In Situ Rare Earth Elements in Conodont from Meishan Section in Zhejiang Province and Implications for Paleoenvironmental Evolution
-
摘要: 本文利用激光剥蚀电感耦合等离子体质谱(LA-ICPMS),对煤山D剖面包含二叠纪-三叠纪界线层的牙形石中色变指数(CAI)较低的部分进行微区原位微量元素分析,并与利用溶解法测定的相应的沉积碳酸盐岩围岩稀土元素(REE)的组成进行了对比,探讨了它们的稀土元素组成对环境变化响应的差异及其可能的原因.结果显示,无论是稀土总量ΣREE,还是Ce异常值,牙形石的微区原位REE信息比围岩更能反映出当时的环境变化.这表明牙形石化石比围岩对环境变化更加敏感,利用牙形石微区LA-ICPMS微量元素分析的方法是可靠的.同时,牙形石的Ce异常值还能对早三叠世的环境有较好的指示意义,为二叠纪与三叠纪之交大绝灭主幕开始到早三叠世环境的剧烈变化和长期缺氧环境提供了新的证据.Abstract: Trace elements and rare earth elements (REE) contents of conodonts, distinguished by very low color alteration index (CAI), were measured by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) from Meishan D section across the Permian-Triassic boundary in Zhejiang Province. Comparative analyses of surrounding rocks geochemistry study, using solutions, a significantly different response to paleo-environmental changes was revealed. Present data indicate both the total REE contents in conodont and the Ce anomalies demonstrate a more sensitive change towards temporal environmental evolution than those in whole rocks. Therefore, conodont elements are more sensitive to ambient variation than the surrounding rocks, and it is reliable for LA-ICPMS in situ analysis of conodonts. Meanwhile, we can reconstruct the Early Triassic environment using the Ce anomaly of conodont, and it provides a new evidence for acute evolutions and long-term anoxia conditions from the Permo-Triassic crisis to the Early Triassic.
-
Key words:
- conodont /
- trace elements /
- LA-ICPMS /
- Meishan section /
- geochemistry
-
图 2 LA-ICPMS对BCR-2G玻璃标准样品分析结果与参考值相对偏差对比(标样推荐值来自Gao et al., 2002)
Fig. 2. Relative deviation of average concentrations in BCR-2G obtained in this study by LA-ICPMS vs. the reference values
表 1 LA-ICPMS仪器工作参数
Table 1. Laser ablation and ICPMS operating conditions
激光剥蚀系统:GeoLas 2005 ICPMS: Agilent 7500a 波长:193 nm, Excimer laser RF功率:1 350 W 脉冲宽度:15 ns 等离子体流速:14.0 L·min-1 能量密度:10 J·cm-2 辅助气流速:1. 0 L·min-1 斑束直径:24 μm 采样深度:5.0 mm 频率:8 Hz 离子透镜设置:Typical 载气:氦气(0.70 L·min-1) 积分时间:10 ms 补偿气:氩气(0.80 L·min-1) 检测器模式:Dual 表 2 煤山D剖面24~39层牙形石微量元素分析结果(10-6)
Table 2. Analysed trace elements of conodonts at the beds 24-39 from Meishan D section
MD24A MD24B MD24C MD24D MD24E MD24E-2 MD24E-3 MD24E-4 MD25 Co 0.04 0.02 0.04 0.03 0.02 0.03 0.02 0.02 0.05 Ni 0.32 0.17 0.20 0.17 0.23 0.23 0.19 0.16 0.17 Cu 0.89 0.80 0.84 3.48 1.05 0.64 0.36 1.26 1.22 Zn 15.61 19.41 17.84 14.28 12.98 17.44 14.90 14.54 14.81 Rb 0.07 0.02 0.03 0.21 0.02 0.02 0.03 0.03 0.19 Sr 1142 1125 1110 1218 1229 1202 1162 1263 1234 Y 5.87 4.32 2.51 6.63 12.57 14.97 10.48 18.74 21.09 Ba 3.71 2.27 2.28 4.69 