• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏班戈地区雪如岩体的形成环境及成矿意义

    高顺宝 郑有业 谢名臣 张众 闫学欣 武斌 罗俊杰

    高顺宝, 郑有业, 谢名臣, 张众, 闫学欣, 武斌, 罗俊杰, 2011. 西藏班戈地区雪如岩体的形成环境及成矿意义. 地球科学, 36(4): 729-739. doi: 10.3799/dqkx.2011.073
    引用本文: 高顺宝, 郑有业, 谢名臣, 张众, 闫学欣, 武斌, 罗俊杰, 2011. 西藏班戈地区雪如岩体的形成环境及成矿意义. 地球科学, 36(4): 729-739. doi: 10.3799/dqkx.2011.073
    GAO Shun-bao, ZHENG You-ye, XIE Ming-chen, ZHANG Zhong, YAN Xue-xin, WU Bin, LUO Jun-jie, 2011. Geodynamic Setting and Mineralizational Implication of the Xueru Intrusion in Ban'ge, Tibet. Earth Science, 36(4): 729-739. doi: 10.3799/dqkx.2011.073
    Citation: GAO Shun-bao, ZHENG You-ye, XIE Ming-chen, ZHANG Zhong, YAN Xue-xin, WU Bin, LUO Jun-jie, 2011. Geodynamic Setting and Mineralizational Implication of the Xueru Intrusion in Ban'ge, Tibet. Earth Science, 36(4): 729-739. doi: 10.3799/dqkx.2011.073

    西藏班戈地区雪如岩体的形成环境及成矿意义

    doi: 10.3799/dqkx.2011.073
    基金项目: 

    青藏高原矿产调查评价专项项目 1212010818038

    详细信息
      作者简介:

      高顺宝(1980-),男,博士研究生,矿产普查与勘探专业.E-mail: gaoshunbao2002@163.com

    • 中图分类号: P618.2

    Geodynamic Setting and Mineralizational Implication of the Xueru Intrusion in Ban'ge, Tibet

    • 摘要: 雪如岩体主要由中细粒二长花岗岩、中粗粒斑状二长花岗岩组成,在其与郎山组灰岩接触带附近发育有大量的矽卡岩型铜铁矿床或矿化点.岩石及锆石LA-ICP-MS U-Pb、XRF、ICP-AES等分析显示,雪如岩体富K2O、SiO2、LREE及Rb、Ba、Pb、Th等大离子亲石元素,而Nb、Ta、Sr、Ti等高场强元素含量相对较低,稀土元素配分曲线为明显的右倾曲线,具有中等的负Eu异常,属高钾钙碱性-钾玄岩岩石系列和后碰撞花岗岩类,成岩时代分别为79.25±0.97 Ma和79.72±0.51 Ma,形成于早白垩世末-晚白垩世初班公湖-怒江缝合带闭合后、羌塘地体与拉萨地体的后碰撞阶段.综合认为,雪如岩体岩浆源区为下地壳富含流体的石榴石角闪岩相-斜长角闪岩相的镁铁质岩石,是在后碰撞环境下经部分熔融形成的花岗岩类,对班戈地区铜铁多金属成矿非常有利;矽卡岩型铜铁成矿作用发生于80 Ma左右,该认识为区域找矿指明了方向.

       

    • 图  1  雪如岩体地质简图

      图 1据辽宁地调院1∶25万多巴幅(2003)和西藏地调院1∶25万班戈幅(2002)地质图修改;1.第四系;2.牛堡组;3.竞柱山组;4.郎山组;5.多尼组下段;6.多尼组上段弄巴砾岩;7.拉贡塘组;8.始新世二长花岗岩;9.晚白垩世二长花岗岩(雪如岩体);10.早白垩世二长花岗岩(多巴岩体);11.早白垩世花岗闪长岩(班戈岩体);12.地质界线;13.断层;14.研究区位置;15.铜矿床(点);16.采样位置

