Molybdenum Isotopic Compositions and Significance of Bitumen at Different Geological Periods in Shangsi Section, Guangyuan, Sichuan
-
摘要: 对四川广元地区寒武纪、二叠纪和石炭纪部分海相碳酸盐岩地层中沥青的Mo同位素和微量元素进行了测定.结果表明, 该区不同时期沥青的δ98Mo有较大的变化范围(+0.34‰~+1.71‰), 总体上, 接近缺氧沉积岩δ98Mo的范围.寒武纪海相地层中沥青具有明显的δEu正异常(0.75~1.68), 其Mo、Ni、V等氧化还原敏感元素含量相对较高, 且具有明显偏重的δ98Mo(1.17‰~1.71‰), 特别是下寒武统筇竹寺组的一个样品(Hs-qzs)出现明显的δEu正异常(1.68), 可能与同期强烈的海底热液活动有关.热液喷发过程中产生的大量硫化氢, 导致偏重δ98Mo以及Mo、Ni、V等元素的富集.虽然该区不同时期的海相碳酸盐岩中沥青的TMV与TMNi没有明显的相关性, 但是不同时期(寒武纪、二叠纪和石炭纪)沥青的δ98Mo与V/Ni比值的分布区域存在一定的差异, 有可能与来源不同有关, 暗示δ98Mo有可能仍然保存着部分源岩的性质, 特别是下寒武统筇竹寺组(Hs-qzs)的TMV与TMNi相对偏高, 可能与海底热液作用及后期相对较强的降解作用有关.Abstract: In this research, new Molybdenum isotopic compositions of the bitumen, in the Gaungyuan section, Sichuan, as well as trace elements are determined. The results show that it has a large variation of δ98Mo (+0.34‰~+1.71‰) in this region, reaching the range of anoxic sediments δ98Mo in general. The slightly positive δEu anomaly has been shown in the Cambrian interval (0.75-1.68), specially, with a sample from Qiongzhusi Formation (Hs-qzs) with a significant positive δEu anomaly (1.68), corresponding to the enrichment of redox-sensitive trace elements (such as Mo, Ni, V), with the positive δ98Mo (1.17‰-1.71‰). These characteristics might be related to local intense hydrothermal erupting, corresponding to the large quantity of H2S and HS- into the contemporaneous seawater. Introduction of these sulfide gases would cause MoO42- to be transferred into MoS42-, favoring the preferential deposition of the heavy Mo isotope as MoS42- and thus leaving a positive Mo isotope value. Although no much good correlation between TMV and TMNi has been shown in this area, the distinct fields from difference interval of bitumen is observed by the plot of δ98Mo against V/Ni ratios, it implies the possible stability of δ98Mo by local mobilization during diagenesis/early catagenesis.
-
Key words:
- Molybdenum isotope /
- bitumen /
- marine sediment /
- geochemistry
-
图 1 四川广元上寺剖面地质示意(据Isozaki et al., 2007修改)
Fig. 1. Geological map of Guangyuan Shangsi section, Sichuan
表 1 四川广元地区不同时期海相碳酸盐岩中沥青的δ98Mo、TOC和微量元素数据
Table 1. The δ98Mo, TOC and trace element data of the bitumen from marine carbonate rock in Guangyuan section
样品编号 Pgy-wjp-100 Gy-qx-c Pgy-mo-43 Pgy-qx-22 Pgy-17 Pgy-mo-3 C2-fs-5 Hs-clp Hs-cl Hs-qzs 时代 二叠纪 二叠纪 二叠纪 二叠纪 二叠纪 二叠纪 石炭纪 寒武纪 寒武纪 寒武纪 样品描述 黑色泥质层 方解石脉与沥青共生 干沥青较多,选干沥青 黑色灰岩夹干沥青 泥质灰岩夹干沥青 干沥青 藻纹层沥青层共生 中粗粉砂岩夹沥青 粉砂岩中夹干沥青 沥青带,较厚 V(μg/g) 759.7 698.0 918.8 140.6 319.0 274.3 57.27 83.81 438.0 132.6 Co(μg/g) 42.72 3.64 20.65 2.23 3.08 5.06 6.20 0.85 14.98 1.90 Ni(μg/g) 616.0 143.7 168.49 40.71 74.51 40.19 58.02 51.56 132.3 293.9 Cu(μg/g) 185.8 51.42 68.19 17.55 10.52 39.68 36.91 7.22 3408 7.47 Zn(μg/g) 727.3 86.18 104.1 92.20 64.21 50.52 18.34 13.20 77.12 20.20 Ga(μg/g) 23.88 14.18 25.46 2.37 3.88 3.53 10.01 1.42 5.37 0.78 Zr(μg/g) 352.6 147.0 227.9 23.08 34.65 29.28 114.3 18.09 82.92 6.25 Mo(μg/g) 121.7 79.56 68.46 16.67 120.9 7.15 3.89 3.38 77.84 21.32 La(μg/g) 34.06 