An Approximate Analytical Solution for Two-Region Non-Darcian Flow Toward a Well in a Leaky Aquifer
-
摘要: 构建了越流含水层中抽水井附近非达西流动的两区模型, 即距离抽水井较近的区域为非达西流, 而相对较远区域为达西流, 两区之间的临界半径可根据临界雷诺数确定.采用线性化近似方法和Laplace变换相结合分别得到了非达西流区域和达西流区域的水位降深在拉氏空间下的解析解, 应用数值Laplace逆变换—Stehfest方法得到其在实空间下的水位降深, 并与相应的全达西模型和全非达西模型进行了比较, 结果表明: 在抽水初期不同临界半径情况下非达西流区域的水位降深曲线互相重合, 并与全非达西模型所得到的结果相吻合; 在抽水后期的结果与全非达西流模型存在明显的差异.在抽水初期, 非达西渗透系数kD越大, 非达西流区域和达西流区域的水位降深越大; 在抽水后期, kD越大, 非达西流区域水位降深越小, 而kD的变化对达西流区域的水位降深影响较小.越流补给在非达西流情况下对水位降深的影响与达西流情况下的结果基本类似, 且只存在于抽水后期.考虑井储影响后, 不同kD和越流补给因子BD情况下抽水初期井中的水位降深在双对数坐标表现为直线且相互重合.Abstract: In this paper, we propose a two-region non-Darcian flow model near a pumping well in a leaky aquifer. The flow near the pumping well is assumed to be non-Darcian, with the area nearby defined as non-Darcian flow region, while the flow far away from the pumping well can be regarded as Darcian flow. The critical distance distinguishing the non-Darcian flow region and Darcian flow region can be determined by the critical Renolds number. We have used a linearization procedure coupled with Laplace transform to solve such a two-region non-Darcian flow model. The drawdowns both in the non-Darcian flow region and Darcian flow region have been obtained by using the so-called Stefest numerical Laplace inversion method. We have compared our results with those for the one-region Darcian flow model and the one-region non-Darcian flow model. The results indicate that: (1) The drawdowns in the non-Darcian flow region of different critical distances approach the same asymptotic value at early stages, as well as the result for the one-region non-Darcian flow model; while at late stages, significant difference has been found between the drawdowns obtained in this study; (2) A larger "non-Darcian hydraulic conductivity" kD results in a greater drawdown in the entire aquifer at early stages, while leads to a smaller drawdown in the non-Darcian flow region at late stages and has little impact on the drawdowns in the Darcian flow region; (3) The leakage effect on the drawdown is similar to that for the Darcian flow case, and it only exists at late stages; (4) When the wellbore storage is considered, all the drawdowns inside the well for different kD and dimensionless leakage parameter BD values approach the same asymptotic value at early stages and are straight lines in double logarithmic paper at early stages.
-
Key words:
- pumping well /
- leaky aquifer /
- non-Darcian flow /
- environment engineering /
- hydrogeology
-
图 2 非达西流区域水位降深与Wen et al.(2008a)全非达西流动模型比较
Fig. 2. Comparison of the solution in this study with Wen et al. (2008a)
表 1 无量纲变量
Table 1. Dimensionless variables used in this study
${r_D} = \frac{r}{m}$ ${r_{wD}} = \frac{{{r_w}}}{m}$ ${r_{cD}} = \frac{{{r_c}}}{m}$ ${R_{cD}} = \frac{{{R_c}}}{m}$ ${q_D} = - \frac{{4\pi {m^2}}}{Q}q$ ${s_D} = \frac{{4\pi {k_2}m}}{Q}s$ ${k_D} = \frac{{{k_1}}}{{{k_2}}}{\left[ {\frac{Q}{{4\pi {m^2}}}} \right]^{1 - n}}$ ${t_D} = \frac{{{k_2}t}}{{Sm}}$ ${B_D} = \frac{{B{k_2}}}{{{m^2}}}$ -
[1] Camacho, V.R.G., Vásquez, C.M., 1992. Comment on "analytical solution incorporating nonlinear radial flow in confined aquifers" by Zekai Sen. Water Resources Research, 28(12): 3337-3338. doi: 10.1029/92WR01646 [2] Chang, A.D., Guo, J.Q., Wang, H.S., 2000. The analytical solution of unsteady well flow with two flow regimes. Journal of Hydraulic Engineering, 6: 49-53 (in Chinese with English abstract). doi: 10.1080/09715010.2000.10514679 [3] Hantush, M.S., Jacob, C.E., 1955. Non-steady radial flow in an infinite leaky aquifer. Transactions, American Geophysical Union, 36(1): 95-100. doi: 10.1029/TR036i001p00095 [4] Liu, Y.H., Chang, A.D., 2005. Research on unsteady well flow of the specific discharge of the nonlinear regime. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 33(8): 113-115 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=20015341 [5] Liu, Y.H., Chang, A.D., Deng, Q.X., 2005. Drawdown of well flow in the co-existed linear and nonlinear exponents. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 33(3): 157-160 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBNY200503026.htm [6] Mathias, S.A., Butler, A.P., Zhan, H.B., 2008. Approximate solutions for forchheimer flow to a well. Journal of Hydraulic Engineering, 134(9): 1318-1325. doi: 10.1061/(ASCE)0733-9429(2000)134.9 [7] Sen, Z., 1987. Non-Darcian flow in fractured rocks with a linear flow pattern. Journal of Hydrology, 92(1-2): 43-57. doi: 10.1016/0022-1694(87)90088-6 [8] Sen, Z., 1988. Type curves for two-region well flow. Journal of Hydraulic Engineering, 114(12): 1461-1484. doi: 10.1061/(ASCE)0733-9429(1988)114.12 [9] Sen, Z., 1989. Nonlinear flow toward wells. Journal of Hydraulic Engineering, 115(2): 193-209. doi: 10.1061/(ASCE)0733-9429(1989)115.2(193) [10] Sen, Z., 1990. Nonlinear radial flow in confined aquifers toward large-diameter wells. Water Resources Research, 26(5): 1103-1109. doi: 10.1029/WR026i005P01103 [11] Stehfest, H., Goethe-Univ, J.W., Germany, W., 1970a. Algorithm 368: numerical inversion of Laplace transforms. Communications of the ACM, 13(1): 47-49. doi: 10.1145/361953.361969 [12] Stehfest, H., Goethe-Univ, J.W., Germany, W., 1970b. Remark on algorithm 368: numerical inversion of Laplace transforms. Communications of the ACM, 13(10): 624-625. doi: 10.1145/355598.362787 [13] Wang, P.J., 1996. Theory for two-regime well flow in confined aquifers. Journal of Irrigation and Drainage, 15(4): 1-9 (in Chinese with English abstract). [14] Wen, Z., Huang, G.H., Zhan, H.B., 2006. Non-Darcian flow in a single confined vertical fracture toward a well. Journal of Hydrology, 330(3-4): 698-708. doi: 10.1016/j.jhydrol.2006.05.001 [15] Wen, Z., Huang, G.H., Zhan, H.B., 2008a. Non-Darcian flow to a well in an aquifer-aquitard system. Advances in Water Resources, 31(12): 1754-1763. doi: 10.1016/j.advwatres.2008.09.002 [16] Wen, Z., Huang, G.H., Zhan, H.B., 2008b. An analytical solution for non-Darcian flow in a confined aquifer using the power law function. Advances in Water Resources, 31(1): 44-55.10.1016/j. advwatres. 2007.06.002 doi: 10.1016/j.advwatres.2007.06.002 [17] Wen, Z., Huang, G.H., Zhan, H.B., et al., 2008c. Two-region non-Darcian flow toward a well in a confined aquifer. Advances in Water Resources, 31(5): 818-827. doi: 10.1016/j.advwatres.2008.01.004 [18] Wen, Z., Huang, G.H., Li, J., et al., 2009a. A numerical solution of non-Darcian flow toward an extended well in a confined aquifer. Journal of Hydraulic Engineering, 40(4): 398-402 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB200904004.htm [19] Wen, Z., Huang, G.H., Li, J., et al., 2009b. A numerical solution for non-Darcian flow toward a well in a leaky aquifer. Chinese Journal of Hydrodynamics, 24(4): 448-454 (in Chinese with English abstract). http://www.researchgate.net/publication/287464153_A_numerical_solution_for_non-Darcian_flow_toward_a_well_in_a_leaky_aquifer [20] Wu, Y.S., 2001. Non-darcy displacement of immiscibe fluids in porous media. Water Resources Research, 37(12): 2943-2950. doi: 10.1029/2001WR000389 [21] Wu, Y.S., 2002. Numerical simulation of single-phase and multiphase non-Darcy flow in porous and fractured reservoirs. Transport in Porous Media, 49(2): 209-240. doi: 10.1023/A:1016018020180 [22] 常安定, 郭建青, 王洪胜, 2000. 两种流态区域条件下的井流问题的解析解. 水利学报, 6: 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200006008.htm [23] 刘元会, 常安定, 2005. 非线性渗流区域井流问题渗流速度的分区研究. 西北农林科技大学学报(自然科学版), 33(8): 113-115. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200508034.htm [24] 刘元会, 常安定, 邓秋霞, 2005. 线性非线性并存区域井流问题的水头降深研究. 西北农林科技大学学报(自然科学版), 33(3): 157-160. doi: 10.3321/j.issn:1671-9387.2005.03.037 [25] 王鹏举, 1996. 考虑非达西流情况下地下水向集水建筑物运动的非稳定理论的研究. 灌溉排水, 15(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS604.000.htm [26] 文章, 黄冠华, 李健, 等, 2009a. 承压含水层中扩展井附近非达西流数值解. 水利学报, 40(4): 398-402. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200904004.htm [27] 文章, 黄冠华, 李健, 等, 2009b. 越流含水层中抽水井附近非达西流动模型的数值解. 水动力学研究与进展, 24(4): 448-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200904010.htm