis 不规则 深波状 不规则 浅波状 420 17.4 16.2 1.07 星状 本文
      M. thunbergii 4~5边形 平直 不规则 平直 248 15.5 15.5 1.00 群状 *
      M. tiantaiensis 不规则 浅波状 不规则 浅波状 488 21.7 20.5 1.06 星状 本文
      注:星号表示据林夏珍,2007b;气孔密度、气孔器长和气孔器宽均指平均值.
      下载: 导出CSV

      表  4  M. tiantaiensisM. pingii下表皮气孔参数

      Table  4.   Stomatal parameters of the lower surface of M. tiantaiensis and M. pingii

      种类 数据组序号 气孔密度(SD,个/mm2) 表皮细胞密度(ED,个/mm2) 气孔指数(SI,%)
      M. tiantaiensis 1 436 2 956.0 12.9
      2 496 3 527.0 12.3
      3 452 3 115.0 12.7
      4 512 3 484.0 12.8
      5 507 3 646.5 12.2
      6 487 3 643.5 11.8
      7 529 3 811.5 12.2
      平均值 488(±31) 12.4(±0.4)
      M. pingii 1 420 2 830.0 12.9
      2 439 2 864.5 13.3
      3 435 2 844.5 13.3
      4 396 2 675.0 12.9
      5 439 2 767.5 13.7
      6 528 3 722.0 12.4
      7 493 3 280.5 13.1
      平均值 450(±42) 13.1(±0.4)
      下载: 导出CSV
    • [1] Bandulska, H., 1926. On the cuticles of some fossil and recent lauraceae. Botanical Journal of the Linnean Society, 47: 383-425. doi: 10.1111/j.1095-8339.1926.tb00517.x
      [2] Barclay, R., McElwain, J., Dilcher, D., et al., 2007. The cuticle database: developing an interactive tool for taxonomic and paleoenvironmental study of the fossil cuticle record. Courier Forschungsinstitut Senckenberg, 258: 39-55. http://www.springerlink.com/content/w4765w6817k0t852
      [3] Beerling, D.J., Berner, R.A., 2005. Feedbacks and the coevolution of plants and atmospheric CO2. Proceedings of the National Academy of Sciences, 102(5): 1302-1305. doi: 10.1073/pnas.0408724102
      [4] Beerling, D.J., Lomax, B.H., Royer, D.L., et al., 2002. An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proceedings of the National Academy of Sciences, 99(12): 7836-7840. doi: 10.1073/pnas.122573099
      [5] Carpenter, R.J., Jordan, G.J., Hill, R.S., 2007. A toothed lauraceae leaf from the Early Eocene of Tasmania, Australia. International Journal of Plant Sciences, 168(8): 1191-1198. doi: 10.1086/520721
      [6] Christophel, D.C., Kerrigan, R., Rowett, A.I., 1996. The use of cuticular features in the taxonomy of the lauraceae. Annals of the Missouri Botanical Garden, 83(3): 419-432. doi: 10.2307/2399871
      [7] Christophel, D.C., Rowett, A.I., 1996. Leaf and cuticle atlas of Australian leafy lauraceae. Australian Biological Resources Study, Flora of Australia supplementary series 6, Canberra. http://www.cabdirect.org/abstracts/19970607928.html
      [8] Dilcher, D.L., 1974. Approaches to the identification of angiosperm leaf remains. The Botanical Review, 40(1): 1-157. doi: 10.1007/BF02860067
      [9] Ding, C.S., 1992. Lauraceae. In: Wang, J.X., ed., Flora of Zhejiang, Vol. 2. Zhejiang Science and Technology Publishing House, Hangzhou, 355-361 (in Chinese).
      [10] Drinnan, A.N., Crane, P.R., Friis, E.M., et al., 1990. Lauraceous flowers from the Potomac Group (Mid-Cretaceous) of eastern North America. Botanical Gazette, 151(3): 370-384. doi: 0006-8071/90/5103-0009
      [11] Edwards, H.H., 1990. The stomatal complex of Persea borbonia. Canadian Journal of Botany, 68(12): 2543-2547. doi: 10.1139/b90-320
      [12] Eklund, H., Kva ek, J., 1998. Lauraceous inflorescences and flowers from the Cenomanian of Bohemia (Czech Republic, central Europe). International Journal of Plant Sciences, 159(4): 668-686. doi: 1058-5893/98/5904-0016
      [13] Faggetter, C.D., 1987. Leaf cuticles (phytoglyphs) of selected Lauraceae. In: Metcalfe, C.R., ed., Anatomy of the dicotyledons, 2nd ed., Vol. Ⅲ. Magnoliales, Illiciales, and Laurales. Claredon Press, Oxford, 157-160.
