Pyrite Framboid: Indicator of Environments and Life
-
摘要: 莓状黄铁矿这一奇妙的微晶(0.1~1 μm)矿物集合体(5~50 μm)自科学家首次发现(1923年)和冠名(1935年)至今一直是不同学科竞相研究的热点.主要从莓状黄铁矿的形成机制、莓状黄铁矿与环境的关系等方面回顾了莓状黄铁矿的生物成因说(1923-1969年)、非生物成因说(1969-2000年)和多元成因说(2000-现今)各研究阶段取得的进展和存在的问题,指出莓状黄铁矿作为表层生物圈、深部生物圈和地外环境与生命示踪计具有巨大潜力,提出从地球科学、生命科学、材料科学、化学和纳米科技以及凝聚态物理学融合的角度加强对莓状黄铁矿研究的建议.Abstract: Pyrite framboid, the wonderful microcrystalline (0.1-1 μm) mineral aggregate (5-50 μm), has been a study focus in different disciplines since scientists first discovered (1923) and named it (1935). This paper reviews the progresses and existing problems of pyrite framboid's studies during different study stages including the biogenesis' theory stage (1923-1969), abiogenesis' theory stage (1969-2000) and multiple genesis's theory stage (2000-present) in terms of formation mechanism and the relationship with the environments. It also explores the prospects of pyrite framboid' study, pointing out that pyrite framboid has a great potential as the indicator of the surface and deep biospheres, the extraterrestrial environments and life; and finally puts forward the proposal that we should further the study of pyrite framboid by integrating its studies in that of earth science, life science, materials science, chemistry, nanotechnology and condensed matter physics.
-
Key words:
- pyrite framboid /
- biogenesis /
- abiogenesis /
- sulfur isotope /
- redox environment
-
图 1 硫化亚铁转变成莓状黄铁矿示意(据Sweeney and Kaplan, 1973资料编制)
Fig. 1. Schematic diagram of iron monosulphide transition into pyrite framboid
图 2 莓状黄铁矿的形成过程(据Wilkin and Barnes, 1997a资料编制)
Fig. 2. Sketch showing the forming process of pyrite framboid
图 5 海水中溶氧量与莓状黄铁矿粒径的关系(据Wignall and Newton, 1998)资料编制)
Fig. 5. Relations between dissolved oxygen content and size of pyrite framboid
图 6 莓状黄铁矿结构演化(引自Merinero et al., 2008)
Fig. 6. Textural evolution of pyrite framboid
-
[1] Allen, K.D., Hahn, G.A., 1994. Geology of the Sunbeam and Grouse Creek gold-silver deposits, Yankee Fork mining district, Eocene Challis volcanic field, Idaho; a volcanic dome- and volcaniclastic-hosted epithermal system. Economic Geology, 89(8): 1964-1982. doi: 10.2113/gsecongeo.89.8.1964 [2] Bailey, J.V., Raub, T.D., Meckler, A.N., et al., 2009. Pseudofossils in relict methane seep carbonates resemble endemic microbial consortia. Palaeogeography, Palaeoclimatology, Palaeoecology, 285(1-2): 131-142. doi: 10.1016/j.palaeo.2009.11.002 [3] Bak, F., Cypionka, H., 1987. A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature, 326: 891-892. doi: 10.1038/326891a0 [4] Baker, B.J., Banfield, J.F., 2003. Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44(2): 139-152. doi: 10.1016/S0168-6496(03)00028-X [5] Bennett, C.E.G., Graham, J., 1980. New observations on natural pyrrhotites, Part Ⅲ. Thermomagnetic experiments. American Mineralogist, 65(7-8): 800-807. doi: 10.2113/gsecongeo.69.5.697 [6] Berner, R.A., 1969. The synthesis of framboidal pyrite. Economic Geology, 64(4): 383-384. doi: 10.2113/gsecongeo.64.4.383 [7] Berner, R.A., 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48(4): 605-615. doi: 10.1016/0016-7037(84)90089-9 [8] Bianconi, P.A., Lin, J., Strzelecki, A.R., 1991. Crystallization of an inorganic phase controlled by a polymer matrix. Nature, 349(6307): 315-317. doi: 10.1038/349315a0 [9] Bond, D., Wignall, P.B., Racki, G., 2004. Extent and duration of marine anoxia during the Frasnian-Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine, 141(2): 173-193. doi: 10.1017/s0016756804008866 [10] Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., et al., 2008. Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology, 36(8): 663-666. doi: 10.1130/g24755a.1 [11] Böttcher, M.E., Lepland, A., 2000. Biogeochemistry of sulfur in a sediment core from the West-Central Baltic Sea: evidence from stable isotopes and pyrite textures. Journal of Marine Systems, 25(3-4): 299-312. doi: 10.1016/S0924-7963(00)00023-3 [12] Bralia, A., Sabatini, G., Troja, F., 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Mineralium Deposita, 14(3): 353-374. doi: 10.1007/BF00206365 [13] Butler, I.B., Rickard, D., 2000. Framboidal pyrite formation via the oxidation of iron (Ⅱ) monosulfide by hydrogen sulphide. Geochimica et Cosmochimica Acta, 64(15): 2665-2672. doi: 10.1016/S0016-7037(00)00387-2 [14] Calvert, S.E., Pederson, T.F., 1993. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113(1-2): 67-88. doi: 10.1016/0025-3227(93)90150-T [15] Canfield, D.E., Olesen, C.A., Cox, R.P., 2006. Temperature and its control of isotope fractionation by a sulfate-reducing bacterium. Geochimica et Cosmochimica Acta, 70(3): 548-561. doi: 10.1016/j.gca.2005.10.028 [16] Canfield, D.E., Raiswell, R., 1991. Pyrite formation and fossil preservation, In: Allison, P.A., Briggs, D.E.G., eds., Taphonomy: releasing the data locked in the fossil record. Plenum Press, New York, 337-387. [17] Canfield, D.E., Raiswell, R., 1999. The evolution of the sulfur cycle. American Journal of Science, 299(7-9): 697-723. doi: 10.2475/ajs.299.7-9.697 [18] Canfield, D.E., Thamdrup, B., 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 266(5193): 1973-1975. doi: 10.1126/science.11540246 [19] Canfield, D.E., Thamdrup, B., Fleischer, S., 1998. Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria. Limnol. Oceanogr. , 43(2): 253-264. doi: 10.4319/lo.1998.43.2.0253 [20] Chang, H.J., Chu, X.L., Feng, L.J., et al., 2009. Framboidal pyrites in cherts of the Laobao Formation, South China: evidence for anoxic deep ocean in the terminal Ediacaran. Acta Petrologica Sinica, 25(4): 1001-1007 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=1000805767 [21] Chang, H.J., Chu, X.L., Huang, J., et al., 2009. Terminal Ediacaran oceanic anoxia: evidence from framboidal pyrites in the cherts of Laobao Formation (South China). Geochimica et Cosmochimica Acta, 73(13S): A208-A208. http://adsabs.harvard.edu/abs/2009GeCAS..73R.208C [22] Cook, T.L., Stakes, D.S., 1995. Biogeological mineralization in deep-sea hydrothermal deposits. Science, 267(5206): 1975-1979. doi: 10.1126/science.267.5206.1975 [23] Craig, J.R., Vokes, F.M., Solberg, T.N., 1998. Pyrite: physical and chemical textures, Mineral. Deposita, 34(1): 82-101. doi: 10.1007/s001260050187 [24] Cypionka, H., Smock, A.M., Böttcher, M.E., 1998. A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans. FEMS Microbiology Letters, 166(2): 181-186. doi: 10.1111/j.1574-6968.1998.tb13888.x [25] Davison, W., Lishman, J.P., Hilton, J., 1985. Formation of pyrite in freshwater sediments: implications for C/S ratios. Geochimica et Cosmochimica Acta, 49(7): 1615-1620. doi: 10.1016/0016-7037(85)90266-2 [26] del Giorgio, P.A., Cole, J.J., Cimbleris, A., 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature, 385(6612): 148-151. doi: 10.1038/385148a0 [27] Devouard, B., Posfai, M., Hua, X., et al., 1998. Magnetite from magnetotactic bacteria; size distributions and twinning. American Mineralogist, 83(11-12): 1387-1398. [28] Farquhar, J., Bao, H., Thiemens, M., 2000a. Atmospheric influence of Earth's earliest sulfur cycle. Science, 289(5480): 756-758. doi: 10.1126/science.289.5480.756 [29] Farquhar, J., Kim, S.T., Masterson, A., 2007a. Implications from sulfur isotopes of the Nakhla meteorite for the origin of sulfate on Mars. Earth and Planetary Science Letters, 264(1-2): 1-8. doi: 10.1016/j.epsl.2007.08.006 [30] Farquhar, J., Peters, M., Johnston, D.T., et al., 2007b. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature, 449(7163): 706-709. doi: 10.1038/nature06202 [31] Farquhar, J., Savarino, J., Airieau, S., et al., 2001. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. Journal of Geophysical Research, 106(E12): 32829-32839. doi: 10.1029/2000JE001437 [32] Farquhar, J., Savarino, J., Jackson, T.L., et al., 2000b. Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites. Nature, 404(6773): 50-52. doi: 10.1038/35003517 [33] Farrand, M., 1970. Framboidal sulphides precipitated synthetically. Mineralium Deposita, 5(3): 237-247. doi: 10.1007/BF00201990 [34] Folk, R.L., 2005. Nannobacteria and the formation of framboidal pyrite: textural evidence. Journal of Earth System Science, 114(3): 369-374. doi: 10.1007/BF02702955 [35] Fry, B., Cox, J., Gest, H., et al., 1986. Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds. Journal of Bacteriology, 165(1): 328-330. doi: 10.1128/jb.165.1.328-330.1986 [36] Fry, B., Gest, H., Hayes, J.M., 1984. Isotope effects associated with the anaerobic oxidation of sulfide by the purple photosynthetic bacterium, Chromatium vinosum. FEMS Microbiology Letters, 22(3): 283-287. doi: 10.1111/j.1574-6968.1984.tb00742.x [37] Fry, B., Ruf, W., Gest, H., et al., 1988. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution. Chemical Geology, 73(3): 205-210. doi: 10.1016/0168-9622(88)90001-2 [38] Garcia-Guinea, J., Martinez-Frias, J., Gonzalez-Martin, R., et al., 1997. Framboidal pyrites in antique books. Nature, 388(6643): 631-631. [39] Goldhaber, M.B., Kaplan, I.R., 1974. The sulfur cycle, In: Goldberg. E.D., ed., The sea, vol. 5. Wiley, New York 569-655. [40] Govett, G.J.S., Pantazis, T.M., 1971. Distribution of Cu, Zn, Ni and Co in the Troodos pillow lava series, Cyprus. Institution of Mining and Metallurgy Transactions, Section B: Applied Earth Science, 80: 27-46. [41] Graham, U.M., Ohmoto, H., 1994. Experimental study of formation mechanisms of hydrothermal pyrite. Geochimica et Cosmochimica Acta, 58(10): 2187-2202. doi: 10.1016/0016-7037(94)90004-3 [42] Graham, U.M., Robertson, J.D., 1995. Micro-pixe analysis of framboidal pyrite and associated maceral types in oil shale. Fuel, 74(4): 530-535. doi: 10.1016/0016-2361(95)98355-I [43] Grimes, S.T., Brock, F., Rickard, D., et al., 2001. Understanding fossilization: experimental pyritization of plants. Geology, 29(2): 123-126. doi: 10.1130/0091-7613(2001)029<0123:UFEPOP>2.0.CO;2 [44] Güleç, N., Erler, A., 1983. Masif sülfid yataklarlndaki piritlerin karakteristik iz element içerikleri. Bulletin of the Geological Societv of Turkev, 26: 145-152. [45] Guo, Q., Shields, G.A., Liu, C.Q., et al., 2007. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: implications for organosedimentary metal enrichment and silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 194-216. doi: 10.1016/j.palaeo.2007.03.016 [46] Gusev, M.V., Mineeva, L.A., 1992. Microbiology. Moscow State University Pubic House, 448: 37. [47] Habicht, K.S., Canfield, D.E., 1997. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta, 61(24): 5351-5361. doi: 10.1016/S0016-7037(97)00311-6 [48] Habicht, K.S., Canfield, D.E., Rethmeier, J., 1998. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochimica et Cosmochimica Acta, 62(15): 2585-2595. doi: 10.1016/S0016-7037(98)00167-7 [49] Habicht, K.S., Gade, M., Thamdrup, B., et al., 2002. Calibration of sulfate levels in the Archean Ocean. Science, 298 (5602): 2372-2374. doi: 10.1126/science.1078265 [50] Hallam, A., 1980. Black shales. J. Geol. Soc. London, 137: 123-124. doi: 10.1144/gsjgs.137.2.0123 [51] Hallbauer, D.K., 1986. The mineralogy and geochemistry of Witwatersrand pyrite, gold, uranium and carbonaceous matter. In: Anhaeusser. C.R., Maske, S., eds., Mineral deposits of southern Africa. Geological Society of South Africa, Johannesburg, 731-752. [52] Hatch, J.R., Leventhal, J.S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 99(1-3): 65-82. doi: 10.1016/0009-2541(92)90031-Y [53] Haynes, D.W., 1986. Stratiform copper deposits hosted by low-energy sediments; I, timing of sulfide precipitation, an hypothesis. Economic Geology, 81(2): 250-265. doi: 10.2113/gsecongeo.81.2.250 [54] Heywood, B.R., Bazylinski, D.A., Garratt-Reed, A., et al., 1990. Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria. Naturwissenschaften, 77(11): 536-538. doi: 10.1007/BF01139266 [55] Johnston, D.T., Farquhar, J., Habicht, K.S., et al., 2008. Sulphur isotopes and the search for life: strategies for identifying sulphur metabolisms in the rock record and beyond. Geobiology, 6(5): 425-435. doi: 10.1111/j.1472-4669.2008.00171.x [56] Jones, B., Manning, D.A.C., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(4-5): 111-129. doi: 10.1016/0009-2541(94)90085-X [57] Jorgensen, B.B., 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science, 249(4965): 152-154. doi: 10.1126/science.249.4965.152 [58] Kalliokoski, J., 1966. Diagenetic pyritization in three sedimentary rocks. Economic Geology, 61(5): 872-885. doi: 10.2113/gsecongeo.61.5.872 [59] Kalliokoski, J., Cathles, L., 1969. Morphology, mode of formation and diagenetic changes in framboids. Bull. Geol. Soc. Finland, 41: 125-133. doi: 10.17741/bgsf/41.014 [60] Kalogeropoulos, S.I., 1983. A discussion of the paper by G.R. Taylor "a mechanism for framboid formation as illustrated by a volcanic exhalative sediment". Mineral. Deposita, 17: 23-36 (1982), 18(1): 127-128. doi: 10.1007/BF00206700 [61] Kaplan, I.R., Emery, K.O., Rittenberg, S.C., 1963. The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochimica et Cosmochimica Acta, 27(4): 297-312. doi: 10.1016/0016-7037(63)90074-7 [62] Kaplan, I.R., Rittenberg, S.C., 1964. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. , 34(2): 195-212. doi: 10.1099/00221287-34-2-195 [63] Keller, R.N., 1964. Geochemistry of Solids: an introduction. Inorganic Chemistry, 3(10): 1473-1473. doi: 10.1021/ic50020a034 [64] Kimura, H., Watanabe, Y., 2001. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, 29(11): 995-998. doi: 10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2 [65] Kleikemper, J., Schroth, M.H., Bernasconi, S.M., et al., 2004. Sulfur isotope fractionation during growth of sulfate-reducing bacteria on various carbon sources. Geochimica et Cosmochimica Acta, 68(23): 4891-4904. doi: 10.1016/j.gca.2004.05.034 [66] Konhauser, K.O., 1997. Bacterial iron biomineralisation in nature. FEMS Microbiol. Rev. , 20(3-4): 315-326. doi: 10.1111/j.1574-6976.1997.tb00317x [67] Kríbek, B., 1975. The origin of framboidal pyrite as a surface effect of sulphur grains. Mineralium Deposita, 10(4): 389-396. doi: 10.1007/BF00207896 [68] Krouse, H.R., Grineneko, V.A., 1991. Stable isotopes in the assessment of natural and anthropogenic sulphur in the evironment. John Wiley and Sons Ltd, New York, 5-10. [69] Large, D.J., Fortey, N.J., Milodowski, A.E., et al., 2001. Petrographic observations of iron, copper, and zinc sulfides in freshwater canal sediment. Journal of Sedimentary Research, 71(1): 61-69. doi: 10.1306/052600710061 [70] Lewan, M.D., 1984. Factors controlling the proportionality of vanadium to nickel in crude oils. Geochimica et Cosmochimica Acta, 48(11): 2231-2238. doi: 10.1016/0016-7037(84)90219-9 [71] Lewicka-Szczebak, D., Trojanowska, A., Górka, M., et al., 2008. Sulphur isotope mass balance of dissolved sulphate ion in a freshwater dam reservoir. Environmental Chemistry Letters, 6(3): 169-173. doi: 10.1007/s10311-007-0120-3 [72] Loftus-Hills, G., Solomon, M., 1967. Cobalt, nickel