      Fig.  1.  Geological sketch map of the Xueru intrusion

      图  2  雪如岩体锆石阴极发光图像

      Fig.  2.  CL images of zircons for the Xueru intrusion

      图  3  雪如岩体锆石U-Pb谐和图

      Fig.  3.  U-Pb concordia diagrams of zircons for the Xueru intrusion

      图  4  雪如岩体稀土元素配分模式(球粒陨石标准化值引自Sun and McDonough, 1989)

      Fig.  4.  Chondrite-normalized patterns for the Xueru intrusion

      图  5  雪如岩体微量元素蜘蛛图解(原始地幔标准化值引自Sun and McDonough, 1989)

      Fig.  5.  Primitive mantle-normalized trace element spidergrams for the Xueru intrusion

      图  6  雪如岩体(La/Yb)N-YbN图解(Drummond and Defant, 1990)

      Fig.  6.  (La/Yb)N vs YbN diagram of the Xueru intrusion

      图  7  雪如岩体R1-R2图解(底图据Batchelor and Bowden, 1985)

      Fig.  7.  R1 vs. R2 diagram for the Xueru intrusion

      图  8  雪如岩体Rb-(Y+Nb)图解(底图据Pearce, 1996)

      Fig.  8.  Rb vs. (Y+Nb) diagram for the Xueru intrusion

      表  1  YQ-1、PM401TW9样品锆石LA-ICP-MS同位素分析结果

      Table  1.   U-Pb LA-ICP-MS analyses of zircon from Sample YQ-1 and PM401TW9

      点号 Pb(10-6) Th(10-6) U(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 备注
      比值 1σ 比值 1σ 比值 1σ t (Ma) 1σ t (Ma) 1σ t (Ma) 1σ
      YQ-1-01 33.7 735 1330 0.55 0.048 4 0.001 7 0.080 6 0.002 7 0.012 1 0.000 1 117 79.6 78.7 2.5 77.6 0.67 排除
      YQ -1-02 29.0 817 689 1.19 0.049 8 0.001 8 0.085 6 0.003 0 0.012 6 0.000 1 187 118 83.4 2.83 80.4 0.91
      YQ -1-03 27.3 608 990 0.61 0.049 1 0.001 6 0.085 6 0.002 8 0.012 6 0.000 1 154 75.9 83.4 2.64 80.8 0.84
      YQ -1-04 21.7 584 556 1.05 0.051 3 0.002 4 0.086 8 0.003 9 0.012 3 0.000 1 254 112 84.5 3.67 79.1 0.94
      YQ -1-05 9.2 241 260 0.93 0.054 9 0.003 2 0.092 1 0.005 0 0.012 4 0.000 2 409 133 89.5 4.6 79.2 1.33 排除
      YQ -1-06 49.2 1256 1521 0.83 0.050 0 0.001 6 0.082 6 0.002 5 0.012 0 0.000 1 195 106 80.6 2.38 76.7 0.74 排除
      YQ -1-07 20.5 468 622 0.75 0.049 5 0.002 3 0.086 1 0.003 9 0.012 6 0.000 2 172 107 83.9 3.66 81.0 0.99
      YQ-1-08 25.0 560 889 0.63 0.047 7 0.001 7 0.080 8 0.002 8 0.012 3 0.000 1 87 81 78.9 2.67 79.0 0.82
      YQ-1-09 34.1 821 1018 0.81 0.056 4 0.001 9 0.094 8 0.003 1 0.012 2 0.000 1 478 76 92.0 2.89 78.4 0.85
      YQ-1-10 50.8 747 2759 0.27 0.047 4 0.001 1 0.081 1 0.001 9 0.012 4 0.000 1 78 56 79.2 1.80 79.4 0.78
      YQ-1-11 24.5 570 781 0.73 0.048 4 0.001 8 0.083 2 0.003 0 0.012 5 0.000 1 120 89 81.2 2.86 80.1 0.88