      [14] Frumin, S., Eklund, H., Friis, E.M., 2004. Mauldinia hirsuta sp. nov., a new member of the extinct genus Mauldinia (Lauraceae) from the Late Cretaceous (Cenomanian-Turonian) of Kazakhstan. International Journal of Plant Sciences, 165(5): 883-895. doi: 1058-5893/2004/16505-0019
      [15] Hammer, O., Harper, D.A.T., Ryan, P.D., 2009. PAST-palaeontological statistics. Version 1.88, 1-89.
      [16] Hetherington, A.M., Woodward, F.I., 2003. The role of stomata in sensing and driving environmental change. Nature, 424: 901-908. doi: 10.1038/nature01843
      [17] Hill, R.S., 1986. Lauraceous leaves from the Eocene of Nerriga, New South Wales. Alcheringa, 10: 327-351. doi: 10.1080/03115518608619144
      [18] Ho, K.S., Chen, J.C., Lo, C.H., et al., 2003. 40Ar-39Ar dating and geochemical characteristics of Late Cenozoic basaltic rocks from the Zhejiang-Fujian region, SE China: eruption ages, magma evolution and petrogenesis. Chemical Geology, 197: 287-318. doi: 10.1016/S0009-2541(02)00399-6
      [19] Hu, Y.Q., Ferguson, D.K., Li, C.S., et al., 2007. Alseodaphne (Lauraceae) from the Pliocene of China and its paleolimatic significance. Review of Palaeobotany and Palynology, 146: 277-285. doi: 10.1016/j.revpalbo.2007.06.002
      [20] Huzioka, K., Takahasi, E., 1970. The Eocene flora of the Ube coal-field, Southwest Honshu, Japan. Journal of the Mining College, Akita University (Ser. A), 4: 1-88. http://www.researchgate.net/publication/284340117_The_Eocene_flora_of_the_Ube_coal-field_southwest_Honshu_Japan
      [21] Ina, H., 2004. Plants from the Middle Miocene Shukunohora sandstone facies of the Mizunami group, Mizunami city, Gifu prefecture, Central Japan. Bulletin of the Mizunami Fossil Museum, 31: 73-76 (in Japanese with an English abstract).
      [22] Jia, H., Sun, B.N., Li, X.C., et al., 2009. Microstructures of one species of Quercus from the Neogene in eastern Zhejiang and its palaeoenvironmental indication. Earth Science Frontiers, 16(5): 79-90 (in Chinese with an English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200905011.htm
      [23] Kerp, H., 1990. The study of fossil gymnosperms by means of cuticular analysis. Palaios, 5(6): 548-569. doi: 10.2307/3514861
      [24] Kerp, H., 2002. Atmospheric CO2 from fossil plant cuticles. Nature, 415: 38. doi: 10.1038/415038b
      [25] Kürschner, W.M., Van der Burgh, J., Visscher, H., et al., 1996. Oak leaves as biosensors of Late Neogene and Early Pleistocene paleoatmospheric CO2 concentrations. Marine Micropaleontology, 27: 299-312. doi: 10.1016/0377-8398(95)00067-4
      [26] Kürschner, W.M., 1997. The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert): implications for their use as biosensors of palaeoatmospheric CO2 levels. Review of Palaeobotany and Palynology, 96: 1-30. doi: 10.1016/S0034-6667(96)00051-6
      [27] Kürschner, W.M., Kva ek, Z., Dilcher, D.L., 2008. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proceedings of the National Academy of Sciences, 105(2): 449-453. doi: 10.1073/pnas.0708588105
      [28] Kürschner, W.M., Wagner, F., Visscher, E.H., et al., 1997. Predicting the response of leaf stomatal frequency to a future CO2-enriched atmosphere: constraints from historical observations. Geologische Rundschau, 86(2): 512-517. doi: 10.1007/s005310050158
      [29] Lakhanpal, R.N., 1958. The Rujada Flora of West Central oregon. University of California Publications in Geological Sciences, 35(1): 1-66. http://www.researchgate.net/publication/284993617_The_Rujada_flora_of_west_central_Oregon
      [30] LAWG (leaf architecture working group), 1999. Manual of leaf architecture: morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms. Smithsonian Institution, Washington D.C., 1-65. http://www.researchgate.net/publication/270216765_Manual_of_Leaf_Architecture_-_Morphological_description_and_categorization_of_dicotyledonous_and_net-veined_monocotyledonous_angiosperms
      [31] Li, S.G., 1982. Machilus Nees. In: Li, X.W., ed., Flora reipublicae popularis sinicae. Science Press, Beijing (in Chinese).