and selenium in sulphides as indicators of ore genesis. Mineralium Deposita, 2(3): 228-242. doi: 10.1007/BF00201918 [73] Lonsdale, P., 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Research, 24(9): 857-858. doi: 10.1016/0146-6291(77)90478-7 [74] Love, L.G., 1957. Micro-organisms and the presence of syngenetic pyrite. Geol. Soc. Lond. Q.J. , 113: 429-440. doi: 10.1144/GSL.JGS.1957.113.01-04.18 [75] Love, L.G., 1962. Biogenic primary sulfide of the Permian Kupferschiefer and Marl Slate. Economic Geology, 57(3): 350-366. doi: 10.2113/gsecongeo.57.3.350 [76] Love, L.G., Amstutz, G.C., 1966. Review of microscopic pyrite from the Devonian Chattanooga shale and Rammelsberg Banderz. Fortschritte der Mineralogie, 43: 273-309. [77] Love, L.G., Amstutz, G.C., 1969. Framboidal pyrite in two andesites. Neues Jahrbuch für Mineralogie-Abhandlungen, 3: 97-108. [78] Love, L.G., Murray, J.W., 1963. Biogenic pyrite in recent sediments of Christchurch harbour, England. Am. J. Sci. , 261(5): 433-448. doi: 10.2475/ajs.261.5.433 [79] Lowenstam, H., 1981. Minerals formed by organisms. Science, 211(4487): 1126-1131. doi: 10.1126/science.7008198 [80] Luther Ⅲ, G.W., 1991. Pyrite synthesis via polysulfide compounds. Geochimica et Cosmochimica Acta, 55(10): 2839-2849. doi: 10.1016/0016-7037(91)90449-F [81] Lyons, T.W., Gill, B.C., 2010. Ancient sulfur cycling and oxygenation of the early biosphere. Elements, 6(2): 93-99. doi: 10.2113/gselements.6.2.93 [82] MacLean, L.C., Tyliszczak, T., Gilbert, P.U., et al., 2008. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology, 6(5): 471-480. doi: 10.1111/j.1472-4669.2008.00174.x [83] Marynowski, L., Zaton, M., Karwowski, L., 2008. Early diagenetic conditions during formation of the Callovian (Middle Jurassic) carbonate concretions from Lukow (eastern Poland): evidence from organic geochemistry, pyrite framboid diameters and petrographic study. Neues Jahrbuch Für Geologie Und Palaontologie-Abhandlungen, 247(2): 191-208. doi: 10.1127/0077-7749/2008/0247-0191 [84] Mayer, B., Prietzel, J., Krouse, H.R., 2001. The influence of sulfur deposition rates on sulfate retention patterns and mechanisms in aerated forest soils. Applied Geochemistry, 16(9-10): 1003-1019. doi: 10.1016/S0883-2927(01)00010-5 [85] Merinero, R., Lunar, R., Martinez-Fiias, J., et al., 2008. Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula). Marine and Petroleum Geology, 25(8): 706-713. doi: 10.1016/j.marpetgeo.2008.03.005 [86] Morford, J.L., Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63(11-12): 1735-1750. doi: 10.1016/S0016-7037(99)00126-X [87] Morse, J.W., Wang, Q., 1997. Pyrite formation under conditions approximating those in anoxic sediments. Ⅱ. Influence of precursor iron minerals and organic matter. Marine Chemistry, 57(3-4): 187-193. doi: 10.1016/S0304-4203(97)00050-9 [88] Mukhopadhyay, P.K., Goodarzi, F., Crandlemire, A.L., et al., 1998. Comparison of coal composition and elemental distribution in selected seams of the Sydney and Stellarton basins, Nova Scotia, eastern Canada. International Journal of Coal Geology, 37(1-2): 113-141. doi: 10.1016/S0166-5162(98)00020-2 [89] Norman, A.L., Giesemann, A., Krouse, H.R., et al., 2002. Sulphur isotope fractionation during sulphur mineralization: results of an incubation-extraction experiment with a Black Forest soil. Soil Biology & Biochemistry, 34(10): 1425-1438. http://www.sciencedirect.com/science/article/pii/S003807170200086X [90] Novák, M., Adamová, M., Miličić, J., 2003. Sulfur metabolism in polluted sphagnum peat Bogs: a combined 34S-35S-210Pb study. Water, Air, and Soil Pollution, 3(1): 181-200. doi: 10.1023/A:1022132226288 [91] Novák, M., Bottrell, S.H., Prechova, E., 2001. Sulfur isotope inventories