      YQ-1-12 33.2 778 1140 0.68 0.051 3 0.002 3 0.087 1 0.003 7 0.012 4 0.000 1 254 102 84.8 3.47 79.1 0.72
      YQ-1-13 10.8 214 433 0.49 0.051 6 0.002 3 0.087 5 0.003 8 0.012 4 0.000 2 333 104 85.2 3.56 79.4 1.01
      YQ-1-14 31.2 670 1062 0.63 0.050 0 0.001 5 0.088 6 0.002 6 0.012 9 0.000 1 195 68.5 86.2 2.41 82.4 0.82 排除
      YQ-1-15 10.6 358 121 2.95 0.071 4 0.005 7 0.115 6 0.008 8 0.012 5 0.000 3 969 165 111 7.99 80.0 1.75 排除
      YQ-1-16 15.1 402 335 1.20 0.048 5 0.002 6 0.088 4 0.004 7 0.014 1 0.000 9 124 119 86.0 4.41 90.5 5.55 排除
      YQ-1-17 46.3 1461 698 2.09 0.042 6 0.001 6 0.074 4 0.002 9 0.012 6 0.000 1 error error 72.8 2.73 80.8 0.86
      PM401TW9-01 13.9 771 1023 0.75 0.048 6 0.001 4 0.081 2 0.002 3 0.012 1 0.000 1 128 68.5 79.3 2.20 77.7 0.76
      PM401TW9-02 3.0 238 186 1.28 0.060 9 0.003 4 0.104 6 0.006 0 0.012 5 0.000 2 635 122 101 5.52 79.9 1.45
      PM401TW9-03 22.8 738 1585 0.47 0.052 1 0.001 7 0.098 6 0.003 6 0.013 7 0.000 2 300 75.9 95.4 3.3 87.5 0.96 排除
      PM401TW9-04 8.6 502 607 0.83 0.047 7 0.002 1 0.081 1 0.003 6 0.012 3 0.000 1 87.1 100.0 79.2 3.36 78.9 0.82
      PM401TW9-05 8.6 438 573 0.77 0.055 8 0.002 0 0.100 7 0.003 6 0.013 1 0.000 1 456 79.6 97.4 3.3 83.8 0.84 排除
      PM401TW9-06 22.0 685 1561 0.44 0.046 7 0.001 3 0.088 3 0.002 3 0.013 7 0.000 1 35.3 63.0 85.9 2.2 87.8 0.80 排除
      PM401TW9-07 10.4 446 767 0.58 0.054 0 0.001 8 0.094 4 0.003 1 0.012 7 0.000 2 372 72.2 91.6 2.91 81.4 0.97
      PM401TW9-08 11.3 594 852 0.70 0.050 6 0.001 6 0.084 0 0.002 6 0.012 1 0.000 1 233 72.2 81.9 2.45 77.3 0.87
      PM401TW9-09 12.2 651 887 0.73 0.047 1 0.001 6 0.081 1 0.002 8 0.012 5 0.000 1 53.8 77.8 79.2 2.63 80.1 0.93
      PM401TW9-10 13.9 727 1109 0.66 0.050 6 0.001 4 0.088 1 0.002 5 0.012 6 0.000 1 220 64.8 85.7 2.33 80.7 0.80
      PM401TW9-11 10.1 411 783 0.52 0.050 6 0.001 8 0.086 1 0.003 0 0.012 4 0.000 1 233 83.3 83.8 2.79 79.2 0.82
      PM401TW9-12 9.0 375 705 0.53 0.051 4 0.002 1 0.085 4 0.003 4 0.012 1 0.000 1 257 93 83.2 3.15 77.5 0.83
      PM401TW9-13 20.7 913 1547 0.59 0.047 2 0.001 4 0.082 9 0.002 5 0.012 8 0.000 1 57.5 70.4 80.8 2.32 81.7 0.84
      PM401TW9-14 8.7 545 623 0.88 0.054 3 0.002 3 0.090 6 0.003 8 0.012 2 0.000 1 383 98.1 88.1 3.54 78.1 0.89
      PM401TW9-15 6.5 361 462 0.78 0.047 5 0.002 2 0.080 8 0.003 8 0.012 5 0.000 1 72.3 117 78.9 3.55 79.8 0.95
      下载: 导出CSV

