Sedimentary Record and Monsoon Activity of Core BAR9442 in Sunda Strait during 30 kaBP
-
摘要: 为重建巽他海峡区古季风活动历史,通过对BAR9442岩心氧同位素、AMS14C测年、陆源碎屑标准偏差区间粒径分布,以及上升流种Globigerina bulloides等变化特点分析,并结合前人对该岩心粘土矿物的研究,获得如下认识:末次冰期30~17 kaBP,海平面下降,陆源粉砂物质输入增加; 南半球夏季日照率高,然而受冰期热带辐聚带位置影响,西北季风受阻,东南信风持续吹过研究海域形成类似东南季风的效应,气候冷干; 受印度东北季风影响,伊利石含量最高,上升流活动不发育, 古生产力降低.17~8 kaBP,海平面迅速上升,出现较强的表层穿越流活动,粘土物质成为沉积物的主要组分; 此时东南与西北季风都有增强,说明当时研究区气候有着更强的季节性.全新世8 kaBP以来,全球海平面上升使穿越流活动加强,沉积物粘土组分含量最大,西北季风带来温暖湿润的气候条件.Abstract: Core BAR9442 (6°04.56′S and 102°25.08′E; 2 542 m water depth) is obtained below the present South Java Current, offshore the southern portion of Sumatra in the eastern Indian Ocean. Based on analyses of δ18O, AMS14C ages, grain-size distribution of standard deviation stages and relative abundance of Globigerina bulloides which commonly encountered in upwelling areas, as well as the record of clay mineral in Gingele et al.(2002), we come to the following conclusion: during the last glacial period 30-17 kaBP, when sea level was lower, terrigenous sands supply increased. Even the austral summer insulations strengthened, though the southward shift of the ITCZ in the austral summer may have been considerably restricted, where the northwest monsoon did not operate, and this would create a situation analogous to the southeast monsoon operating throughout the year, because the trade winds would blow continually across the study area. The climate was cold and dry. Under the influence of Indian northeastern monsoon, the percentage content of illite was the highest, and upwelling activity was absent and induced a low productivity. Rapid rise of sea level at the deglaciation 17-8 kaBP, the shallow connections re-opened, Makassar Strait and Lombok Strait were wider, leading to intensified surface ITF, and clay mineral became the dominated terrigenous material. The SE monsoon and NW monsoon seem to be strengthened in Early Holocene, indicating that the biannual monsoonal system was mostly intense at this time. During the Holocene (about 8 kaBP), with the sea level rising, the throughflow enhanced, and the clay minerals of the terrigenous sediments have a maximum influx while intensified NW monsoon generated a warm and wet climate.
-
Key words:
- South Java Current /
- grain size analysis /
- clay minerals /
- paleomonsoon /
- throughflow /
- Last Glacial
-
图 1 现代印尼海区8月表层洋流活动示意和BAR9442岩心位置(Gingele et al., 2002; Lückge et al., 2009)
Fig. 1. Surface currents of the Indonesian archipelago in August and location of core BAR9442
1.Core BAR9432; 2.Core BAR9403; 3.Core S0139-74kL
图 3 BAR9442站G.ruber氧、碳同位素,粒度标准偏差区间、中值粒径、G.bulloides百分含量(丁旋数据未发表)、沉积速率、全球相对海平面高度曲线(Chappell et al., 1996)及30°N 6月(粗)和30°S 12月(细)日照率曲线
Fig. 3. Down-core variations of the oxygen and carbon isotopes of G.ruber, grain size distribution of standard deviation stages, percentage of middle grain size, sedimentation rate, global relative sea level (Chappell et al., 1996), relative abundance of G.bulloides of core BAR9442 and the insolation of 30°N Jun. (thick) and 30°S Dec.(thin)
图 4 印度尼西亚及西北澳大利亚地区高岭石、蒙脱石、伊利石、绿泥石分布(Gingele et al., 2001)
Fig. 4. Distribution of kaolinite, smectite, illite, chlorite between Indonesia and NW Australia
图 5 粘土矿物百分含量分布(Gingele et al., 2002)