11.13 22.92 2.57 5.20 6.33 9.47 2.84 11.11 1.30 Ce(μg/g) 63.45 17.91 34.59 4.23 9.45 9.24 13.94 5.25 17.02 2.21 Pr(μg/g) 9.10 2.07 3.86 0.51 1.16 1.32 1.49 0.68 2.26 0.28 Nd(μg/g) 40.17 7.15 12.97 1.93 4.30 5.02 4.77 2.82 8.87 1.06 Sm(μg/g) 9.46 1.26 2.13 0.44 0.90 1.16 0.81 0.77 1.79 0.23 Eu(μg/g) 2.14 0.20 0.36 0.10 0.14 0.25 0.15 0.21 0.50 0.13 Gd(μg/g) 9.71 1.02 1.71 0.52 0.78 1.34 0.74 0.99 1.89 0.22 Tb(μg/g) 1.33 0.17 0.29 0.09 0.13 0.22 0.13 0.18 0.30 0.03 Dy(μg/g) 7.03 1.18 1.75 0.61 0.78 1.23 0.83 1.10 1.83 0.18 Ho(μg/g) 1.40 0.27 0.43 0.15 0.16 0.27 0.21 0.24 0.41 0.04 Er(μg/g) 3.97 0.92 1.40 0.42 0.46 0.76 0.72 0.64 1.24 0.12 Tm(μg/g) 0.60 0.16 0.26 0.07 0.08 0.12 0.13 0.09 0.20 0.02 Yb(μg/g) 3.46 1.13 1.86 0.48 0.51 0.70 0.94 0.50 1.22 0.12 Lu(μg/g) 0.49 0.18 0.29 0.07 0.07 0.11 0.14 0.07 0.19 0.02 La/Sm 2.33 5.72 6.94 3.80 3.72 3.53 7.56 2.38 4.01 3.57 Gd/Yb 2.32 0.74 0.76 0.91 1.26 1.58 0.65 1.65 1.29 1.52 La/Yb 7.06 7.06 8.85 3.87 7.32 6.46 7.19 4.11 6.56 7.67 ∑L/∑H 2.37 2.81 3.37 1.54 2.71 1.99 2.77 1.37 2.24 2.89 ∑REE 750.8 169.4 313.5 52.49 91.97 117.9 131.3 73.52 199.4 24.33 δCe(‰) 0.87 0.85 0.82 0.85 0.90 0.74 0.82 0.90 0.79 0.86 δEu(‰) 0.68 0.51 0.56 0.63 0.51 0.62 0.57 0.75 0.83 1.68 V/Ni 1.23 4.86 5.45 3.45 4.28 6.83 0.99 1.63 3.31 0.45 δ98Mo(‰) 0.58 1.02 1.5 1.1 0.59 0.34 1.5 1.17 1.24 1.71 TOC(%) 25.34 13.60 11.40 1.91 2.47 5.04 9.08 75.59 57.97 65.64 EFV 3.02 6.65 5.64 8.53 12.89 13.11 0.70 6.49 7.39 29.69 EFNi 6.67 3.73 2.82 6.73 8.21 5.24 1.94 10.88 6.09 179.4 EFCu 2.21 1.47 1.26 3.19 1.27 5.69 1.36 1.68 172.6 5.02 EFZn 5.10 1.45 1.13 9.87 4.58 4.26 0.40 1.80 2.30 7.98 EFU 8.50 39.70 5.93 46.83 16.72 27.98 2.84 1.24 5.61 4.22 EFMo 72.47 113.66 63.08 151.65 733.04 51.29 7.15 39.27 197.1 716.20 EFCo 1.11 0.23 0.83 0.88 0.81 1.58 0.50 0.43 1.65 2.77 注:δCe=2(Ce样品/Ce球粒陨石)/(La样品/La球粒陨石+Nd样品/Nd球粒陨石);δEu=2(Eu样品/Eu球粒陨石)/(Sm样品/Sm球粒陨石+Tb样品/Tb球粒陨石);EF为元素富集因子,TM为微量元素的浓度.EF=TM/Zr*=TM/Zrsample: TM/Zraverage shale,即利用锆扣除陆源碎屑影响( Wilde et al., 2004 ).平均页岩数据据Wedepohl(1971, 1991). -
[1] Barwise, A.J.G., 1987. Mechanisms involved in altering deoxophylioerythroetioporphyrin-etioporphyrin ratios in sediments and oils. In: Filby, R.H., Branthaver, J.F., eds., Metal complexes in fossil fuels. American Chemical Society Symposium Series, 344: 100-109. doi: 10.1021/bk-1987-0344.ch006 [2] Branthaver, J.F., Filby, R.H., 1987. Application of metal complexes in petroleum to exploration geochemistry. In: Filby, R.H., Branthaver, J.F., eds., Metal complexes in fossil fuels. American Chemical Society Symposium Series, 344: 84-99. doi: 10.1021/bk-1987-0344.ch005 [3] Cai, L.G., Rao, D., Pan, W.L., et al., 2005. The evolution model of the Puguang gas field in Northeast Sichuan. Petroleum Geology and Experiment, 27(5): 462-467 (in Chinese with English abstract). http://www.researchgate.net/publication/281477547_The_Evolution_Model_of_the_Puguang_Gas_Field_in_Northeast_of_Sichuan [4] Calvert, S.E., 1987. Oceanographic controls on the accumulation of organic matter in marine