The Influence and Appraisement of Source Rock Heterogeneity on Kinetic Parameters of Hydrocarbon Generation from Organic Matter
-
摘要: 烃源岩的非均质性、动力学模型中频率因子的不确定性、热模拟实验条件(开放/封闭程度、加水与否、升温速率)以及热模拟实验的再现性都将影响有机质成烃动力学模型参数, 进而影响油气资源潜力评价结果的可信度.对此, 从多个盆地不同类型有机质样品(18块)的开放体系(Rock-Eval)热模拟实验入手, 选取SFF模型和MFF模型来描述不同类型有机质样品成烃动力学特征, 对比地质外推结果的差异性.其中采用SFF模型低估了具有较低和较高活化能有机质的生烃潜力(反应分数), 而采用MFF模型可以避免这一问题, 同时频率因子随活化能的升高而升高, 能有效解决频率因子不确定性的问题.同时采用算术平均法和依据S2加权平均法对不同类型样品的动力学参数求取平均动力学参数, 并以3.3 ℃/Ma的升温速率进行外推, 对比分析了不同类型有机质外推结果的差异性.最后, 通过对两种模型依据S2加权平均法获得的动力学参数在松辽盆地黑鱼泡凹陷实际应用表明, 应用MFF模型计算得出的生烃门限深度为1 700 m, 与前人研究结论一致.表明采用MFF模型和S2加权平均法获得的动力学参数进行资源评价具有较高可信度.Abstract: The heterogeneity of source rock, the uncertainty of frequency factor and the simulation experiment conditions (such as being open or closed, adding water or not, heating rates and the reproducibility) all affect the kinetic parameters of hydrocarbon generation from organic matter, which in turn, affect the reliability of appraised hydrocarbon potential. To this point, eighteen organic matter (OM) samples were pyrolyzed by using the Rock-Eval equipment, and parallel first-order reaction models including the model with a single frequency factor and a discrete distribution of activation energies (SFF model) and the model with multiple frequency factors and a discrete distribution of activation energies (MFF model) are adopted to analyze kinetic characteristics of hydrocarbon generation of all samples and to contrast the results difference of geological extrapolation. The comparison and analysis shows that the MFF model can avoid miscalculating the hydrocarbon generation potential (reaction ratio) in the low and high evolution stages, which appears in SFF model. For comparing the discrepancy of hydrocarbon generation from different type of kerogens, the arithmetic mean and weighted mean methods with pyrolysis parameter S2 are employed to get averaged kinetic parameters, and then averaged kinetic parameters are extrapolated with a heating rate of 3.3 ℃/Ma. At last, the application of two kind kinetic models with the kinetic parameters of the weighted mean methods in Heiyupao Sag of Songliao basin shows that if taking the hydrocarbon transformation ratio of 10% as the onset of the hydrocarbon generation threshold, the threshold depth of hydrocarbon generation is about 1 700 m, which is consistent with the appraisement result by using other geochemical parameters. Therefore, it is recommended that the kinetic method with the MFF model and the weighted mean kinetic parameters is used to appraise the hydrocarbon resource potential.