8.29 8.84 6.88 10.44 6.86 La 5.39 3.79 2.80 6.01 7.77 8.66 6.42 9.58 18.64 Ce 11.91 7.41 5.78 11.19 15.04 16.34 12.09 18.81 58.89 Pr 1.64 1.05 0.86 1.76 2.37 2.84 1.90 3.36 10.09 Nd 7.36 4.81 4.17 8.40 10.81 14.05 8.90 17.50 53.49 Sm 1.65 1.07 0.99 2.13 3.17 4.22 2.67 5.20 16.15 Eu 0.36 0.21 0.20 0.52 0.93 1.19 0.92 1.46 2.18 Gd 1.72 1.12 0.98 2.14 3.31 4.65 2.86 5.88 14.42 Tb 0.20 0.13 0.12 0.26 0.45 0.59 0.36 0.75 1.75 Dy 1.07 0.67 0.48 1.28 2.10 2.90 2.00 3.55 6.99 Ho 0.14 0.11 0.07 0.20 0.36 0.43 0.28 0.55 0.82 Er 0.27 0.25 0.12 0.34 0.68 0.83 0.56 0.97 1.34 Tm 0.02 0.03 0.01 0.04 0.04 0.07 0.05 0.07 0.12 Yb 0.12 0.08 0.06 0.09 0.17 0.26 0.21 0.24 0.49 Lu 0.01 0.00 0.01 0.01 0.03 0.03 0.02 0.03 0.05 Pb 0.24 0.21 0.48 0.86 0.81 0.72 0.30 1.99 0.33 Th 0.10 0.08 0.61 0.17 0.21 0.31 0.24 0.61 2.46 U 0.74 0.70 0.17 0.45 0.40 0.53 0.31 0.78 0.09 ΣREE 31.9 20.7 16.7 34.4 47.2 57.1 39.3 68.0 185.4 Ce/Ce* 0.92 0.83 0.83 0.77 0.80 0.74 0.78 0.74 1.02 Ω(Ce) -0.08 -0.17 -0.17 -0.23 -0.20 -0.26 -0.22 -0.26 0.02 Eu/Eu* 0.97 0.88 0.91 1.12 1.31 1.23 1.53 1.21 0.66 (La/Sm)N 0.63 0.68 0.54 0.54 0.47 0.39 0.46 0.35 0.22 (La/Yb)N 4.42 4.86 4.83 6.53 4.49 3.37 3.00 4.01 3.80 (Sm/Yb)N 7.05 7.15 8.89 12.02 9.53 8.54 6.49 11.32 17.11 Th/La 0.02 0.02 0.22 0.03 0.03 0.04 0.04 0.06 0.13 MD26 MD27A MD27A-2 MD27B MD27C MD27D MD28 MD28-2 MD29 Co 0.03 0.03 0.08 0.02 0.02 0.03 0.02 0.02 0.02 Ni 0.44 0.22 0.76 0.16 0.17 1.01 0.20 0.18 0.19 Cu 7.08 0.69 5.57 1.36 0.25 3.93 1.26 0.21 2.55 Zn 26.57 22.61 36.58 25.22 14.58 47.53 23.46 26.01 20.02 Rb 0.13 0.03 0.19 0.23 0.03 0.16 0.04 0.08 0.03 Sr 1206 2057 990 1009 3300 3431 1387 2834 1269 Y 31.66 6.43 2.65 17.67 6.04 17.81 43.80 13.26 24.51 Ba 2.13 6.09 2.21 11.05 22.71 13.08 9.71 12.12 9.21 La 33.24 5.14 3.63 16.49 3.12 8.88 34.15 5.17 27.43 Ce 110.08 17.47 13.52 48.78 10.60 33.65 113.74 18.08 63.58 Pr 19.56 3.25 2.17 9.44 2.22 7.24 21.77 3.90 9.10 Nd 86.35 17.20 8.82 45.08 13.06 41.87 115.38 21.72 42.65 Sm 24.72 4.97 2.53 11.93 4.16 13.98 29.81 7.18 12.58 Eu 3.76 0.70 0.37 2.34 0.63 2.37 5.25 1.25 2.08 Gd 18.04 4.09 1.68 10.16 3.82 12.02 25.18 6.41 13.21 Tb 2.36 0.44 0.26 1.11 0.37 1.22 2.70 0.68 1.40 Dy 9.39 1.73 1.22 4.41 1.36 4.61 10.38 2.63 5.66 Ho 1.21 0.23 0.16 0.61 0.19 0.63 1.39 0.41 0.78 Er 2.22 0.29 0.33 1.02 0.30 0.94 2.32 0.72 1.38 Tm 0.24 0.03 0.04 0.10 0.03 0.08 0.21 0.07 0.13 Yb 1.13 0.13 0.20 0.43 0.14 0.28 0.80 0.28 0.63 Lu 0.12 0.01 0.02 0.06 0.01 0.03 0.07 0.03 0.06 Pb 149.56 0.26 322.16 14.84 0.27 1.28 0.38 0.43 0.32 Th 2.16 3.13 15.48 5.48 2.31 3.89 0.32 9.45 0.35 U 0.12 0.08 0.05 0.12 0.07 0.14 0.36 0.48 0.18 ΣREE 312.4 55.7 35.0 152.0 40.0 127.8 363.2 68.5 