sediments. Geological Society London Special Publications, 26(1): 137. doi: 10.1144/GSL.SP.1987.026.01.08 [5] Curiale, J.A., Harrison, W.E., 1981. Correlation of oil and asphaltite in Ouachita Mountain region of Oklahoma. American Association of Petroleum Geologists Bulletin, 65: 2426-2432. http://www.researchgate.net/profile/Joseph_Curiale/publication/255540936_Correlation_of_oil_and_asphaltite_in_Quachita_mountain_region_of_Oklahoma/links/5405bb5f0cf2c48563b186d2 [6] Dai, J.X., Wang, T.B., Song, Y., 1997. The distribution and formation condition of large and medium-sized gas field in China. Geological Publishing House, Beijing (in Chinese). [7] Demaison, G.J., Moore, G.T., 1980. Anoxic environments and oil source bed genesis. Organic Geochemistry, 2(1): 9-31. doi: 10.1016/0146-6380(80)90017-0 [8] Didyk, B.M., Alturki, Y.I.A., Pillinger, C.T., et al., 1975. Petroporphyrins as indicators of geothermal maturation. Nature, 256: 563-565. doi: 10.1038/256563a0 [9] Ding, Z.J., Liu, C.Q., Yao, S.Z., et al., 2000. Ree composition and implication of hydrothermal sedimentation of sea-floor. Geological Science and Technology Information, 19(1): 27-35 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dzkjqb200001007 [10] Erba, E., 2004. Calcareous nannofossils palaeoecology and palaeocenographic reconstructions. Marine Micropaleontology, 52(1-4): 85-106. doi: 10.1016/j.marmicro.2004.04.007 [11] Filby, R.H., 1994. Origin and nature of trace element species in crude oils, bitumens and kerogens: implications for correlation and other geochemical studies. Geological Society London Special Publications, 78(1): 203-219. doi: 10.1144/GSL.SP.1994.078.01.15 [12] Gan, K.W., 1982. Basic types of oil basins in the world and their prospect evaluation. Acta Petrolei Sinica, 3(Suppl. ): 24-33 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB1982S1002.htm [13] Guo, T.L., Tian, H.Q., 2002. Several geological issues about Mesozoic-Palaeozoic oil and gas prosdpecting in southern China and the way of how to deal with. Oil & Gas Geology, 23(3): 244-247 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200203008.htm [14] Haymon, R.M., Fornari, D.J., von Damm, K.L., et al., 1993. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45-52′N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth and Planetary Science Letters, 119(1-2): 85-101. doi: 10.1016/0012-821X(93)90008-W [15] Humphris, S., 1998. Rare earth element composition of anhydrite: implications for deposition and mobility within the active TAG hydrothermal mound. Proceedings of the Ocean Drilling Program-Scientific Results, 158: 143-159. http://www.researchgate.net/publication/228409242_Rare_earth_element_composition_of_anhydrite_Implications_for_deposition_and_mobility_within_the_active_TAG_hydrothermal_mound [16] Isozaki, Y., Shimizu, N., Yao, J., et al., 2007. End-Permian extinction and volcanism-induced environmental stress: the Permian-Triassic boundary interval of lower-slope facies at