      表  2  雪如岩体主量(%)、稀土和微量元素(10-6)分析结果

      Table  2.   Major elements (%) and trace elements (10-6) of the Xueru intrusion

      样号 YQ-1 YQ-2 YQ-3 YQ-4 YQ-5 PM401YQ9 PM301YQ31 平均值
      岩性 斑状二长花岗岩
      SiO2 72.77 72.85 70.53 71.86 76.09 73.39 72.39 72.84
      TiO2 0.39 0.39 0.46 0.37 0.23 0.3 0.36 0.36
      Al2O3 12.91 13.07 13.34 13.47 11.93 13.17 13.23 13.02
      Fe2O3 0.94 0.86 0.83 0.31 0.31 0.73 0.92 0.70
      FeO 1.18 1.23 1.2 0.8 0.38 1.05 1.17 1.00
      MnO 0.04 0.04 0.04 0.03 0.02 0.05 0.06 0.04
      MgO 0.73 0.75 0.91 0.83 0.46 0.52 0.74 0.71
      CaO 1.76 1.63 2.57 3.04 0.92 1.31 1.64 1.84
      Na2O 3.19 3.16 3.47 3.14 2.31 3.31 3.66 3.18
      K2O 5.05 5.11 5.55 5.05 6.33 5.07 4.88 5.29
      P2O5 0.12 0.12 0.14 0.11 0.09 0.08 0.12 0.11
      H2O+ 0.4 0.37 0.49 0.53 0.59 0.6 0.45 0.49
      CO2 0.3 0.22 0.22 0.22 0.22 0.22 0.15 0.22
      TOTAL 99.78 99.8 99.75 99.76 99.88 99.8 99.77 99.79
      Mg# 39 40 46 58 56 35 40 45
      R1 2 466.21 2 468.78 2 101.38 2 450.24 2 742.68 2 471.34 2 315.32 2 430.85
      R2 477.77 467.99 581.80 630.66 355.27 424.30 471.70 487.07
      σ 2.28 2.29 2.96 2.32 2.26 2.31 2.48 2.41
      A/NCK 0.93 0.95 0.81 0.83 0.97 0.99 0.93 0.92
      La 51.61 63.73 60.71 50.11 38.8 58.93 54.45 54.05
      Ce 101.4 115.8 114.2 99.2 71.43 94.39 100.5 99.56
      Pr 11.94 12.88 12.89 11.21 7.38 11.2 11.23 11.25
      Nd 41.26 44.63 44.22 38.41 24.11 34.29 36.52 37.63
      Sm 6.62 7.06 7.08 5.99 3.93 5.55 6.25 6.07
      Eu 1.04 1.11 1.28 1.04 0.57 0.96 0.94 0.99
      Gd 5.06 5.32 5.26 4.28 3.09 4.02 4.95 4.57
      Tb 0.73 0.76 0.75 0.56 0.46 0.58 0.76 0.66
      Dy 3.86 4.04 3.9 2.65 2.61 3.12 3.83 3.43
      Ho 0.79 0.83 0.78 0.53 0.54 0.66 0.77 0.70
      Er 2.25 2.4 2.05 1.36 1.65 1.84 2.08 1.95
      Tm 0.36 0.37 0.32 0.22 0.27 0.31 0.35 0.31
      Yb 2.37 2.41 2.1 1.37 1.88 2.14 2.16 2.06
      Lu 0.37 0.38 0.33 0.22 0.27 0.38 0.36 0.33
      LREE 213.87 245.21 240.38 205.96 146.22 205.32 209.89 209.55
      HREE 15.79 16.51 15.49 11.19 10.77 13.05 15.26 14.01
      L/H 13.54 14.85 15.52 18.41 13.58 15.73 13.75 15.06
      δEu 0.53 0.53 0.61 0.60 0.48 0.59 0.50 0.55
      (La/Sm)N 5.03 5.83 5.54 5.40 6.37 6.85 5.62 5.81
      (Gd/Yb)N 1.77 1.83 2.07 2.58 1.36 1.55 1.90 1.87
      Rb 289 300 270 234 387 369 339 312.57
      Ba 425 456 522 411 282 341 348 397.86
      Th 34.8 37.2 24.7 30.6 38.9 30.4 28.5 32.16
      U 8.12 9.13 5.57 5.06 10.9 5.45 4.87 7.01
      Nb 18.7 20.2 16.8 15.4 16.2 17 18.5 17.54
      Ta 2.06 2.33 1.61 1.09 1.81 1.75 2.09 1.82
      Pb 33.6 33.6 34 56.6 35.3 32.6 30 36.53
      Sr 206 208 305 292 144 194 203 221.71
      Hf 7.2 7.2 8 6.6 6.8 5.4 5.5 6.67
      Zr 177 179 196 177 132 149 178 169.71
      Y 20.33 21.22 19.14 12.71 14.62 17.72 20.03 17.97
      Cu 24 23.1 71.4 22.8 16.4 10.9 9.21 25.40
      Mo 1.42 1.83 1.13 1.2 1.73 0.085 0.25 1.09
      Zn 29.76 33.32 41.24 25.73 34.35 34.3 219 59.67
      Nb/Ta 9.08 8.67 10.43 14.13 8.95 9.71 8.85 9.98
      Rb/Sr 1.40 1.44 0.89 0.80 2.69 1.90 1.67 1.54
      Th/U 4.29 4.07 4.43 6.05 3.57 5.58 5.85 4.83