180.7 Ce/Ce* 1.11 1.05 1.28 0.97 0.97 1.04 1.02 1.00 0.92 Ω(Ce) 0.11 0.05 0.28 -0.03 -0.03 0.04 0.02 0.00 -0.08 Eu/Eu* 0.82 0.72 0.82 0.98 0.73 0.84 0.88 0.85 0.74 (La/Sm)N 0.26 0.20 0.28 0.27 0.14 0.12 0.22 0.14 0.42 (La/Yb)N 2.95 3.86 1.79 3.85 2.18 3.16 4.26 1.87 4.34 (Sm/Yb)N 11.43 19.43 6.48 14.50 15.13 25.87 19.33 13.53 10.35 Th/La 0.07 0.61 4.26 0.33 0.74 0.44 0.01 1.83 0.01 MD29-1 MD29-2 MD30-1 MD33-3 MD34-2 MD35 MD36 MD38-1 MD39-2 Co 0.03 0.03 0.08 0.02 0.03 0.03 0.03 0.02 0.03 Ni 0.31 0.17 0.81 0.15 0.21 0.19 0.80 0.16 0.17 Cu 1.05 3.33 7.90 2.98 0.62 0.41 3.93 0.25 2.23 Zn 35.89 24.06 45.30 34.35 23.52 20.87 35.53 19.47 40.45 Rb 0.03 0.06 0.35 0.05 0.06 0.02 0.11 0.02 0.06 Sr 1147 1201 982 3820 1982 1734 3168 1713 2677 Y 31.81 22.46 5.31 9.36 19.16 8.54 10.17 16.65 8.97 Ba 6.89 7.54 11.41 14.17 7.17 18.74 52.63 10.37 5.13 La 20.42 23.40 3.86 2.63 4.86 1.42 2.52 4.26 0.88 Ce 51.65 55.31 19.13 14.20 28.41 9.90 17.08 27.41 7.56 Pr 7.73 8.11 3.53 3.60 7.37 2.89 4.23 7.59 2.03 Nd 39.75 40.00 17.87 24.12 50.23 23.07 29.83 51.85 17.97 Sm 15.44 11.39 5.31 9.69 17.24 9.22 13.23 18.48 9.48 Eu 2.92 1.82 0.90 1.55 2.57 1.59 2.07 2.97 1.82 Gd 17.04 11.61 3.88 7.31 14.53 7.40 9.26 14.70 7.76 Tb 2.05 1.31 0.51 0.79 1.52 0.75 1.03 1.52 0.74 Dy 8.33 5.45 1.94 2.90 5.44 2.55 3.80 5.02 2.63 Ho 1.11 0.73 0.25 0.33 0.68 0.30 0.40 0.57 0.33 Er 1.93 1.31 0.44 0.59 0.98 0.42 0.67 0.72 0.44 Tm 0.16 0.13 0.04 0.05 0.07 0.03 0.07 0.06 0.03 Yb 0.80 0.57 0.23 0.26 0.28 0.13 0.32 0.21 0.14 Lu 0.07 0.05 0.03 0.03 0.03 0.01 0.03 0.02 0.01 Pb 1.02 0.50 198.96 9.14 0.07 0.09 115.07 0.19 0.11 Th 27.55 0.49 34.17 5.35 1.74 0.45 13.10 0.50 3.82 U 0.80 0.20 0.05 0.04 0.04 0.02 0.02 0.01 0.03 ΣREE 169.4 161.2 57.9 68.1 134.2 59.7 84.5 135.4 51.8 Ce/Ce* 0.93 0.91 1.37 1.19 1.24 1.27 1.37 1.29 1.45 Ω(Ce) -0.07 -0.09 0.37 0.19 0.24 0.27 0.37 0.29 0.45 Eu/Eu* 0.83 0.72 0.91 0.84 0.74 0.88 0.86 0.83 0.97 (La/Sm)N 0.25 0.40 0.14 0.05 0.05 0.03 0.04 0.04 0.02 (La/Yb)N 2.55 4.11 1.67 1.00 1.71 1.13 0.80 2.01 0.63 (Sm/Yb)N 10.02 10.41 11.95 19.16 31.57 38.06 21.77 45.33 35.22 Th/La 1.35 0.02 8.85 2.03 0.36 0.32 5.20 0.12 4.33 -
[1] Bertram, C.J., Elderfield, H., Aldridge, R.J., et al., 1992. 87Sr/86Sr, 143Nd/144Nd and REEs in Silurian phosphatic fossils. Earth and Planetary Science Letters, 113(1-2): 239-249. doi: 10.1016/0012-821X(92)90222-H [2] Cao, C.Q., Zheng, Q.F., 2009. Microstratigraphy of the Permian-Triassic transitional sequence of the Meishan section. Science in China (Ser. D), 39(4): 481-487 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1367912008001004 [3] Elderfield, H., Pagett, R., 1986. Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment. Science of the Total Environment, 49: 175-197. doi: 10.1016/0048-9697(86)90239-1 [4] Felitsyn, S., Sturesson, U., Popov, L., et al., 1998. Nd isotope composition and rare earth element distribution in Early Paleozoic biogenic apatite from Baltoscandia: a signature of lapetus ocean water. Geology, 26(12): 1083-1086. doi: 10.1130/0091-7613(1998)026<1083:NICARE>2.3.CO;2 [5] Gao, S., Liu, X.M., Yuan, H., et al., 2002. Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards Newslettet: The Journal of Geostandards and Geoanalysis, 26(2): 181-196. doi: 10.1111/j.1751-908X.2002.tb00886.x [6] Girard, C., Lécuyer, C., 2002. Variations in Ce anomalies of conodonts through the Frasnian/Famennian boundary of Poland (Kowala-Holy Cross Mountains): implications for the redox state of seawater and biodiversity. Palaeogeography, Palaeoclimatology, Palaeoecology, 181(1-3): 299-311. doi: 10.1016/S0031-0182(01)00482-5 [7] Girarda, C., Albarède, F., 1996. Trace elements in conodont phosphates from the Frasnian/Famennian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 126(1-2): 195-209. doi: 10.1016/S0031-0182(96)00114-9 [8] Grandjean, P., Cappetta, H., Albarède, F., 1988. The REE and εNd of 40-70 Ma old fish debris from the West African platform. Geophys. Res. Letter, 15(4): 389-392. doi: 10.1029/GL015i004p00389 [9] Grandjean, P., Cappetta, H., Michard, A., et al., 1987. The assessment of REE patterns and 143Nd/144Nd ratios in fish remains. Earth and Planetary Science Letters, 84(2-3): 181-196. doi: 10.1016/0012-821X(87)90084-7 [10] Grandjean-Lécuyer, P., Feist, R., Albarède, F., 1993. Rare earth elements in old biogenic apatites. Geochim. Cosmochim. Acta, 57(11): 2507-2514. doi: 10.1016/0016-7037(93)90413-Q [11] Gromet, L.P., Dymek, R.F., Haskin, L.A., et al., 1984. The "North American shale composite": its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta, 48: 2469-2482. doi: 10.1016/0016-7037(84)90298-9 [12] Hallam, A., 1997. Estimates of the amount and rate of sea-level change across the Rhaetian-Hettangian and Pliensbachian-Toarcian boundaries (Latest Triassic to Early Jurassic). Journal of the Geological Society, 154(5): 773-779. doi: 10.1144/gsjgs.154.5.0773 [13] Han, Y.W., Ma, Z.D., 2003. Geochemistry. Geological Publishing House, Beijing (in Chinese with English abstract). [14] Hao. Y.C., Mao, S.Z., 1993. Study on micropaleontology. China University of Geosciences Press, Wuhan (in Chinese). [15] Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008. Accurate determination of rare earth elements in USGS, NIST SRM, and MPI-DING galsses by excimer LA-ICPMS at high spatial