Chaotian, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 218-238. doi: 10.1016/j.palaeo.2006.11.051 [17] James, R.H., Elderfield, H., 1996. Chemistry of ore-forming fluids and mineral formation rates in an active hydrothermal sulfide deposit on the Mid-Atlantic Ridge. Geology, 24(12): 1147-1150. doi:10.1130/0091-7613(1996)024<1147:COOFFA>2.3.CO;2 [18] Jiang, N.H., 1998. The V and Ni content and V/Ni ratio of some continental crude oils in China. Oil & Gas Geology, 9(1): 73-76 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT198801011.htm [19] Jiang, S.Y., Yang, J.H., Ling, H.F., et al., 2003. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulfide bed from the Lower Cambrian Niutitang Formation, South China. Progress in Natural Science, 13(10): 788-794. doi: 10.1080/10020070312331344440 [20] Jin, Q., Tian, H.Q., Dai, J.S., 2001. Application of microelement composition to the correlation of solid bitumen with source rocks. Experimental Petroleum Geology, 23(3): 285-290 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYSD200103006.htm [21] Jin, Q., Zhai, Q.L., 2003. Volcanic and thermal-water activities and hydrocarbon generations in the rift basins, eastern China. Chinese Journal of Geology, 38(3): 342-349 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200303008.htm [22] Kapo, G., 1978. Vanadium: key to Venezuelan fossil hydrocarbons. In: Chilingarian, G.V., Yen, T.F., eds., Bitumens, asphalts and tar sands. Elsevier, Amsterdam, 7: 213-241. doi: 10.1016/S0376-7361(08)70068-2 [23] Karl, D.M., Wirsen, C.O., Jannasch, H.W., 1980. Deep sea primary production at the Galapagos hydrothermal vents. Science, 207: 1345-1347. doi: 10.1126/science.207.4437.1345 [24] Lein, A.Y., Gal'Chenko, V.F., Pimenov, N.V., et al., 1993. Role of bacterial chemosynthesis and methanotrophy in ocean biogeochemistry. Geochemistry International, 30(9): 87-104. http://www.researchgate.net/publication/321907032_Role_of_bacterial_chemosynthesis_and_methanotrophy_in_ocean_biogeochemistry [25] Lewan, M.D., 1984. Factors controlling the proportionality of vanadium to nickel in crude oils. Geochimica et Cosmochimica Acta, 48(11): 2231-2238. doi: 10.1016/0016-7037(84)90219-9 [26] Lewan, M.D., Maynard, J.B., 1982. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochimica et Cosmochimica Acta, 46(12): 2547-2560. doi: 10.1016/0016-7037(82)90377-5 [27] Li, S.R., Gao, Z.M., 2000. Source tracing of noble metal elements in Lower Cambrian black rock series of Guizhou-Hunan Provinces, China. Science in China (Ser. D), 43(6): 625-632. doi: 10.1007/BF02879506 [28] Liu, G.X., Tao, J.Y., Pan, W.L., et al., 2002. Genetic types of the natural gas in the northeast and the east of Sichuan basin. Experimental Petroleum Geology, 24(6): 512-516 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200206006.htm [29] Liu, W.J., Zheng, R.C., Li, Y.L., et al., 1999. Study of bitumen in the Huayuan lead-zinc deposit organic geochemistry study of MVT lead-zinc deposit. Acta Sedimentologica Sinica, 17(1): 19-23 