• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    表面活性剂强化空气扰动修复氯苯污染含水层

    秦传玉 赵勇胜 郑苇

    秦传玉, 赵勇胜, 郑苇, 2011. 表面活性剂强化空气扰动修复氯苯污染含水层. 地球科学, 36(4): 761-764. doi: 10.3799/dqkx.2011.077
    引用本文: 秦传玉, 赵勇胜, 郑苇, 2011. 表面活性剂强化空气扰动修复氯苯污染含水层. 地球科学, 36(4): 761-764. doi: 10.3799/dqkx.2011.077
    QIN Chuan-yu, ZHAO Yong-sheng, ZHENG Wei, 2011. Remediation of Chlorobenzene Polluted Aquifer by Surfactant-Enhanced Air Sparging. Earth Science, 36(4): 761-764. doi: 10.3799/dqkx.2011.077
    Citation: QIN Chuan-yu, ZHAO Yong-sheng, ZHENG Wei, 2011. Remediation of Chlorobenzene Polluted Aquifer by Surfactant-Enhanced Air Sparging. Earth Science, 36(4): 761-764. doi: 10.3799/dqkx.2011.077

    表面活性剂强化空气扰动修复氯苯污染含水层

    doi: 10.3799/dqkx.2011.077
    基金项目: 

    国家高技术研究发展“863”计划项目 2008AA06A410

    详细信息
      作者简介:

      秦传玉(1981-),男,讲师,主要从事水土环境污染控制与治理研究

      通讯作者:

      赵勇胜,E-mail:zhaoyongsheng@jlu.edu.cn

    • 中图分类号: X13

    Remediation of Chlorobenzene Polluted Aquifer by Surfactant-Enhanced Air Sparging

    • 摘要: 通过一维砂柱实验研究了阴离子表面活性剂十二烷基苯磺酸钠(SDBS)对空气扰动技术(air sparging,AS)修复氯苯污染地下水的强化效果.结果表明,SDBS的加入降低了地下水的表面张力,减小了水气两相毛细压力,从而提高了地下水中的空气饱和度.当曝气量为100 mL/min,地下水的表面张力由72.2 mN/m降至49.5 mN/m时,地下水中空气饱和度由13.2%提高至50.1%,而后随着表面张力的进一步降低,空气饱和度不再提高,反而有小幅下降.通过污染物的去除实验发现,SDBS的加入大大提高了氯苯的去除率,且去除率的变化与空气饱和度的变化趋势基本相符.因此,表面活性剂的加入可以作为空气扰动技术一种十分有效的强化手段.

       

    • 图  1  实验装置

      a.待进溶液;b.活性炭管;c.气体取样孔;d.柱体;e.取样孔;f.流量计;g.曝气泵

      Fig.  1.  Experimental setup

      图  2  中砂中水气两相Sw-hc关系

      Fig.  2.  Water retention curves in medium sand

      图  3  不同曝气量和SDBS浓度下空气饱和度的变化情况

      Fig.  3.  Air saturation at different air flow rates and SDBS concentration

      图  4  不同表面张力下介质中孔道分布示意

      Fig.  4.  A schematic diagram of channel distribution in medium sand at different surface tension

      图  5  不同表面张力下氯苯的去除情况

      Fig.  5.  Chlorobenzene removal vs. time at different surface tension

      表  1  实验用砂理化性质

      Table  1.   Properties of sands used in experiment

      粒径(mm) pH TOC (%) 渗透系数(m/s) 孔隙度 堆积密度(g/cm3)
      中砂 0.25~0.5 6.96 0.1 4.8×10-4 0.38 1.58
      注:以上数据由吉林大学环境工程实验室提供.
      下载: 导出CSV

      表  2  空气饱和度实验参数

      Table  2.   Schedule of testing programm in air saturation experiment

      表面活性剂 介质 浓度(mg/L) 表面张力(mN/m) 曝气量(mL/min)
      SDBS 中砂 0 72.2 6, 16, 40, 100, 160, 400, 833, 1 667, 2 500, 3 333
      150 59.0
      250 54.6
      350 49.5
      500 45.2
      1 000 39.6
      下载: 导出CSV
    • [1] Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division, 92(IR2): 61-68. http://www.researchgate.net/publication/231222048_Properties_of_Porous_Media_Affecting_Fluid_Flow
      [2] Corey, A.T., 1994. Mechanics of immiscible fluids in porous media. Water Resources Publications, Highland Ranch, Colorado.
      [3] Fetter, C.W., 1999. Contaminant hydrology. Prentice Hall, Upper Saddle River, NJ.
      [4] Hall, B.L., Lachmar, T.E., Dupont, R.R., 2000. Field monitoring and performance evaluation of an in situ air sparging system at a gasoline-contaminated site. Journal of Hazardous Materials, 74(3): 165-186. doi: 10.1016/S0304-3894(99)00189-2
      [5] Ji, W., Dahmani, A., Ahlfeld, D.P., et al., 1993. Laboratory study of air sparging: air flow visualization. Ground Water Monitoring Remediation, 13(4): 115-126. doi: 10.1111/j.1745-6592.1993.tb00455.x
      [6] Johnston, C.D., Rayner, J.L., Briegel, D., 2002. Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, western Australia. Journal of Contaminant Hydrology, 59(1-2): 87-111. doi: 10.1016/S0169-7722(02)00077-3
      [7] Kim, H., Annable, M.D., 2006. Effect of surface tension reduction on VOC removal during surfactant-enhanced air sparging. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. , 41(12): 2799-2811. http://www.ncbi.nlm.nih.gov/pubmed/17114108
      [8] McCray, J.E., Falta, R.W., 1997. Numerical simulation of air sparging for remediation of NAPL contamination. Ground Water, 35(1): 99-110. doi: 10.1111/j.1745-6584.1997.tb00065.x
      [9] Reddy, K.R., Semer, R., Adams, J.A., 1999. Air flow optimization and surfactant enhancement to remediate toluene-contaminated saturated soils using air sparging. Environ. Manag. Health, 10(1): 52-63. doi: 10.1108/09566169910257239
      [10] Semer, R., Reddy, K.R., 1998. Mechanisms controlling toluene removal from saturated soils during in situ air sparing. Journal of Hazardous Materials, 57(1-3): 209-230. doi: 10.1016/S0304-3894(97)00095-2
      [11] Sharma, R.S., Mohamed, M.H.A., 2003. An experimental investigation of LNAPL migration in an unsaturated/saturated sand. Engineering Geology, 70(3-4): 305-313. doi: 10.1016/S0013-7952(03)00098-X
      [12] Waduge, W.A.P., Soga, K., Kawabata, J., 2004. Effect of NAPL entrapment conditions on air sparging remediation efficiency. Journal of Hazardous Materials, 110(1-3): 173-183. doi: 10.1016/j-jhazmat.2004.02.050
      [13] Zhang, M., Burns, S.E., 2000. Surfactant effects on the transport of air bubbles in porous media. In: proceedings of Sessions of Geo-Denver 2000—Environmental Geotechnics. American Society of Civil Engineers, 121-131. [doi: 10.1061/40519(293)9]
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  3151
    • HTML全文浏览量:  144
    • PDF下载量:  63
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-10-15
    • 刊出日期:  2011-07-01

    目录

      /

      返回文章
      返回