      [32] Li, H.M., 1984. Neogene floras from eastern Zhejiang, China. In: Whyte, R.O., ed., The evolution of the East Asian environment, Vol. Ⅱ. Palaeobotany, palaeozoology and palaeoanthropology, centre of Asian studies. University of Hong Kong, Hong Kong, 461-466.
      [33] Li, J.Z., Qiu, J., Liao, W.B., et al., 2009. Eocene fossil Alseodaphne from Hainan Island of China and its paleoclimatic implications. Science in China (Ser. D), 52(10): 1537-1542. doi: 10.1007/s11430-009-0120-1
      [34] Li, J., Christophel, D.C., 2000. Systematic relationships within the Litsea complex (lauraceae): a cladistic analysis based on morphological and leaf cuticle data. Australian Systematic Botany, 13: 1-13. doi: 10.1071/SB98015
      [35] Li, J., Li, X.W., 2004. Advances in lauraceae systematic research on the world scale. Acta Botanica Yunnanica, 26 (1): 1-11 (in Chinese with an English abstract). http://europepmc.org/abstract/CBA/358677
      [36] Lin, X.Z., 2007a. Quantitative classification of plants of machilus in Zhejiang Province. Scientia Silvae Sinicae, 43(11): 151-156 (in Chinese with an English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LYKE200711026.htm
      [37] Lin, X.Z., 2007b. The systematical studies on species from genus Machilus in Zhejiang Province. China Forestry Publishing House, Beijing (in Chinese).
      [38] Little, S.A., Stockey, R.A., Penner, B., 2009. Anatomy and development of fruits of lauraceae from the Middle Eocene Princeton. American Journal of Botany, 96(3): 637-651. doi: 10.3732/ajb.0800318
      [39] Liu, R.X., Chen, W.J., Sun, J.Z., et al., 1992. The K-Ar age and tectonic environment of Cenozoic rock in China. In: Liu, R.X., ed., The age and geochemistry of Cenozoic volcanic rock in China. Seismic Press, Beijing, 1- 43 (in Chinese).
      [40] Liu, Y.S., 1990. Cuticular studies on two Pleistocene species of lauraceae in Baise basin, Guangxi. Acta Botanica Sinica, 32(10): 805-808 (in Chinese with an English abstract). http://www.cabdirect.org/abstracts/19910649862.html
      [41] Liu, Y.S., 1993. A palaeoclimatic analysis on Early Pleistocene flora of Changsheling Formation, Baise basin, Guangxi. Acta Palaeontologica Sinica, 32: 151173 (in Chinese with an English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX199302003.htm
      [42] Liu, Y.S., Zetter, R., Ferguson, D.K., et al., 2007. Discriminating fossil evergreen and deciduous Quercus pollen: a case study from the Miocene of eastern China. Review of Palaeobotany and Palynology, 145: 289-303. doi: 10.1016/j.revpalbo.2006.12.001
      [43] Liu, Y.S., Zetter, R., Ferguson, D.K., et al., 2008. Lagerstroemia (lythraceae) pollen from the Miocene of eastern China. Grana, 47(4): 262-271. doi: 10.1080/00173130802457255
      [44] McElwain, J.C., 1998. Do fossil plants signal palaeoatmospheric carbon dioxide concentration in the geological past?Philosophical Transactions of the Royal Society of London-series B, 353(1365): 83-96. doi: 10.1098/rstb.1998.0193
      [45] McElwain, J.C., Chaloner, W.G., 1996. The fossil cuticle as a skeletal record of environmental change. Palaios, 11(4): 376-388. doi: 10.2307/3515247
      [46] Nanjing Institute of Geology and Mineral Resources, 1982. Paleontological Atlas of East China, Vol. 3., Mesozoic and Cenozoic. Geological Publishing House, Beijing (in Chinese).