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=3579426 [30] Mackenzie, A.S., Quirke, J.M.E., Maxwell, J.R., 1980. Molecular parameters of maturation in the Toarcian shales, Paris basin, France-II. Evolution of metalloporphyrins. Physics and Chemistry of The Earth, 12: 239-248. doi: 10.1016/0079-1946(79)90108-3 [31] Mills, R.A., Elderfield, H., 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26°N Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 59(17): 3511-3524. doi: 10.1016/0016-7037(95)00224-N [32] Moldowan, J.M., Sundararaman, P., Schoell, M., 1986. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW Germany. Organic Geochemistry, 10(4-6): 915-926. doi: 10.1016/S0146-6380(86)80029-8 [33] Morris, S.C., 1989. Burgess shale faunas and the Cambrian explosion. Science, 246(4928): 339-346. doi: 10.1126/science.246.4928.339 [34] Müller, P.J., Suess, E., 1979. Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. organic carbon preservation. Deep Sea Research Part A: Oceanographic Research Papers, 26(12): 1347-1362. doi: 10.1016/0198-0149(79)90003-7 [35] Pan, A.F., He, Y., 2008. Rare earth element geochemical characteristics of oil in the Ordos basin. Journal of the Chinese Rare Earth Society, 26(3): 374-380 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XTXB200803022.htm [36] Peabody, C.E., Einaudi, M.T., 1992. Origin of petroleum and mercury in the Culver-Baer cinnabar deposit, Mayacmas district, California. Economic Geology, 87(4): 1078-1103. doi: 10.2113/gsecongeo.87.4.1078 [37] Pedersen, T.F., Calvert, S.E., 1990. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks? American Association of Petroleum Geologists Bulletin, 74(4): 454-466. doi: 10.1306/0C9B232B-1710-11D7-8645000102C1865D [38] Reynolds, J.G., Biggs, W.R., Fetzer, J.C., et al., 1984. Molecular characterization of vanadyl and nickel non-porphyrin compounds in heavy crude petroleums and residua. Collection Colloques et Seminaires (Institut Francois de Petrole), 40: 153. http://www.researchgate.net/publication/255138724_Molecular_characterization_of_vanadyl_and_nickel_non-porphyrin_compounds_in_heavy_crude_petroleums_and_residua [39] Sangster, D., 1980. A review of Appalachian stratabound sulphides in Canada. Geological Survey of Ireland Special Paper, 5: 7-18. [40] Saxby, J.D., 1976. The significance of organic matter in ore genesis. In: Karl, H.W., ed., Handbook of Strata-bound and stratiform ore deposits, Elsevier, Amsterdam, 111-133. [41] Siebert, C., Nägler, T.F., Kramers, J.K., 2001a. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochemistry Geophysics Geosystems, 2(7): 1032-1048. doi: 10.1029/2000GC000124 [42] Siebert, C., Nägler, T.F., Kramers, J.K., 2001b. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochemistry Geophysics Geosystems, 2(7): 1032. doi: 10.1029/2000GC000124 [43] Siebert, C., Nägler, T., von Blanckenburg, F., et al., 2003. Molybdenum isotope records as a potential new proxy for paleoceanography. Earth and Planetary Science Letters, 211(1-2): 159-171. doi: 10.1016/S0012-821X(03)00189-4 [44] Simoneit, B.R.T., Aboul-Kassim, T.A.T.M., Tiercelin, J.J., 2000. Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African rift. Applied Geochemistry, 15(3): 355-368. doi: 10.1016/S0883-2927(99)00044-X [45] Simoneit, B.R.T., Lein, A.Y., Peresypkin, V.I., et al., 2004. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow field (Mid-Atlantic Ridge at 36°N). Geochimica et Cosmochimica Acta, 68(10): 2275-2294. doi: 10.1016/j.gca.2003.11.025 [46] Steiner, M., Wallis, E., Erdtmann, B.D., et al., 2001. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(3-4): 165-191. doi: 10.1016/S0031-0182(01)00208-5 [47] Sverjensky, D.A., 1984. Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67(1): 70-78. doi: 10.1016/0012-821X(84)90039-6 [48] Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution. New York, Oxford. [49] Tissot, B.P., Welte, D.H., 1984. Petroleum formation and occurrence(2nd ed. ). Springer-Verlag, Berlin. [50] van Berkel, G.J., Quirke, J.M.E., Filby, R.H., 1989. The henryville bed of the new albany shale—I. preliminary characterization of the nickel and vanadyl porphyrins in the bitumen. Organic Geochemistry, 14(2): 119-128. doi: 10.1016/0146-6380(89)90066-1 [51] van Dover, C.L., Humphris, S.E., Fornari, D., et al., 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science, 294(5543): 818-823. doi: 10.1126/science.1064574 [52] Wang, L.S., Gou, X.M., Liu, G.Y., et al., 1997. The organic geochemistry and origin of natural gases in Sichuan basin. Acta Sedimentologica Sinica, 15(2): 49-53 (in Chinese with English abstract). [53] Wedepohl, K.H., 1971. Environmental influences on the chemical composition of shales and clays. Physics and Chemistry of the Earth, 8: 305-333. doi: 10.1016/0079-1946(71)90020-6 [54] Wedepohl, K.H., 1991. The composition of the upper earth's crust and the natural cycles of selected metals. Metals in natural raw materials, metals and theire compounds in the environment. Occurrence, analysis and biological relerance, N.Y. : VCH, 3-17. [55] Whitney, P.R., Olmsted, J.F., 1998. Rare earth element metasomatism in hydrothermal systems: the Willsboro-Lewis wollastonite ores, New York, USA. Geochimica et Cosmochimica Acta, 62(17): 2965-2977. doi: 10.1016/S0016-7037(98)00230-0 [56] Wilde, P., Lyons, T.W., Quinby-Hunt, M.S., 2004. Organic carbon proxies in black shales: molybdenum. Chemical Geology, 206(3-4): 167-176. doi: 10.1016/j.chemgeo.2003.12.005 [57] Wilde, P., Quinby-Hunt, M.S., Erdtmann, B.D., 1996. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sedimentary Geology, 101(1-2): 43-53. doi: 10.1016/0037-0738(95)00020-8 [58] Wright, J., Seymour, R., Shaw, H., 1984. REE and Nd isotopes in conodont apatite: variations with geological age and depositional environment. Geological Society of America, Special Paper, 196: 325-340. http://www.researchgate.net/publication/279934588_REE_and_Nd_isotopes_in_conodont_apatite_Variations_with_geological_age_and_depositional_environment [59] Yen, T., 1975. Vanadium and its bonding in petroleum. Ann Arbor Science Publisher Michigan, 167-181. [60] Zhang, B., Zhao, Z., Zhang, S.C., et al., 2007. Discussion on marine source rocks thermal evolvement patterns in the Tarim basin and Sichuan basin, West China. Chinese Science Bulletin, 52(Suppl. 