• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    更新世冰盖与大洋碳储库相互作用的箱式模型模拟

    马文涛 田军 李前裕

    马文涛, 田军, 李前裕, 2011. 更新世冰盖与大洋碳储库相互作用的箱式模型模拟. 地球科学, 36(4): 621-634. doi: 10.3799/dqkx.2011.064
    引用本文: 马文涛, 田军, 李前裕, 2011. 更新世冰盖与大洋碳储库相互作用的箱式模型模拟. 地球科学, 36(4): 621-634. doi: 10.3799/dqkx.2011.064
    MA Wen-tao, TIAN Jun, LI Qian-yu, 2011. Interaction between Ice Sheet and Oceanic Carbon Cycling during the Pleistocene: A Box Model Simulation. Earth Science, 36(4): 621-634. doi: 10.3799/dqkx.2011.064
    Citation: MA Wen-tao, TIAN Jun, LI Qian-yu, 2011. Interaction between Ice Sheet and Oceanic Carbon Cycling during the Pleistocene: A Box Model Simulation. Earth Science, 36(4): 621-634. doi: 10.3799/dqkx.2011.064

    更新世冰盖与大洋碳储库相互作用的箱式模型模拟

    doi: 10.3799/dqkx.2011.064
    基金项目: 

    国家重点基础研究发展计划“973”项目 2007CB815900

    国家自然科学基金项目 40976024

    2008年教育部新世纪优秀人才支持计划 NCET-08-0401

    上海市青年科技启明星跟踪项目 10QH1402600

    详细信息
      作者简介:

      马文涛(1981-),男,博士研究生,从事古海洋与古气候变化的研究.E-mail: 8wentao_ma@tongji.edu.cn

    • 中图分类号: P736

    Interaction between Ice Sheet and Oceanic Carbon Cycling during the Pleistocene: A Box Model Simulation

    • 摘要: 全球大洋深海有孔虫碳同位素(δ13C)记录中广泛发现40万年周期,这一周期可能与偏心率长周期的轨道驱动有关.1.6 Ma以来,δ13C的这一长周期拉长到50万年,且重值期不再与偏心率低值对应.目前对δ13C 40万年周期的成因及其周期拉长的机制还不明确.这里使用了包含9个箱体的箱式模型,用于研究热带过程与冰盖相互作用及其对大洋碳循环的影响.模拟结果显示当北半球高纬海区海冰迅速增大时冰盖迅速融化,进入冰消期,而当海冰快速消失后,冰盖则重新缓慢增长.冰盖变化具有冰期长,间冰期短的非对称形态.在季节性太阳辐射量的驱动下冰盖变化具有10万年冰期-间冰期旋回.当冰盖融化速率受北半球高纬夏季太阳辐射量控制时,冰盖变化的岁差周期明显加强,相位与地质记录一致,说明轨道驱动可以通过非线性相位锁定机制使冰盖变化与其在相位上保持一致.海冰的阻隔效应使大气中CO2在冰消期时增多.冰期时大洋环流减弱使大气中CO2逐渐减少.当模型只有ETP驱动的风化作用而不考虑冰盖变化时,模拟的δ13C记录显示极强的40万年周期,体现了大洋碳储库对热带风化过程的响应.当同时考虑冰盖变化和风化作用时,模拟的δ13C结果中40万年周期减弱而10万年周期加强,并且40万年周期上碳储库与偏心率的相位与不考虑冰盖变化时的相位也存在差异,反映了冰盖变化引起的洋流改组压制了大洋碳循环对热带过程的响应.