      Y/Yb 8.58 8.80 9.11 9.28 7.78 8.28 9.27 8.72
      注:σ=(K2O+Na2O)2/(SiO2-43);A/NCK=Al2O3(mol)/(CaO+Na2O+K2O)(mol);δEu=2EuN/(SmN+GdN);Mg#=100Mg2+/(Mg2++Fe2+(Total));R1=4Si-11(Na+K)-2(Ti+Fe);R2=Al+2Mg+6Ca.
      下载: 导出CSV
    • [1] Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X
      [2] Batchelor, B., Bowden, P., 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48: 43-55. doi: 10.1016/0009-2541(85)90034-8
      [3] Crofu, F., Hanchar, J.M., Hoskin, P.W., 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53: 469-495. doi: 10.2113/0530469
      [4] Drummond, M.S., Defant, M.J., 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: archaean to modern comparisons. J. Geophys. Res. , 95: 21503-21521. doi: 10.1029/JB095iB13p21503
      [5] Gao, Y.F., Hou, Z.Q., Wei, R.H., 2003. Petrology, geochemistry of the Neogene Gangdese porphyries and its geodynamic significance. Acta Petrologica Sinica, 19: 418-428 (in Chinese with English abstract).
      [6] Hou, Z.Q. Mo, X.X. Gao, Y.F., et al., 2003. Adakite, a possible host rock for porphyry copper deposits: case studies of porphyry copper belts on Tibetan plateau and in northern Chile. Mineral Deposits, 22(1): 1-12 (in Chinese with English abstract). http://www.researchgate.net/publication/312918308_Adakite_a_possible_host_rock_for_porphyry_copper_deposits_Case_studies_of_porphyry_copper_belts_in_Tibetan_Plateau_and_in_northern_Chile
      [7] Kapp, P., Murphy, M.A., Yin, A., et al., 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4): 3-1~3-23. doi: 10.1029/2001TC001332
      [8] Liao, L.G., Cao, S.H., Xiao, Y.B., et al., 2005. The delineation and significance of the continental-margin volcanic-magmatic arc zone in the northern part of the Bangong-Nujiang suture zone. Sedimentary Geology and Tethyan Geology, 25(1): 163-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD2005Z1029.htm
      [9] Liu, Q.H., Xiao, Z.J., Cao, S.H., et al., 2004. A preliminary study of the spatio-temporal framework of the archipelagic arc-basin systems in the western part of the Bangong-Nujiang suture zone, Xizang. Sedimentary Geology and Tethyan Geology, 24(3): 15-21 (in Chinese with English abstract).
      [10] Matte, P.P., Tapponnier, N., Arnaud, L., et al., 1996. Tectonics of western Tibet, between the Tarim and the Indus. Earth Planet. Sci. Lett., l142: 311-330. doi: 10.1016/0012-821X(96)00086-6
      [11] Metcalfe, I., 1998. Palaeozoic and Mesozoic geological evolution of the SE Asian region: multidisciplinary constraints and implications for biogeography. In: Robert, H., Holloway, D., eds., Biogeographry and evolution of SE Asia. Backhuys Publisher, Amsterdam, 1998: 4356.
      [12] Miller, C., Schuster, R., Klotzli, U., et al., 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints formantle source characteristics and petrogenesis. Jour. Petro. , 40: 1399-1424. doi: 10.1093/petrology/40.9.1399
      [13] Mo, X.X., Pan, G.T., 2006. From the Tethys to the formation of the Qinghai-Tibet plateau: constrained by tectonic-magmatic events. Earth Science Frontiers, 13(6): 43-51 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200606007.htm