resolution. Spectroscopy Letters, 41: 228-236. doi: 10.1080/00387010802171951 [16] Knoll, A.H., Bambach, R.K., Payne, J.L., et al., 2007. Paleophysiology and End-Permian mass extinction. Earth and Planetary Science Letters, 256(3-4): 295-313. doi: 10.1016/j.epsl.2007.02.018 [17] Lécuyer, C., Grandjean, P., Barrat, J.A., et al., 1998. δ18O and REE contents of phosphatic brachiopods: a comparison between modern and Lower Paleozoic populations. Geochim. Cosmochim. Acta, 62(14): 2429-2436. doi: 10.1016/S0016-7037(98)00170-7 [18] Lécuyer, C., Reynard, B., Grandjean, P., 2004. Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites. Chemical Geology, 204(1-2): 63-102. doi: 10.1016/j.chemgeo.2003.11.003 [19] Payne, J.L., Lehrmann, D.J., Wei, J. Y, et al., 2004. Large perturbations of the carbon cycle during recovery from the End-Permian extinction. Science, 305(5683): 506-509. doi: 10.1126/science.1097023 [20] Reynard, B., Lécuyer, C., Grandjean, P., 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chemical Geology, 155(3-4): 233-241. doi: 10.1016/S0009-2541(98)00169-7 [21] Tong, J.N., Yin, H.F., 2009. Advance in the study of Early Triassic life and environment. Acta Palaeont. Sinica, 48(3): 497-508 (in Chinese with English abstract). http://d.wanfangdata.com.cn/conference/7241396 [22] Tong, J.N., Zhang, S.X., Zuo, J.X., et al., 2007. Events during Early Triassic recovery from the End-Permian extinction. Global and Planetary Change, 55(1-3): 66-80. doi: 10.1016/j.gloplacha.2006.06.015 [23] Trotter, J.A., Eggins, S.M., 2006. Chemical systematics of conodont apatite determined by laser ablation ICPMS. Chemical Geology, 233: 196-216. doi: 10.1016/j.chemgeo.2006.03.004 [24] Trotter, J.A., Gerald, J.D.F., et al., 2007. New insights into the ultrastructure, permeability, and integrity of conodont apatite determined by transmission electron microscopy. Lethaia, 40(2): 97-110. doi: 10.1111/j.1502-3931.2007.00024.x [25] Turner, S., Burrow, C.J., Schultze, H.P., et al., 2010. False teeth! Why conodonts are not vertebrates. Geodiversitas, 32(4): 545-594 (in Chinese with English abstract). doi: 10.5252/g2010n4a1 [26] Wignall, P.B., Hallam, A., 1993. Griesbachian (Earliest Triassic) palaeoenvironmental changes in the salt range, Pakistan and Southeast China and their bearing on the Permo-Triassic mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 102(3-4): 215-237. doi: 10.1016/0031-0182(93)90068-T [27] Wright, J., Schrader, H., Holser, W.T., 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta, 51(3): 631-644. doi: 10.1016/0016-7037(87)90075-5 [28] Yang, Z.Y., Wu, S.B., Yin, H.F., et al., 1991. Geological events during