1): 141-149. doi: 10.1007/s11434-007-6003-y [61] Zhou, L., Gao, S., Chris, H., et al., 2009. Preliminary Mo isotope data of Phanerozoic clastic sediments from the northern margin of the Yangtze block and its implication for paleoenvironmental conditions. Chinese Science Bulletin, 54(5): 822-829. doi: 10.1007/s11434-008-0489-9 [62] Zhou, L., Zhang, H.Q., Wang, J., et al. 2008. Assessment on redox conditions and organic burial of siliciferous sediments at the Latest Permian Dalong Formation in Shangsi, Sichuan, South China. Journal of China University of Geosciences, 19(5), 496-506. doi: 10.1016/S1002-0705(08)60055-2 [63] Zhou, L., Zhou, H.B., Li, M., et al., 2007. Molybdenum isotope signatures from Yangtze craton continental margin and its indication to organic burial rate. Earth Science—Journal of China University of Geosciences, 32(6): 759-766 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_zggdxxxswz-dqkx200704005.aspx [64] 蔡立国, 饶丹, 潘文蕾, 等, 2005. 川东北地区普光气田成藏模式研究. 石油实验地质, 27(5): 462-467. doi: 10.3969/j.issn.1001-6112.2005.05.006 [65] 戴金星, 王庭斌, 宋岩, 1997. 中国大中型气田形成条件与分布规律. 北京: 地质出版社. [66] 丁振举, 刘丛强, 姚书振, 等, 2000. 海底热液沉积物稀土元素组成及其意义. 地质科技情报, 19(1): 27-35. doi: 10.3969/j.issn.1000-7849.2000.01.007 [67] 甘克文, 1982. 世界含油、气盆地的基本类型及其远景评价. 石油学报, 3(增刊): 24-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB1982S1002.htm [68] 郭彤楼, 田海芹, 2002. 南方中-古生界油气勘探的若干地质问题及对策. 石油与天然气地质, 23(3): 244-247. doi: 10.3321/j.issn:0253-9985.2002.03.009 [69] 姜乃煌, 1988. 我国陆相原油的钒镍含量和钒镍比探讨. 石油与天然气地质, 9(1): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198801011.htm [70] 金强, 田海芹, 戴俊生, 2001. 微量元素组成在固体沥青-源岩对比中的应用. 石油实验地质, 23(3): 285-290. doi: 10.3969/j.issn.1001-6112.2001.03.007 [71] 金强, 翟庆龙, 2003. 裂谷盆地的火山热液活动和油气生成. 地质科学, 38(3): 342-349. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200303008.htm [72] 李胜荣, 高振敏, 2000. 湘黔寒武系底部黑色岩系贵金属元素来源示踪. 中国科学(D辑), 30(2): 169-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200002008.htm [73] 刘光祥, 陶静源, 潘文蕾, 等, 2002. 川东北及川东区天然气成因类型探讨. 石油实验地质, 24(6): 512-516. doi: 10.3969/j.issn.1001-6112.2002.06.006 [74] 刘文均, 郑荣才, 李元林, 等, 1999. 花垣铅锌矿床中沥青的初步研究: MVT铅锌矿床有机地化研究(I). 沉积学报, 17(1): 19-23. doi: 10.3969/j.issn.1000-0550.1999.01.003 [75] 潘爱芳, 赫英, 2008. 鄂尔多斯盆地石油的稀土元素地球化学特征. 中国稀土学报, 26(3): 374-380. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB200803022.htm [76] 王兰生, 苟学敏, 刘国瑜, 等, 1997. 四川盆地天然气的有机地球化学特征及其成因. 沉积学报, 15(2): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB702.009.htm [77] 张斌, 赵喆, 张水昌, 等, 2007. 塔里木盆地和四川盆地海相烃源岩成烃演化模式探讨. 科学通报, 52(增刊1): 108-114. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2007S1013.htm [78] 周炼, 周红兵, 李茉, 等, 2007. 扬子克拉通古大陆边缘Mo同位素特征及对有机埋藏量的指示意义. 地球科学——中国地质大学学报, 32(6): 759-766. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706006.htm