Fig. 5. Down-core variations of the clay mineral percentages of core BAR9442
表 1 BAR9442岩心AMS14C测试结果
Table 1. AMS14C ages and the calibrated calendar ages of core BAR9442
深度(cm) AMS14C年龄(aBP) 校正后的日历年龄(cal.aBP) 19.5 2 800±40 2 891±49 30.5 3 475±30 3 737±52 41.5 4 415±40 4 998±93 60.5 7 470±40 8 305±52 70.5 8 550±50 9 526±23 95.5 12 890±70 15 017±119 164.5 14 930±70 17 965±198 291.0 19 190±160 22 798±215 394.5 22 495±80 27 034±155 451.5 24 595±90 29 408±162 672.5 32 305±115 37 698±188 -
[1] Bard, E., Arnold, M., Maurice, P., et al., 1987. Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature, 328: 791-794. doi: 10.1038/328791a0 [2] Barrows, T.T., Juggins, S., 2005. Sea-surface temperatures around the Australian margin and Indian Ocean during the last glacial maximum. Quaternary Science Reviews, 24(7-9): 1017-1047. doi: 10.1016/j.quascirev.2004.07.020 [3] Bassett, S.E., Milne, G.A., Mitrovica, J.X., et al., 2005. Ice sheet and splid Earth influences on far-field sea-level histories. Science, 309(5): 925-928. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=309/5736/925 [4] Bray, N.A., Hautala, S., Chong, J., et al., 1996. Large-scale sea level, thermocline, and wind variations in the Indonesian throughflow region. Journal of Geophysical Research, 101: 12239-12254. doi: 10.1029/96JC00080 [5] Cao, B.X., 1995. Geomorphology and Quaternary geology. China University of Geosciences Press, Wuhan, 31 (in Chinese). [6] Chappell, J., Omura, A., Esat, T., et al., 1996. Reconciliation of Late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep-sea oxygen isotope records. Earth Planet. Sci. Lett. , 141: 227-236. doi: 10.1016/0012-821X(96)00062-3 [7] Croke, J.C., Magee, J.W., Wallensky, E.P., 1999. The role of the Australian monsoon in the western catchment of Lake Eyre, central Australia, during the last interglacial. Quaternary International, 57/58: 71-80. doi: 10.1016/S1040-6182(98)00051-2 [8] De Deckker, P., Gingele, F.X., 2002. On the occurrence of the giant diatom Ethmodiscus rex in an 80 ka record from a deep-sea core, southeast of Sumatra, Indonesia: implications for tropical palaeoceanography. Marine Geology, 183: 31-43. doi: 10.1016/S0025-3227(01)00252-3 [9] Ding, X., Bassinot, F., Guichard, F., et al., 2006. Distribution and ecology of planktonic foraminafera from the seas around the Indonesian Archipelago. Marine Micropaleontology, 58: 114-134. doi: 10.1016/j.marmicro.2005.10.003 [10] Ding, X., Fang, N.Q., Chen, P., 2003. Upwelling actions in the Bay of Bengal during marine isotope stages 2 and 3 evidence for Indian winter monsoon. Quaternary Sciences, 23(1): 54-59 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200301005.htm [11] Ding, X., Guichard, F., Bassinot, F., et al., 2005. Paleoceanography of the last glacial maximum in the Flores Sea of the Indonesian Archipelago. Earth Science—Journal of China University of Geosciences, 30(5): 565-572 (in Chinese with English abstract). http://www.researchgate.net/publication/289193717_Paleoceanography_of_the_last_glacial_maximum_in_the_Flores_Sea_of_the_Indonesian_archipelago [12] English, P., Spooner, N.A., Chappell, J., et al., 2001. Lake Lewis basin, central Australia: environmental evolution and OSL chronology. Quaternary