the transitional period of Permian-Triassic in South China. Geological Publishing House, Beijing (in Chinese). [29] Yin, H.F., Feng, Q.L., Lai, X.L., et al., 2007. The protracted Permo-Trassic crisis and multi-episode extinction around the Permian-Triassic boundary. Global and Planetary Change, 55(1-3): 1-20. doi: 10.1016/j.gloplacha.2006.06.005 [30] Yin, H.F., Yang, F.Q., Zhang, K.X., et al., 1986. A proposal to the biostratigraphic criterion of the Permian/Triassic boundary. Memoire della Societa de Geologia Italiana, 34: 329-344 (in Chinese with English abstract). http://www.researchgate.net/publication/284254891_A_proposal_to_the_biostratigraphy_criterion_of_PermianTriassic_boundary [31] Yin, H.F., Zhang, K.X., Tong, J.N., et al., 2001. The global stratotype section and point of the Permian-Triassic boundary. Episodes, 24(2): 102-114. doi: 10.18814/epiiugs/2001/v24i2/004 [32] Zhang, K.X., Tong, J.N., Hou, G.J., et al., 2005. The People's Republic of China regional geological report: Meishanzhen map H50E006023, Changxingxian map H50E006024. China University of Geosciences Press, Wuhan (in Chinese). [33] Zhao, L.S., Wu, Y.B., Hu, Z.C., et al., 2009. Trace element compositions in conodont phosphates responses to biotic extinction event: a case study for main act of global boundary stratotype section and point of the Permian-Triassic. Earth Science—Journal of China University of Geosciences, 34(5): 725-732 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.080 [34] Zhou, Y.Q., Chai, Z.F., Mao, X.Y., et al., 1989. Rare earth geochemistry of clays at and near the Permian-Triassic boundary in South China. Geotectonica et Metallogenia, 13(2): 188-196 (in Chinese with English abstract). http://www.researchgate.net/publication/292420961_Rare_earth_geochemistry_of_clays_at_and_near_the_Permian-Triassic_boundary_in_south_China [35] 曹长群, 郑全锋, 2009. 煤山二叠纪-三叠纪过渡期事件地层时序的微观地层记录. 中国科学(D辑), 39(4): 481-487. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200904011.htm [36] 韩吟文, 马振东, 2003. 地球化学. 北京地质出版社. [37] 郝诒纯, 茅绍智, 1993. 微体古生物学教程. 武汉: 中国地质大学出版社. [38] 童金南, 殷鸿福, 2009. 早三叠世生物与环境研究进展. 古生物学报, 48(3): 497-508. doi: 10.3969/j.issn.0001-6616.2009.03.020 [39] 杨遵仪, 吴顺宝, 殷鸿福, 等, 1991. 华南二叠纪-三叠纪过渡期地质事件. 北京: 地质出版社. [40] 张克信, 童金南, 侯光久, 2005. 中华人民共和国区域地质调查报告: 煤山镇幅H50E006023长兴县幅H50E006024比例尺1∶50 000, 武汉: 中国地质大学出版社. [41] 赵来时, 吴元保, 胡兆初, 等, 2009. 牙形石微量元素对生物绝灭事件的响应: 以二叠-三叠系全球层型剖面第一幕绝灭事件为例. 地球科学——中国地质大学学报, 34(5): 725-732. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200905004.htm [42] 周瑶琪, 柴之芳, 毛雪瑛, 等, 1989. 中国南方二叠-三叠系界线及其附近粘土层稀土元素地球化学研究. 大地构造与成矿学, 13(2): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK198902011.htm