      [14] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract).
      [15] Pan, G.T., Zhu, D.C., Wang, L.Q., et al., 2004. Bangong Lake-Nu River suture zone—the northern boundary of Gondwanaland: evidence from geology and geophysics. Earth Science Frontiers, 11(4) : 371-382 (in Chinese with English abstract).
      [16] Pearce, J.A., 1996. Sources and setting of granitic rocks. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005
      [17] Pearce, J.A., Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petro1., 69: 33-47. doi: 10.1007/BF00375192
      [18] Qu, X.M., Hou, Z.Q., Huang, W., 2001. Is Gangdese porphyry copper belt the second "Yulong" copper belt? Mineral Deposit, 20(4): 355-366 (in Chinese with English abstract). http://www.researchgate.net/publication/284665935_Is_Gangdese_porphyry_copper_belt_the_second_Yulong_copper_belt
      [19] Qu, X.M., Xin, H.B., 2006. Ages and tectonic environment of the Bangong Co porphyry copper belt in western Tibet, China. Geological Bulletin of China, 25(7): 792-799 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200607005.htm
      [20] Rapp, R.P., 1997. Heterogneous source regions for Archean granitoids. In: de Wit, M.J., Ashwal, L.D., eds., Greenstone belts. Oxford University Press, Oxford.
      [21] Rowley, D.B., Xue, F., Tucker, R.D., 1997. Ages of ultra-high pressure metamorphic and source orthognisses from the eastern Dabieshan: U/Th zircon geochronology. Earth Planet. Sci. Lett., 151: 191-203 doi: 10.1016/S0012-821X(97)81848-1
      [22] Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. In: Rudnick, R.L., ed., The crust treaties on geochemistry. Elsevier Pergamon, Oxford, 3: 1-64. doi: 10.1016/B0-08-043751-6/03016-4
      [23] Sisson, T.W., 1994. Hornblende-melt trace-element partitioning measured by ion microprobe. Chem. Geol., 117: 331-334. doi: 10.1016/0009-2541(94)90135-X
      [24] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Specical Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      [25] Tuner, S., Arnaud, N., Liu, J.Q., et al., 1996. Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37: 45-71. doi: 10.1093/petrology/37.1.45
      [26] Wilson, M., 1989. Igneous petrogenesis: a global tectonic approach. Uniwin Hymen, London.
      [27] Wu, Y.F., Ge, W.C., Sun, D.Y., 2002. The idea, identified signs and geological significance of adakite. In: Xiao, Q.H., Deng, J.F., Ma, D.S., et al., eds., The ways of investigation on granitoids. Geological Publishing House, Beijing (in Chinese).
      [28] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28: 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
      [29] Zhang, J.F., Zheng, Y.Y., Zhang, G.Y., et al., 2010. Genesis of Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya: constraints from multi-isotope geochemistry. Earth Science—Journal of China University Geosciences, 35 (6): 1000-1010 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.113
      [30] Zhao, Y.M., Lin, W.W., Bi, C.S., et al., 1990. Skarn deposits of China. Geological Publishing House, Beijing (in Chinese).