International, 83-85: 81-102. doi: 10.1016/S1040-6182(01)00032-5 [13] Fairbanks, R.G., Mortlock, R.A., Chiu, T.C., et al., 2005. Marine radiocarbon calibration curve spanning 0 to 50 000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews, 24: 1781-1796. doi: 10.1016/j.quascirev.2005.04.007 [14] Fieux, M., Andrié, C., Charriaud, E., et al., 1996. Hydrological and chlorofluoromethane measurements of the Indonesian throughflow entering the Indian Ocean. Journal of Geophysical Research, 101(C5): 12433-12454. doi: 10.1029/96JC00207 [15] Gingele, F.X., De Deckker, P., Girault, A., et al., 2002. History of the South Java Current over the past 80 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 183(3-4): 247-260. doi: 10.1016/S0031-0182(01)00489-8 [16] Gingele, F.X., De Deckker, P., Hillenbrand, C.D., 2001. Clay mineral distribution in surface sediments between Indonesia and NW Australia-source and transport by ocean currents. Marine Geology, 179: 135-146. doi: 10.1016/S0025-3227(01)00194-3 [17] Gordon, A.L., Fine, R.A., 1996. Pathways of water between the Pacific and Indian Oceans in the Indonesian Seas. Nature, 379: 146-149. doi: 10.1038/379146a0 [18] Hesse, P.P., Magee, J.W., van der Kaars, S., 2004. Late Quaternary climates of the Australian arid zone. Quaternary International, 118-119: 87-102. doi: 10.1016/S1040-6182(03)00132-0 [19] Hesse, P.P., McTainsh, G.H., 2003. Australian dust deposits: modern processes and the Quaternary record. Quaternary Science Reviews, 22: 2007-2035. doi: 10.1016/S0277-3791(03)00164-1 [20] Hirst, A.C., Godfrey, J.S., 1993. The role of Indonesian throughflow in a global ocean GCM. Journal of Physical Oceanography, 23: 1057-1085. doi: 10.1175/1520-0485(1993)023<1057:TROITI>2.0.CO;2 [21] Kolla, V., Moore, D.C., Curray, J.R., 1976. Recent bottom-current activity in the deep western Bay of Bengal. Marine Geology, 21: 255-270. doi: 10.1016/0025-3227(76)90010-4 [22] Koutavas, A., Lynch-Stieglitz, J., Marchitto, T.M. Jr., et al., 2002. El Nińo-like pattern in ice age tropical Pacific Sea surface temperature. Science, 297(12) : 226-230. http://europepmc.org/abstract/med/12114619 [23] Leuschner, D.C., Sirocko, F., 2003. Orbital insolation forcing of the Indian monsoon—a motor for global climate changes? Palaeogeography, Palaeoclimatology, Palaeoecology, 197: 83-95. doi: 10.1016/S0031-0182(03)00387-0 [24] Liu, Z.F., Zhao, Y.L., Li, J.R., 2007. Clay mineralogy record in Vietnam of west portion of South China Sea during Late Quaternary: source analyse and East Asian monsoon evolution. China Science(Ser. D): Earth Science, 37(9): 1176-1184 (in Chinese with English abstract). [25] Lückge, A., Mohtadi, M., Rühlemann, C., et al., 2009. Monsoon versus ocean circulation controls on paleoenvironmental conditions off southern Sumatra during the past 300 000 years. Paleoceanography, 24, PA1208. doi: 10.1029/2008PA001627 [26] Magee, J.W., Bowler, J.M., Miller, G.H., et al., 1995. Stratigraphy, sedimentology, chronology and palaeohydrology of Quaternary lacustrine deposits at Madigan Gulf, Lake Eyre, South Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 113: 3-42. doi: 10.1016/0031-0182(95)00060-Y [27] Magee, J.W., Miller, G.H., 1998. Lake Eyre palaeohydrology from 60 ka to the present: beach ridges and glacial maximum aridity. Palaeogeography, Palaeoclimatology, Palaeoecology, 144: 307-329. doi: 10.1016/S0031-0182(98)00124-2 [28] Martinez, J.I., Taylor, L., De Deckker, P., et al., 1998. Planktonic foraminifera from the eastern Indian Ocean: distribution and ecology in relation to the western Pacific warm pool (WPWP). Mar. Micropaleontology. 