       

    • 图  1  箱式模型结构

      a.物理过程剖面图;b.表层箱体俯视图;c.生物地球化学过程

      Fig.  1.  Configuration of the box model

      图  2  封闭系统季节性太阳辐射量驱动模拟结果

      a.北半球冰盖覆盖面积比例;b.北半球海冰覆盖面积比例;c.南半球海冰覆盖面积比例;d.大气CO2含量;e.箱体“B”(底层水)海水碳同位素;f.箱体“E”海水碳同位素.灰色阴影对应北半球海冰面积触发的时间段

      Fig.  2.  Simulated results of closed system driven by seasonal insolation

      图  3  封闭系统季节性太阳辐射量驱动下北半球冰盖累积速率与融化速率变化情况

      Fig.  3.  Accumulation and ablation rate of closed system under seasonal insolation forcing

      图  4  封闭系统太阳辐射量驱动冰盖融化速率变化条件下的模拟结果

      a.LR04 δ18O合成记录(Lisiecki and Raymo, 2005);b.北半球冰盖覆盖面积比例;c.北半球海冰覆盖面积比例;d.南半球海冰覆盖面积比例;e.大气CO2含量;f.箱体“B”(底层水)海水碳同位素;g.箱体“E”海水碳同位素

      Fig.  4.  Simulated results of closed system driven by Milankovitch insolation and insolation based ablation term

      图  5  固定冰盖体积,河流输入DIC和ALK在ETP驱动下0~2 Ma的模拟结果

      a.大气CO2含量;b.箱体“B”的海水δ13C;c.箱体“E”的海水δ13C;d.箱体“B”的碳酸根浓度;e.地球偏心率参数(Laskar et al., 2004)

      Fig.  5.  Simulated results of the latest 2 Ma driven by ETP based riverine inputs of DIC and ALK without variability of ice sheet

      图  6  太阳辐射量轨道驱动冰盖体积变化,ETP驱动河流输入DIC和ALK变化条件下0~2 Ma的模拟结果

      a.北半球冰盖覆盖面积比例;b.北半球海冰覆盖面积比例;c.大气CO2含量;d.箱体“B”的海水δ13C;e.箱体“E”的海水δ13C;f.箱体“B”的碳酸根浓度;g.地球偏心率参数(Laskar et al., 2004)

      Fig.  6.  Simulated results of the latest 2 Ma driven by ETP based riverine inputs of DIC and ALK and Milankovitch insolation based variability of ice sheet

      图  7  封闭系统季节性太阳辐射量驱动下洋流变化模拟结果

      a.北半球冰盖覆盖面积比例;b.Q1(NADW)流量;c.箱体“N”与“D”海水交换速率;d.箱体“S”与“I”海水交换速率

      Fig.  7.  Simulated results of ocean circulation under seasonal insolation forcing in closed system

      图  8  开放系统固定冰盖体积模拟结果的小波分析

      a.箱体“B”模拟δ13C连续小波谱;b.箱体“E”模拟δ13C连续小波谱;c.箱体“B”与“E”模拟δ13C的交叉小波谱;d.箱体“B”模拟δ13C与偏心率参数(Laskar et al., 2004)的交叉小波谱.其中黑色锥形实线以内为小波分析过程中不受边缘效应影响的区域,锥形线以外的结果可能因边缘效应而不可信.交叉小波结果中黑色等值线代表红噪假设下显著性水平为5%的区域.箭头表示2个时间序列间的相位关系.向右箭头表示同相位,向左箭头表示反相位,向上箭头表示δ13CB领先90°,向下箭头表示δ13CB落后90°.小波分析方法由Grinsted et al.(2004)提供

      Fig.  8.  Wavelet spectrums of simulated results in open system without the variability of ice sheet

      图  9  开放系统冰盖体积可变时模拟结果的小波分析

      a.箱体“B”模拟δ13C连续小波谱;b.箱体“E”模拟δ13C连续小波谱;c.箱体“B”与“E”模拟δ13C的交叉小波谱;d.箱体“B”模拟δ13C与偏心率参数(Laskar et al., 2004) 的交叉小波谱.其中频谱置信区间和黑色箭头代表的领先/落后关系见图 8中说明