      [31] Zheng, Y.Y., Xue, Y.X., Cheng, L.J., et al., 2004a. Finding, characteristics and significance of Qulong superlarge porphyry copper (molybdenum) deposit, Tibet. Earth Science—Journal of China University Geosciences, 29(1): 103- 108 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200401018.htm
      [32] Zheng, Y.Y., Gao, S.B., Cheng, L.J., et al., 2004b. Finding and significances of Chongjiang porphyry copper (molybdenum, gold) deposit, Tibet. Earth Science—Journal of China University Geosciences, 29(3): 333- 339 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200403011.htm
      [33] Zheng, Y.Y., Gao, S.B., Zhang, D.Q., et al., 2006. Ore- forming fluid controlling mineralization in Qulong super-large porphyry copper deposit, Tibet. Earth Science—Journal of China University Geosciences, 31(3): 349-354 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200603009.htm
      [34] 高永丰, 侯增谦, 魏瑞华, 2003. 冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义. 岩石学报, 19(3): 418-428. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200303004.htm
      [35] 侯增谦, 莫宣学, 高永丰, 等, 2003. 埃达克岩: 斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例. 矿床地质, 22(1): 1-12. doi: 10.3969/j.issn.0258-7106.2003.01.001
      [36] 廖六根, 曹圣华, 肖业斌, 等, 2005. 班公湖-怒江结合带北侧陆缘火山-岩浆弧带的厘定及其意义. 沉积与特提斯地质, 25(1): 163-170. doi: 10.3969/j.issn.1009-3850.2005.01.030
      [37] 刘庆宏, 肖志坚, 曹圣华, 等, 2004. 班公湖-怒江结合带西段多岛弧盆系时空结构初步分析. 沉积与特提斯地质, 24(3): 15-21. doi: 10.3969/j.issn.1009-3850.2004.03.002
      [38] 莫宣学, 潘桂棠, 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007
      [39] 莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程与火山作用响应. 地学前缘, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013
      [40] 潘桂棠, 朱弟成, 王立全, 等, 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 371-382. doi: 10.3321/j.issn:1005-2321.2004.04.004
      [41] 曲晓明, 侯增谦, 黄卫, 2001. 冈底斯斑岩铜矿(化)带: 西藏第二个"玉龙"铜矿带?矿床地质, 20(4): 355-366. doi: 10.3969/j.issn.0258-7106.2001.04.009
      [42] 曲晓明, 辛洪波, 2006. 藏西班公湖斑岩铜矿带的形成时代与成矿构造环境. 地质通报, 25(7): 792-799. doi: 10.3969/j.issn.1671-2552.2006.07.004
      [43] 吴福元, 葛文春, 孙德有, 2002. 埃达克岩的概念、识别标志及其地质意义, 见: 肖庆辉, 邓晋福, 马大铨, 等编, 花岗岩的研究思维与方法. 北京: 地质出版社, 179.
      [44] 张建芳, 郑有业, 张刚阳, 等, 2010. 北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约. 地球科学——中国地质大学学报, 35(6): 1000-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201006011.htm
      [45] 赵一鸣, 林文蔚, 毕承思, 等, 1990. 中国矽卡岩矿床. 北京: 地质出版社.
      [46] 郑有业, 薛迎喜, 程力军, 等, 2004a. 西藏驱龙超大型斑岩铜(钼) 矿床: 发现、特征及意义. 地球科学——中国地质大学学报, 29(1): 103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401018.htm
      [47] 郑有业, 高顺宝, 程力军, 等, 2004b. 西藏冲江大型斑岩铜(钼金)矿床的发现及意义. 地球科学——中国地质大学学报, 29(3): 333-339. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200403011.htm
      [48] 郑有业, 高顺宝, 张大权, 等, 2006. 西藏驱龙超大型斑岩铜矿床成矿流体对成矿的控制. 地球科学——中国地质大学学报, 31(3): 349-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603009.htm
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  3400
    • HTML全文浏览量:  134
    • PDF下载量:  53
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-05-12
    • 刊出日期:  2011-07-01

    目录

      /

      返回文章
      返回