34: 121-151. doi: 10.1016/S0377-8398(97)00045-5 [29] Martinson, D.G., Pisias, N.G., Hays, J.D., 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300 000 year chronostratigraphy. Quaternary Research, 27(1): 1-29. doi: 10.1016/0033-5894(87)90046-9 [30] Mohtadi, M., Lückge, A., Steinke, S., et al., 2010. Late Pleistocene surface and thermocline conditions of the eastern tropical Indian Ocean. Quaternary Science Reviews, 29: 887-896. doi: 10.1016/j.quascirev.2009.12.006 [31] Murgese, D.S., De Deckker, P., Spooner, M.I., et al., 2008. A 35 000 year record of changes in the eastern Indian Ocean offshore Sumatra. Palaeogeography, Palaeoclimatology, Palaeoecology, 265: 195-213. doi: 10.1016/j.palaeo.2008.06.001 [32] Rashid, H., Flower, B.P., Poore, R.Z., et al., 2007. A ~25 ka Indian Ocean monsoon variability record from the Andaman Sea. Quaternary Science Reviews, 26(19-21): 2586-2597. doi: 10.1016/j.quascirev.2007.07.002 [33] Singer, A., 1984. The paleoclimatic interpretation of clay minerals in sediments—a review. Earth-Science Reviews, 21: 251-293. doi: 10.1016/0012-8252(84)90055-2 [34] Spooner, M.I., Barrows, T.T., De Deckker, P., et al., 2005. Palaeoceanography of the Banda Sea, and Late Pleistocene initiation of the Northwest monsoon. Global and Planetary Change, 49(1-2): 28-46. doi: 10.1016/j.gloplacha.2005.05.002 [35] Sprintall, J., Wijffels, S.E., Molcard, R., et al., 2009. Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004-2006. Journal of Geophysical research, 114, C07001. doi: 10.1029/2008JC005257 [36] Sun, Y.B., Gao, S., Li, J., 2003. The preliminary analysis on sensitive grain-size populations of terrigenous material in marginal seas. Science Bulletin, 48(1): 83-86 (in Chinese with English abstract). [37] van der Kaars, S., De Deckker, P., 2002. A Late Quaternary pollen record from deep-sea core FR10/95, GC17 offshore Cape Range Peninsula, northwestern western Australia. Review of Palaeobotany and Palynology, 120(1-2): 17-39. doi: 10.1016/S0034-6667(02)00075-1 [38] van der Kaars, S., Wang, X., Kershaw, P., et al., 2000. A Late Quaternary palaeoecological record from the Banda Sea, Indonesia: patterns of vegetation, climate and biomass burning in Indonesia and northern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 155: 135-153. doi: 10.1016/S0031-0182(99)00098-X [39] Veeh, H.H., McCorkle, D.C., Heggie, D.T., 2000. Glacial/interglacial variations of sedimentation on the West Australian continental margin: constraints from excess 230Th. Marine Geology, 166: 11-30. doi: 10.1016/S0025-3227(00)00011-6 [40] Wan, S.M., Li, A.C., Xu, K.H., et al., 2008. Characteristics of clay minerals in the Northern South China Sea and its implications for evolution of East Asian monsoon since Miocene. Earth Science—Journal of China University of Geosciences, 33(3): 289-300 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.039 [41] Wang, L., Sarnthern, M., Erlenkeuser, H., et al., 1999. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology, 156: 245-284. doi: 10.1016/S0025-3227(98)00182-0 [42] Wijffels, S.E., Hautala, S., Meyers, G., et al., 1996. The WOCE Indonesian throughflow repeat hydrography sections: I10 and IR6. Int. WOCE Newsl, 24: 25-28. http://www.researchgate.net/publication/284040588_The_WOCE_Indonesian_throughflow_repeat_hydrography_sections_I10_and_IR6 [43] Wu, G.H., Tian, L.S., Hu, S.X., et al., 2000. Physical geography (the third edition). Higher Education Press, Beijing, 189 (in Chinese). [44] Wyrtki, K., 1961. Scientific results of marine investigations of the South China Sea and the Gulf of Thailand. NAGA Report 2, University of California, Scripps Institute of Oceanography, La Jolla, CA. [45] Wyrwoll, K.H., Miller, G.H., 2001. Initiation of the Australian summer monsoon 14 000 years ago. Quaternary International, 83-85: 119-128. doi: 10.1016/S1040-6182(01)00034-9 [46] Xu, J., Kuhnt, W., Holbourn, A., et al., 2006. Changes in the vertical profile of the Indonesian throughflow during termination Ⅱ: evidence from the Timor Sea. Paleoceanography, 21, PA4202. doi: 10.1029/2006PA001278 [47] Ye, F., Liu, Z.F., Tuo, S.T., et al., 2007. Grain size record of terrigenous clast during mid-Pleistocene transition (0.78-100 Ma) in the northern South China Sea. Marine Geology & Quaternary Geology, 27(2): 77-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200702013.htm [48] Zhao, Y., Ding, X., 2011. Monsoon and upwelling activity records in the Sumatra during Late Pleistocene. Quaternary Sciences, 31(2): 265-275 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_quaternary-sciences_thesis/0201253124651.html [49] Zhao, Y.L., Liu, Z.F., Cheng, X.R., et al., 2006. Dominance factors of the terringenous sediment granulometric distribution in the Lower Sunda Slope. Marine Geology & Quaternary Geology, 26(2): 73-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200602012.htm [50] 曹伯勋, 1995. 地貌学与第四纪地质学. 武汉: 中国地质大学出版社, 31-33. [51] 丁旋, 方念乔, 陈萍, 2003. 孟加拉湾深海氧同位素2、3期上升流活动——北印度洋冬季风的实证. 第四纪研究, 23(1): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200301005.htm [52] 丁旋, Guichard, F., Bassinot, F., 等, 2005. 印度尼西亚弗洛勒斯海LGM以来的古海洋学记录. 地球科学——中国地质大学学报, 30(5): 565-572. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505007.htm [53] 刘志飞, 赵玉龙, 李建如, 2007. 南海西部越南岸外晚第四纪黏土矿物记录: 物源分析与东亚季风演化. 中国科学(D辑): 地球科学, 37(9): 1176-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200709005.htm [54] 孙有斌, 高抒, 李军, 2003. 边缘海陆源物质中环境敏感粒度组分的初步分析. 科学通报, 48(1): 83-86. doi: 10.3321/j.issn:0023-074X.2003.01.021 [55] 万世明, 李安春, 胥可辉, 等, 2008. 南海北部中新世以来粘土矿物特征及东亚古季风记录. 地球科学——中国地质大学学报, 33(3): 289-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200803002.htm [56] 伍光和, 田连恕, 胡双熙, 等, 2000. 自然地理学(第三版). 北京: 高等教育出版社, 189-191. [57] 叶芳, 刘志飞, 拓守廷, 等, 2007. 南海北部中更新世0.78~1.0 Ma期间的陆源碎屑粒度记录. 海洋地质与第四纪地质, 27(2): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200702013.htm [58] 赵玉龙, 刘志飞, 成鑫荣, 等, 2006. 巽他陆坡下部陆源碎屑粒度分布的控制因素. 海洋地质与第四纪地质, 26(2): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200602012.htm [59] 赵悦, 丁旋, 2011. 苏门答腊海区晚更新世以来的季风上升流活动记录. 第四纪研究, 31(2): 265-275. doi: 10.3969/j.issn.1001-7410.2011.02.08