      Fig.  9.  Wavelet spectrums of simulated results in open system that include the variability of ice sheet

      表  1  箱式模型参数

      Table  1.   List of parameters

      符号 描述 单位 数值
      海洋模型
      L1, L2, L3 箱体长度 106 m 4.15, 20, 4.15
      W 箱体宽度 106 m 18
      flS, flE, flN 陆地所占比例 0.5, 0.25, 0.5
      λ1, …, λ5 流量参数 106 6.6, 5.1, 1.2, 4.2, 1.0
      Kv1, …, Kv5 垂向扩散系数 m2/s 2.6×10-3, 6.5×10-5, 2.2×10-3, 2.4×10-3, 6.1×10-5
      Kh1, …, Kh3 横向扩散系数 m2/s 2.5×103
      lengthv1, …, lengthv5 垂向长度系数 m 1 500, 1 500, 1 500, 1 900, 1 900
      lengthh1, …, lengthh3 横向向长度系数 106 m 17, 16, 18
      upper 表层箱体间横截面积 m2 2×109
      lower 下层箱体间横截面积 m2 2.8×1010
      ρ0 海水参考密度 kg/m3 1 028
      S0 海水参考盐度 35
      D 表层箱体水深 m 200
      τ 热量散失的阻尼系数 s 4.65×107
      Cpw 海水热容 J·K/kg 4 180
      海冰模型
      Dsea-ice 海冰初始厚度 m 1.5(箱体“S”),3(箱体“N”)
      τsea-ice 海冰阻尼系数 s 2.6×106
      γ 海冰热阻隔系数 m 0.05
      ρsea-ice 海冰密度 kg/m3 917
      Tsea-ice 海水结冰温度 -2
      Lf 海水融化潜热 J/kg 3.34×105
      大气模型
      αland 陆地反射系数 0.2
      αland-ice 冰盖反射系数 0.9
      αsea 海水反射系数 0.07
      αsea-ice 海冰反射系数 0.65
      αcloud 云层反射系数 0.3
      PlwOS, …, PlwON 长波辐射系数 0.61, 0.52, 0.67
      σ Stephan-Boltzmann常数 5.67×10-8
      κ 常系数 0.03
      pCO20 大气CO2参考值 10-6 280
      Kθ 大气扩散系数 1/(s·K2) 1.5×1020
      KMq 经向水汽扩散系数 m4/(s·K) 2.4×1013
      Kq 高纬形体内的水汽扩散系数 m3/s 6.5×108
      R 气体常数 J/(kg·K) 287.04
      Cpw 定压比热 J/(kg·K) 1 004
      g 重力加速度 m/s2 9.8
      P0 参考大气压力 102 Pa 1 000
      A 湿度计算常数 Pa 2.53×1011
      B 湿度计算常数 K 5.42×103
      生物地球化学模型
      h 半饱和常数 mol/m3 2×10-5
      r 常系数 1.2×10-8, 1.0×10-7, 2.0×10-8
      下载: 导出CSV