      [47] Osborne, C.P., Beerling, D.J., Lomax, B.H., et al., 2004. Biophysical constraints on the origin of leaves inferred from the fossil record. Proceedings of the National Academy of Sciences, 101(28): 10360-10362. doi: 10.1073/pnas.0402787101
      [48] Pole, M., 2007. Lauraceae macrofossil and dispersed cuticle from the Miocene of southern New Zealand. Palaeontologia Electronica, 10(1): 1-10. http://www.researchgate.net/publication/43474496_Lauraceae_Macrofossils_and_Dispersed_Cuticle_from_the_Miocene_of_Southern_New_Zealand
      [49] Royer, D.L., Wing, S.L., Beerling, D.J., et al., 2001. Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science, 292(5525): 2310-2313. doi: 10.1126/science.292.5525.2310
      [50] Salisbury, E.J., 1927. On the causes and ecological significance of stomatal frequency, with special reference to the Woodland flora. Philosophical Transactions of the Royal Society of London-series B, 216: 1-65. http://www.onacademic.com/detail/journal_1000036014533910_1603.html
      [51] Sun, Q.G., Song, S.Y., Wang, Y.F., et al., 1997. Introduction to terminology of classification of dicotyledonous leaf architecture. Acta Phytotaxonomica Sinica, 35(3): 275-288 (in Chinese with an English abstract). http://europepmc.org/abstract/CBA/304684
      [52] Uemura, K., 2005. Ⅳ. Fossil of Plant. In: Kasumi Education Committee, ed., The investigation report of footprint fossils from Kasumi. Kasumi, 67-77 (in Japanese).
      [53] Upchurch, G.R., Dilcher, D.L., 1990. Cenomanian angiosperm leaf megafossils, Dakota Formation, Rose Creek locality, Jefferson County, southeastern Nebraska. U.S. Geological Survey Bulletin, 1915: 1-55. http://www.researchgate.net/publication/36442572_Cenomanian_Angiosperm_Leaf_Megafossils_Dakota_Formation_Rose_Creek_Locality_Jefferson_County_Southeastern_Nebraska
      [54] Upchurch, G.R., 1995. Dispersed angiosperm cuticles: their history, preparation, and application to the rise of angiosperms in Cretaceous and Paleocene coals, southern western interior of North America. International journal of coal geology, 28: 161-227. doi: 10.1016/0166-5162(95)00018-6.
      [55] Van der Burgh, J., Visscher, H., Dilcher, D.L., et al., 1993. Paleoatmospheric signatures in Neogene fossil leaves. Science, 260(5115): 1788-1790. doi: 10.1126/science.260.5115.1788
      [56] Wilkinson, H.P., 1979. The plant surface (mainly leaf). In: Metcalf, C.R., Chalk, L., eds., Anatomy of the dicotyledons. I. Clarendon Press, Oxford 2nd ed., 97-165.
      [57] Wolfe, J.A., 1977. Paleogene floras from the Gulf of Alaska region. Geological Survey Professional Paper, 997: 1-108. http://www.researchgate.net/publication/285426059_Paleogene_floras_from_the_Gulf_of_Alaska_Region
      [58] Woodward, F.I., 1987. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 327: 617-618. doi: 10.1038/327617a0
      [59] Writing Group of Cenozoic Plants of China, 1978. Fossil Plants of China, Vol. 3: Cenozoic plants from China. Science Press, Beijing, 24 (in Chinese).
      [60] Wu, J.Y., Sun, B.N., Xie, S.P., et al., 2008. Two Neogene machilus (lauraceae) fossils leaves from Tengchong, Yunnan Province and its paleoenvironmental significance. Geological Journal of China Universities, 14(1): 90-98 (in Chinese with an English abstract). http://www.researchgate.net/publication/285786310_Two_Neogene_Machilus_Lauraceae_fossil_leaves_from_Tengchong_Yunnan_Province_and_its_paleoenvironmental_significance
      [61] Xia, K., Su, T., Liu, Y.S., et al., 2009. Quantitative climate reconstructions of the Late Miocene Xiaolongtan megaflora from Yunnan, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 276: 80-86. doi: 10.1016/j.palaeo.2009.02.024
      [62] Xu, Y.D., Yu, J.X., Luo, G.M., et al., 2007. Triassic palynological assemblage of the Gulangdi Formation in Tongren County, Qinghai Province, China. Earth ScienceJournal of China University of Geosciences, 32(5): 638-650 (in Chinese with an English abstract). http://www.researchgate.net/publication/286919446_Triassic_palynological_assemblage_of_the_Gulangdi_formation_in_Tongren_County_Qinghai_Province_China
      [63] Yabe, A., 2008. Early Miocene terrestrial climate inferred from plant megafossil assemblages of the Joban and Soma areas, Northeast Honshu, Japan. Bulletin of the Geological Survey of Japan, 59(7/8): 397-413. http://www.researchgate.net/publication/271106331_Early_Miocene_terrestrial_climate_inferred_from_plant_megafossil_assemblages_of_the_Joban_and_Soma_areas_Northeast_Honshu_Japan
      [64] Yin, J.R., Cui, Z.J., Ge, D.K., et al., 1996. Paleoecological analysis of quateranry fossil assemblages from Kunlun pass area, and geological significance for Kunlun Mountains rising. Earth ScienceJournal of China University of Geosciences, 21(3): 241-248 (in Chinese with an English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX603.001.htm
      [65] Zhou, Z.K., 2000. On the Miocene Xiaolongtan flora from Kaiyuan, Yunnan Province. In: Tao, J.R., ed., The evolution of the Late Cretaceous-Cenozoic floras in China. Science Press, Beijing, 64-72 (in Chinese).