of atmospheric deposition, spruce forest floor and living Sphagnum along a NW-SE transect across Europe. Biogeochemistry, 53(1): 23-50. doi: 10.1023/A:1010772205756 [92] Novák., M., Wieder, R.K., Schell, W.R., 1994. Sulfur during early diagenesis in Sphagnum peat: insights from δ34S ratio profiles in 210Pb-dated peat cores. Limnology and Oceanography, 39(5): 1172-1185. doi: 10.2307/2838480 [93] Ohfuji, H., Boyle, A.P., Prior, D.J., et al., 2005. Structure of framboidal pyrite: an electron backscatter diffraction study. American Mineralogist, 90(11-12): 1693-1704. doi: 10.2138/Am.2005.1829 [94] Ohfuji, H., Rickard, D., 2005. Experimental syntheses of framboids-a review. Earth Science Reviews, 71(3-4): 147-170. doi: 10.1016/j.earscirev.2005.02.001 [95] Ohmoto, H., 1986. Stable isotope geochemistry of ore deposits. Reviews in Minerology and Geochemistry, 16. Mineralogical Society of America, Washington D.C., 491-559. [96] Ohmoto, H., Rye, R.O., 1979. Isotopes of sulfur and carbon. In: Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits. 2nd ed. . Wiley, New York, 509-567. [97] Ostwald, J., England, B.M., 1979. The relationship between euhedral and framboidal pyrite in base-metal sulfide ores. Mineralogical Magazine, 43: 297-300. doi: 10.1180/minmag.1979.043.326.13 [98] Papunen, H., 1966. Framboidal texture of the pyritic layer found in a peat bog in SE Finland. Bull. Comm. Geol. Finlande, 222: 117-125. [99] Passier, H.F., Middelburg, J.J., Lange, G.J. d., et al., 1997. Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel. Geology, 25(6): 519-522. doi: 10.1130/0091-7613(1997)025<0519:PCMASI>2.3.CO;2 [100] Pavlov, A.A., Kasting, J.F., 2002. Mass-independent fractionation of sulfur isotopes in archean sediments: strong evidence for an anoxic archean atmosphere. Astrobiology, 2(1): 27-41. doi: 10.1089/153110702753621321 [101] Perry, K.A., Pedersen, T.F., 1993. Sulphur speciation and pyrite formation in meromictic ex-fjords. Geochimica et Cosmochimica Acta, 57(18): 4405-4418. doi: 10.1016/0016-7037(93)90491-E [102] Popa, R., Kinkle, B.K., Badescu, A., 2004. Pyrite framboids as biomarkers for iron-sulfur systems. Geomicrobiology Journal, 21(3): 193-206. doi: 10.1080/01490450490275497 [103] Prieur, D., Erauso, G., Jeanthon, C., 1995. Hyperthermophilic life at deep-sea hydrothermal vents. Planet. Space. Sci. , 43(1-2): 115-122. doi: 10.1016/0032-0633(94)00143-F [104] Qian, G., Brugger, J., Skinner, W.M., et al., 2011. An experimental study of the mechanism of the replacement of magnetite by pyrite up to 300 ℃. Geochimica et Cosmochimica Acta, 74(19): 5610-5630. doi: 10.1016/j.gca.2010.06.035 [105] Rachel, A.M., Bruce, S.L., 2009. Preservation of early and Middle Cambrian soft-bodied arthropods from the Pioche shale, Nevada, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(1-2): 57-62. doi: 10.1016/j.palaeo.2009.02.014 [106] Raiswell, R., 1982. Pyrite texture, isotopic composition and the availability of iron. American Journal of Science, 282: 1244-1263. doi: 10.2475/ajs.282.8.1244 [107] Raiswell, R., Whaler, K., Dean, S., et al., 1993. A simple three-dimensional model of diffusion-with-precipitation applied to localised pyrite formation in framboids, fossils and detrital iron minerals. Marine Geology, 113(1-2): 89-100. doi: 10.1016/0025-3227(93)90151-K [108] Rees, C.E., 1973. A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochimica et Cosmochimica Acta, 37(5): 1141-1162. doi: 10.1016/0016-7037(73)90052-5 [109] Rickard, D., 1989. Experimental concentration-time curves for the iron (Ⅱ) sulphide precipitation process in aqueous solutions and their interpretation. Chemical Geology, 78(3-4): 315-324. doi: 10.1016/0009-2541(89)90066-1 [110] Rimmer, S.M., 