      附表 1  模型生物地球化学参数

      附表 1.   List of parameters for biogeochemical model

      参数 描述 数值 来源
      rcporg 有机质吸收C、P的比例生物吸收总C、P的比例 106 Ridgwell, 2001
      rC∶P (POC+PIC) rCorg∶p/(1-rainratio) Ridgwell, 2001
      rnporg 有机质吸收N、P的比例 16 Ridgwell, 2001
      rALK∶P ALK与P的比例 2×rainratio×rCorg∶p -0.7×rN∶P Ridgwell, 2001
      g 箱体“I”和“D”中POC和PIC的溶解比例 0.5 Toggweiler, 2008
      rom POC沉积比例 0.01 本研究
      DGvol+kero 火山与沉积物氧化释放CO2 7.78×1012 mol/a 本研究
      Pv 海-气交换的活塞速度 3 m/d Toggweiler, 2008
      εp 有机碳碳同位素分馏 -23‰ 本研究
      δ13Criv 河流输入碳同位素组成 -5‰ 本研究
      δ13Cvol+kero 火山与沉积物氧化释放CO2的碳同位素组成 -5‰ Kump and Arthur, 1999
      rivPO43- 河流输入的磷酸盐 2.5×1010 mol/a 本研究
      下载: 导出CSV
    • [1] Barker, S., Archer, D., Booth, L., et al., 2006. Globally increased pelagic carbonate production during the mid-brunhes dissolution interval and the CO2 paradox of MIS 11. Quaternary Science Reviews, 25(23-24): 3278-3293. doi: 10.1016/j.quascirev.2006.07.018
      [2] Berger, A.L., 1978. Long-term variations of daily insolation and quaternary climatic changes. Journal of the Atmospheric Sciences, 35(12): 2362-2367. doi: 10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2
      [3] Broecker, W.S., Peng, T.H., 1987. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Global Biogeochemical Cycles, 1(1): 15-29. doi: 10.1029/GB001i001p00015
      [4] Clemens, S.C., Tiedemann, R., 1997. Eccentricity forcing of Pliocene-early Pleistocene climate revealed in a marine oxygen-isotope record. Nature, 385(6619): 801-804. doi: 10.1038/385801a0
      [5] Curry, W.B., Oppo, D.W., 2005. Glacial water mass geometry and the distribution of δ13C of ∑CO2 in the western Atlantic Ocean. Paleoceanography, 20: PA1017. doi: 10.1029/2004PA001021
      [6] Gherardi, J.M., Labeyrie, L., Nave, S., et al., 2009. Glacial- interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region. Paleo ceanography, 24: PA2204. doi: 10.1029/2008PA001696
      [7] Gildor, H., Tziperman, E., 2000. Sea ice as the glacial cycles' climate switch: role of seasonal and orbital forcing. Paleoceanography, 15(6): 605-615. doi: 10.1029/1999PA000461
      [8] Gildor, H., Tziperman, E., 2001. A sea ice climate switch mechanism for the 100 ka glacial cycles. Journal of Geophysical Research, 106(C5): 9117-9133. doi: 10.1029/1999JC000120
      [9] Gildor, H., Tziperman, E., Toggweiler, J.R., 2002. Sea ice switch mechanism and glacial-interglacial CO2 variations. Global Biogeochemical Cycles, 16(3): 1032. doi: 10.1029/2001GB001446
      [10] Grinsted, A., Moore, J.C., Jevrejeva, S., 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5-6): 561-566. doi: 10.5194/npg-11-561-2004
      [11] Hays, J.D., Imbrie, J., Shackleton, N.J., 1976. Variations in the Earth's orbit: pacemaker of the ice ages. Science, 194(4270): 1121-1132. doi: 10.1126/science.194.4270.1121
      [12] Holbourn, A., Kuhnt, W., Schulz, M., et al., 2007. Orbitally-paced climate evolution during the Middle Miocene "Monterey" carbon-isotope excursion. Earth and Planetary Science Letters, 261(3-4): 534-550. doi: 10.1016/j.epsl.2007.07.026
      [13] Imbrie, J., Berger, A., Boyle, E.A., et al., 1993. On the structure and origin of major glaciation cycles 2. The 100 000-year cycle. Paleoceanography, 8(6): 699-735. doi: 10.1029/93pa02751
      [14] Imbrie, J., Imbrie, J.Z., 1980. Modeling the climatic response to orbital variations. Science, 207(4434): 943-953. doi: 10.1126/science.207.4434.943
      [15] Lane, E., Peacock, S., Restrepo, J.M., 2006. A dynamic-flow carbon-cycle box model and high-latitude sensitivity. Tellus B, 58(4): 257-278. doi: 10.1111/j.1600-0889.2006.00192.x