      [66] Zhuang, X.Y., Zhang, Y., Sun, T.X., 2002. Leaf epidermis and their taxonomic significance in Machilus of Hong Kong. Journal of South China Agricultural University, 23(1): 52-54 (in Chinese with an English abstract). http://europepmc.org/abstract/CBA/367907
      [67] 地质矿产部南京地质矿产研究所, 1982. 华东地区古生物图册(三), 中、新生代分册. 北京: 地质出版社.
      [68] 丁陈森, 1992. 樟科. 见: 王景祥, 主编. 浙江植物志, 第2卷. 杭州: 浙江科学技术出版社, 355-361.
      [69] 贾慧, 孙柏年, 李相传, 等, 2009. 浙东新近纪一种栎属植物化石微细特征及其古环境指示. 地学前缘, 16(5): 79-90. doi: 10.3321/j.issn:1005-2321.2009.05.008
      [70] 李捷, 李锡文, 2004. 世界樟科植物系统学研究进展. 云南植物研究, 26(1): 1-11. doi: 10.3969/j.issn.2095-0845.2004.01.001
      [71] 李树刚, 1982. 润楠属. 见: 李锡文主编, 中国植物志. 北京: 科学出版社.
      [72] 林夏珍, 2007a. 浙江润楠属植物的数量分类. 林业科学, 43(11): 151-156. https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE200711026.htm
      [73] 林夏珍, 2007b. 浙江省润楠属植物系统研究. 北京: 中国林业出版社.
      [74] 刘若新, 陈文寄, 孙建中, 等, 1992. 中国新生代火山岩的K-Ar年代与构造环境. 见: 刘若新编. 中国新生代火山岩年代学与地球化学. 北京: 地震出版社, 1-43.
      [75] 刘裕生, 1990. 广西百色盆地更新世樟科两种植物角质层研究. 植物学报, 32(10): 805-808. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXB199010012.htm
      [76] 刘裕生, 1993. 广西百色盆地早更新世长蛇岭组植物群的古气候分析. 古生物学报, 32(2): 151-173. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX199302003.htm
      [77] 孙启高, 宋书银, 王宇飞, 等, 1997. 介绍双子叶植物叶结构分类术语. 植物分类学报, 35(3): 275-288. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWFX199703014.htm
      [78] 吴靖宇, 孙柏年, 解三平, 等, 2008. 云南腾冲新近系樟科润楠属两种植物化石及其古环境意义. 高校地质学报, 14(1): 90-98. doi: 10.3969/j.issn.1006-7493.2008.01.010
      [79] 徐亚东, 喻建新, 罗根明, 等, 2007. 青海省同仁县古浪堤中上三叠统古浪堤组孢粉组合及其地层意义. 地球科学——中国地质大学学报, 32(5): 638-650. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705009.htm
      [80] 阴家润, 崔之久, 葛道凯, 等, 1996. 昆仑山口第四纪化石组合的生态环境分析及其对昆仑山隆升的意义. 地球科学——中国地质大学学报, 21(3): 243-248. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX603.001.htm
      [81] 中国科学院北京植物研究所中国新生代植物编写组, 1978. 中国各门类化石中国植物化石第三册, 中国新生代植物. 北京: 科学出版社, 24.
      [82] 周浙昆, 2000. 云南开远小龙潭中新世植物. 见: 陶君容编. 中国晚白垩世至新生代植物区系发展演变. 北京: 科学出版社, 64-72.
      [83] 庄雪影, 张粤, 孙同兴, 2002. 香港润楠属植物叶表皮形态及分类学意义. 华南农业大学学报, 23(1): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNB200201014.htm
    • 加载中
    图(5) / 表(4)
    计量
    • 文章访问数:  3030
    • HTML全文浏览量:  190
    • PDF下载量:  71
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-07-26
    • 刊出日期:  2012-01-15

    目录

      /

      返回文章
      返回