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian basin (USA). Chemical Geology, 206(3-4): 373-391. doi: 10.1016/j.chemgeo.2003.12.029 [111] Russell, M.J., Hall, A.J., Gize, A.P., 1990. Pyrite and the origin of life. Nature, 344(6265): 387. doi: 10.1038/344387b0 [112] Russell, M.J., Hall, A.J., Turner, D., 1989. In vitro growth of iron sulphide chimneys: possible culture chambers for origin-of-life experiments. Terra Nova, 1(3): 238-241. doi: 10.1111/j.1365-3121.1989.tb00364.x [113] Rust, G.W., 1935. Colloidal primary copper ores at Cornwall mines, southeastern Missouri. The Journal of Geology, 43(4): 398-426. doi: 1 10.1086/624318 [114] Ryall, W.R., 1977. Anomalous trace elements in pyrite in the vicinity of mineralized zones of Woodlawn, N.S.W., Australia. J. Geochem. Explor. , 8(1-2): 73-83. doi: 10.1016/0375-6742(77)90044-9 [115] Sapota, T., 2005. Morphology, internal structure and chemical composition of oxidized pyrite framboids from sediments of Lake Baikal, Siberia. Neues Jahrbuch Für Mineralogie-Abhandlungen, 181(2): 111-123. doi: 10.1127/0077-7757/2005/0010 [116] Schneiderhöhn, H., 1923. Chalkographische Untersuchung des Mansfelder Kupferschiefers. Neues Jahrb. Mineral. Geol. Paläontol. , 47: 1-38. http://www.researchgate.net/publication/284027149_Chalkographische_Untersuchung_des_Mansfelder_Kupferschiefers [117] Schoonen, M.A.A., Barnes, H.L., 1991. Reactions forming pyrite and marcasite from solution: Ⅱ. Via FeS precursors below 100 ℃. Geochimica et Cosmochimica Acta, 55(6): 1505-1514. doi: 10.1016/0016-7037(91)90123-M [118] Schroth, M.H., Kleikemper, J., Bolliger, C., et al., 2001. In situ assessment of microbial sulfate reduction in a petroleum-contaminated aquifer using push-pull tests and stable sulfur isotope analyses. Journal of Contaminant Hydrology, 51(3-4): 179-195. doi: 10.1016/S0169-7722(01)00128-0 [119] Scott, R.J., Meffre, S., Woodhead, J., et al., 2009. Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration. Economic Geology, 104(8): 1143-1168. doi: 10.2113/gsecongeo.104.8.1143 [120] Skyring, G.W., Donnelly, T.H., 1982. Precambrian sulfur isotopes and a possible role for sulfite in the evolution of biological sulfate reduction. Precambrian Research, 17(1): 41-61. doi: 10.1016/0301-9268(82)90153-X [121] Steinike, K., 1963. A further remark on biogenic sulfides; inorganic pyrite spheres. Economic Geology, 58(6): 998-1000. doi: 10.2113/gsecongeo.58.6.998 [122] Sugawara, H., Sakakibara, M., Belton, D., et al., 2008. Quantitative micro-PIXE analysis of heavy-metal-rich framboidal pyrite. Journal of Mineralogical and Petrological Sciences, 103(2): 131-134. doi: 10.2465/jmps.071019 [123] Suits, N.S., Wilkin, R.T., 1998. Pyrite formation in the water column and sediments of a meromictic lake. Geology, 26(12): 1099-1102. doi: 10.1130/0091-7613(1998)026<1099:PFITWC>2.3.CO;2 [124] Sweeney, R.E., Kaplan, I.R., 1973. Pyrite framboid formation; faboratory fynthesis and farine sediments. Economic Geology, 68(5): 618-634. doi: 10.2113/gsecongeo.68.5.618 [125] Taylor, G.R., 1982. A mechanism for framboid formation as illustrated by a volcanic exhalative sediment. Mineralium Deposita, 17(1): 23-36. doi: 10.1007/BF00206374 [126] Thamdrup, B., Finster, K., Hansen, J.W., et al., 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Applied and Environmental Microbiology, 59(1): 101-108. doi: 10.1128/aem.59.1.101-108.1993 [127] Tyson, R.V., Pearson, T.H., 1991. Modern and ancient continental shelf anoxia: an overview. Geological Society, London Special Publication, 58: 1-24. doi: 10.1144/GSL.SP.1991.058.01.01 [128] Vallentyne, J.R., 1963. Isolation of pyrite spherules from recent sediments. Limnol. and Oceanogr. , 8(1): 16-30. doi: 10.4319/lo.1963.8.1.0016 [129] Vine, J.D., Tourtelot, E.B., 1970. Geochemistry of black shale deposits; a summary report. Economic Geology, 65(3): 253-272. doi: 10.2113/gsecongeo.65.3.253 [130] Wacey, D., Mcloughlin, N., Whitehouse, M.J., et al., 2010. Two coexisting sulfur metabolism in a ca. 3 400 Ma sandstone. Geology, 38(12): 1115-1118. doi: 10.1130/G31329.1 [131] Wang, Q.W., Morse, J.W., 1996. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology. Marine Chemistry, 52(2): 99-121. doi: 10.1016/0304-4203(95)00082-8 [132] Wenk, H.R., Bulakh, A., 2004. Minerals: their constitution and origin. Cambridge University Press, Cambridge, UK. [133] Wignall, P.B., 1994. Black shales. Clarendon Press, Oxford; Oxford University Press, New York. [134] Wignall, P.B., Newton, R., Brookfield, M.E., 2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeography Palaeoclimatology Palaeoecology, 216(3-4): 183-188. doi: 10.1016/j.palaeo.2004.10.009 [135] Wignall, P.B., Myers, K.J., 1988. Interpreting benthic oxygen levels in mudrocks: a new approach. Geology, 16(5): 452-455. doi: 10.1130/0091-7613(1988)016<0452:IBOLIM>2.3.CO;2 [136] Wignall, P.B., Newton, R., 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science, 298(7): 537-552. doi: 10.2475/ajs.298.7.537 [137] Wignall, P.B., Twitchett, R.J., 1996. Oceanic anoxia and the end Permian mass extinction. Science, 272(5265): 1155-1158. doi: 10.1126/science.272.5265.1155 [138] Wilkin, R.T., Arthur, M.A., 2001. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition. Geochimica et Cosmochimica Acta, 65(9): 1399-1416. doi: 10.1016/S0016-7037(01)00552-X [139] Wilkin, R.T., Barnes, H.L., 1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta, 60(21): 4167-4179. doi: 10.1016/S0016-7037(97)81466-4 [140] Wilkin, R.T., Barnes, H.L., 1997a. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61(2): 323-339. doi: 10.1016/S0016-7037(96)00320-1 [141] Wilkin, R.T., Barnes, H.L., 1997b. Pyrite formation in an anoxic estuarine basin. American Journal Science, 297(6): 620-650. doi: 10.2475/ajs.297.6.620 [142] Wilkin, R.T., Barnes, H.L., Brantley, S.L., 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. doi: 10.1016/0016-7037(96)00209-8 [143] Williford, K.H., Foriel, J., Ward, P.D., et al., 2009. Major perturbation in sulfur cycling at the Triassic-Jurassic boundary. Geology, 37(9): 835-838. doi: 10.1130/g30054A.1 [144] Yang, J.H., Jiang, S.Y., Ling, H.F., et al., 2004. Paleoceangraphic significance of redox-sensitive metals of black shales in the basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. Progress in Natural Science, 14(2): 152-157. doi: 10.1080/10020070412331343291 [145] Yarincik, K.M., Murray, R.W., Lyons, T.W., et al., 2000. Oxygenation history of bottomwaters in the Cariaco basin, Venezuela, over the past 578, 000 years: results from redox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography, 15 (6): 593-604. doi: 10.1029/1999PA000401 [146] Yushkin, N.P., 2000. Biomineral homologies and organismobiosis. In: Mineralogy and life: biomineral homologies. Geoprint, Syktyvkar, 9-12. [147] Zhang, C.L., Vali, H., Romanek, C.S., et al., 1998. Formation of single-domain magnetite by a thermophilic bacterium. American Mineralogist, 83(11-12_Part_2): 1409-1418. [148] Zhang, W., Liu, C.Q., Liang, X.B., 2007. Biological function in sulfur isotope fractionation and environmental effect. Earth And Environment, 35(3): 223-227 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200703004.htm [149] 常华进, 储雪蕾, 冯连君, 等, 2009. 华南老堡组硅质岩中草莓状黄铁矿——埃迪卡拉纪末期深海缺氧的证据. 岩石学报, 25(4): 1001-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904024.htm [150] 张伟, 刘丛强, 梁小兵, 2007. 硫同位素分馏中的生物作用及其环境效应. 地球与环境, 35(3): 223-227. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200703004.htm