      [16] Laskar, J., Robutel, P., Joutel, F., et al., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428(1): 261-285. doi: 10.1051/0004-6361:20041335
      [17] Lisiecki, L.E., 2010. Links between eccentricity forcing and the 100 000-year glacial cycle. Nature Geoscience, 3(5): 349-352. doi: 10.1038/ngeo828
      [18] Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: PA1003. doi: 10.1029/2004PA001071
      [19] Milanković, M., 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Academy, Special Publicanions, Belgrad.
      [20] Paillard, D., 1998. The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature, 391(6665): 378-381. doi: 10.1038/34891
      [21] Paillard, D., Parrenin, F., 2004. The Antarctic ice sheet and the triggering of deglaciations. Earth and Planetary Science Letters, 227(3-4): 263-271. doi: 10.1016/j.epsl.2004.08.023
      [22] Pollard, D., 1982. A simple ice sheet model yields realistic 100 ka glacial cycles. Nature, 296(5855): 334-338. doi: 10.1038/296334a0
      [23] Rahmstorf, S., 2002. Ocean circulation and climate during the past 120 000 years. Nature, 419(6903): 207-214. doi: 10.1038/nature01090
      [24] Saltzman, B., Hansen, A.R., Maasch, K.A., 1984. The Late Quaternary glaciations as the response of a three-component feedback system to Earth-orbital forcing. Journal of the Atmospheric Sciences, 41(23): 3380-3389. doi: 10.1175/1520-0469(1984)041<3380:TLQGAT>2.0.CO;2
      [25] Sarmiento, J.L., Dunne, J., Gnanadesikan, A., et al., 2002. A new estimate of the CaCO3 to organic carbon export ratio. Global Biogeochemical Cycles, 16(4): 1107. doi: 10.1029/2002GB001919
      [26] Sigman, D.M., Boyle, E.A., 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407(6806): 859-869. doi: 10.1038/35038000
      [27] Toggweiler, J.R., 1999. Variation of atmospheric CO2 by ventilation of the ocean's deepest water. Paleoceanography, 14(5): 571-588. doi: 10.1029/1999PA900033
      [28] Toggweiler, J.R., 2008. Origin of the 100 000-year timescale in Antarctic temperatures and atmospheric CO2. Paleoceanography, 23(2): PA2211. doi: 10.1029/2006PA001405
      [29] Toggweiler, J.R., Russell, J.L., Carson, S.R., 2006. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21(2): PA2005. doi: 10.1029/2005PA001154
      [30] Tziperman, E., Raymo, M.E., Huybers, P., et al., 2006. Consequences of pacing the Pleistocene 100 ka ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography, 21(4): PA4206. doi: 10.1029/2005PA001241
      [31] United Nations Educational, Scientific, and Cultural Organization (UNESCO), 1981. Tenth report of the joint panel on oceanographic tables and standards, UNESCO technical papers in marine science, Paris.
      [32] Wade, B.S., Pälike, H., 2004. Oligocene climate dynamics. Paleoceanography, 19(4): PA4019. doi: 10.1029/2004PA001042
      [33] Wang, P.X., Tian, J., Cheng, X.R., et al., 2003. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 31(3): 239-242. doi: 10.1130/0091-7613(2003)031<0239:CRCPMI>2.0.CO;2
      [34] Wang, P.X., Tian, J., Cheng, X.R., et al., 2004. Major Pleistocene stages in a carbon perspective: the South China Sea record and its global comparison. Paleoceanography, 19(4): PA4005. doi: 10.1029/2003PA000991
      [35] Wang, P.X., Tian, J., Lourens, L.J., 2010. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records. Earth and Planetary Science Letters, 290(3-4): 319-330. doi: 10.1016/j.epsl.2009.12.028
    • dqkxzx-36-4-621fl.pdf
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  3164
    • HTML全文浏览量:  225
    • PDF下载量:  57
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-02-11
    • 刊出日期:  2011-07-01

    目录

      /

      返回文章
      返回