-
Key words:
- kinetic model /
- simulation experiment /
- frequency factor /
- type of organic matter /
- heterogeneity /
- petroleum geology
-
图 3 Ⅱ型、Ⅲ型有机质SFF模型和MFF模型活化能参数分布
坐标轴含义与图 3坐标轴含义相同;图中第一列和第二列为Ⅱ型有机质的活化能分布图,第三列及第四列为Ⅲ型有机质的活化能分布图
Fig. 3. Activation energies distributions for type Ⅱ and Ⅲ kerogen of different models
图 5 两种模型地质外推结果(左图为Ⅱ型有机质,右图为Ⅲ型有机质,图例同图 4)
Fig. 5. Extrapolation results of two models
图 10 松辽盆地黑鱼泡凹陷生烃剖面(a.应用地化参数得出的剖面,据卢双舫等,2009修改;b.应用两种模型S2平均动力学参数计算得出的剖面)
Fig. 10. Hydrocarbon generation profile in the Heiyupao sag in Songliao basin
表 1 样品地化参数
Table 1. Geochemical parameters in the studied samples
样品 层位 岩性 Ro(%) TOC(%) Tmax(℃) HI(mg HC/g TOC) OI(mg CO2/g TOC) S2(mg/g) 类型 盆地 松辽煤 营城组 煤样 0.5 73.39 427 217 3.00 159.28 Ⅲ 松辽盆地 鱼17 qn1 灰黑色泥岩 0.83 3.92 443 689 56.00 27.02 Ⅰ 金87 qn1 泥岩 0.88 2.34 444 604 43.00 8.99 Ⅰ 鱼20 qn1 泥岩 0.85 1.64 445 548 97.00 20.59 Ⅰ 金88 qn1 灰黑色泥岩 0.9 2.98 451 691 23.00 14.14 Ⅰ 任10 n1 灰黑色泥岩 0.46 4.17 427 1 048 25.72 37.42 I 杜410 qn23 灰黑色泥岩 0.5 5.59 433 1 052 8.00 26.12 Ⅰ 盛1 qn1 灰黑色泥岩 0.41 3.77 440 1 139 9.00 11.15 Ⅰ 杜402 qn1 灰黑色泥岩 0.7 1.36 440 920 55.51 12.53 Ⅰ 和2 k1n1 泥岩 0.68 4.25 439 177 - 4.61 Ⅲ 海拉尔盆地 和3 k1d1 煤 0.48 4.66 435 115 - 5.37 Ⅲ 阳27 Es4上 泥岩 1.23 1.36 427 477 143.00 6.49 Ⅱ 渤海湾盆地 官107 Es4上 灰色页岩 - 2.24 432 453 60.00 10.15 Ⅱ 钟参1-2 n.d. 暗色泥岩 - 1.87 434 238 196.00 4.45 Ⅲ 镇参1 Es4上 深灰色泥岩 0.26 4.64 387 541 131.00 25.09 Ⅱ 大43 Es3上 灰质油页岩 0.9 8.34 429 585 22.00 48.78 Ⅱ 汶ZK16 Es4上 油页岩 0.41 3.24 407 567 127.00 18.36 Ⅱ 艾试1 - 泥岩 0.33 10.52 420 79 17.00 8.35 Ⅲ 吐哈盆地 -
[1] Allred, V.D., 1966. Kinetics of oil shale pyrolysis. Chemical Engineering Progress, (62): 55-60. [2] Behar, F., Lorant, F., Lewan, M., 2008. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite. Organic Geochemistry, (39): 1-22. doi: 10.1016/j.orggeochem.2007.10.007 [3] Behar, F.S., Kressmann, J.L., Rudkiewicz, et al., 1992. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Organic Geochemistry, (19): 173-189. doi: 10.1016/0146-6380(92)90035-V [4] Braun, R.L., Burnham, A.K., 1992. PMOD: a flexible model of oil and gas generation, cracking, and expulsion. Organic Geochemistry, 19(1-3): 161-172. doi:10. 1016/0146-6380(92)90034-U [5] Burnham, A.K., Braun, R.L., Samou, A.M., 1988. Further comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. Organic Geochemistry, 13(4-6): 839-845. doi: 10.1016/0146-6380(88)90236-7 [6] Burnham, A.K., Schmidt, J., Braun, R.L., 1995. A test of the parallel reaction model using kinetic measurements on hydrous pyrolysis residues. Organic Geochemistry, 23(10): 931-939. doi: 10.1016/0146-6380(95)00069-0 [7] Dieckmann, V., 2005. Modelling petroleum formation from heterogeneous source rocks: the influence of frequency factors on activation energy distribution and geological prediction. Marine and Petroleum Geology, (22): 375-390. doi:10.1016/j.marpetgeo. 2004.11.002 [8] Dieckmann, V., Keym, M., 2006. A new approach to bridge the effect of organofacies variations on kinetic modelling and geological extrapolations. Organic Geochemistry, (37): 728-739. doi: 10.1016/j.orggeochem.2005.12.008 [9] Friedman, H.L., 1963. Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. Journal of Polymer Science(Part C), 6: 183-195. doi: 10.1002/polc.5070060121 [10] Huang, D.F., Li, J.C., Zhou, Z.H., et al., 1984. The evolution and hydrocarbon generating mechanism of terrestrial facies organic matter. Petroleum Industry Press, Beijing, 165-180 (in Chinese). [11] Jarvie, D.M., 1991. Factors affecting rock-eval derived kinetic parameters. Chemical Geology, (93): 79-99. doi: 10.1016/0009-2541(91)90065-Y [12] Jin, Q., Qian, J.L., Huang, X.H., 1986. Study on thermal degradation kinetics of source rock kerogen and quantitative estimation of hydrocarbon transformation. Acta Petrolei Sinica, 7(3): 11-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB198603001.htm [13] Keym, M., Dieckman, V., Horsfield, B., et al., 2006. Source rock heterogeneity of the Upper Jurassic Draupne Formation, North Viking Graben, and its relevance to petroleum generation studies. Organic Geochemistry, (37): 220-243. doi: 10.1016/j.orggeochem.2005.08.023 [14] Klomp, U.C., Wright, P.A., 1990. A new method for the measurement of kinetic parameters of hydrocarbon generation from source rocks. Organic Geochemistry, 116(1-3): 49-60. doi: 10.1016/0146-6380(90)90025-U [15] Lu, S.F., 1996. Kinetics theory of hydrocarbon generation from organic matter and its application. Petroleum Industry Press, Beijing (in Chinese). [16] Lu, S.F., Li, J.N., Liu, S.J., et al., 2009. Oil generation threshold depth of Songliao basin: revision and its significanc. Petroleum Exploration and Development, 36(2): 166-173 (in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60117-8 [17] Lu, S.F., Wang, Z.W., Huang, D.F., et al., 1995. Coal macerals of hydrocarbon generation kinetics. Science in China (Ser. B), 25(1): 101-107 (in Chinese). http://www.researchgate.net/publication/292432354_Coal_macerals_of_hydrocarbon_generation_kinetics [18] Lu, S.F., Zhong, N.N., Xue, H.T., et al., 2007. Chemical kinetics study of hydrocarbon regeneration from organic matter in carbonate source rocks and its significance. Science in China (Ser. D), 50(4): 536-543. doi: 10.1007/s11430-007-2058-5 [19] Pepper, A.S., Corvit, P.J., 1995. Simple kinetic models of petroleum formation: part I, oil and gas generation from kerogen. Marine and Petroleum Geology, 12(3): 291-319. doi:10. 1016/0264-8172(95)98381-E [20] Peters, K.E., Walters, C.C., Mankiewicz, P.J., 2006. Evaluation of kinetic uncertainty in numerical models of petroleum generation. American Association of Petroleum Geologists Bulletin, 90(3): 387-403. doi: 10.1306/10140505122 [21] Pitt, G.J., 1962. The kinetics of evolution of volatile products from coal. Fuel, (41): 267- 274. http://www.researchgate.net/publication/264739462_The_Kinetics_of_the_Evolution_of_Volatile_Products_From_Coal [22] Quigley, T.M., Mackenzie, A.S., 1988. The temperatures of oil and gas formation in the sub-surface. Nature, 333(6173): 549-552. doi: 10.1038/333549a0 [23] Schaefer, R.G., Schenk, H.J., Hardelauf, H., et al., 1990. Determination of gross kinetic parameters for petroleum formation from jurassic source rocks of different maturity levels by means of laboratory experiments. Organic Geochemistry, 16(1-3): 115-120. doi: 10.1016/0146-6380(90)90031-T [24] Schenk, H.J., Dieckmann, V., 2004. Prediction of petroleum formation: the influence of laboratory heating rates on kinetic parameters and geological extrapolations. Marine and Petroleum Geology, 21(1): 79-95. doi: 10.1016/j.marpetgeo.2003.11.004 [25] Schenk, H.J., Horsfield, B., 1993. Kinetics of petroleum generation by programmed-temperature closed-versus open-system pyrolysis. Geochimica et Cosmochimica Acta, 57(3): 623-630. doi: 10.1016/0016-7037(93)90373-5 [26] Tissot, B.P., Pelet, R., Ungerer, P., 1987. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bulletin, 71(12): 1445-1466. doi: 10.1306/703C80E7-1707-11D7-8645000102C1865D [27] Tissot, B.P., Welte, D.H., 1984. Petroleum formation and occurrence. Springer-verlag, Berlin. [28] Ungerer, P., 1990. State of the art of research in kinetic modelling of oil formation and expulsion. Organic Geochemistry, 16(1-3): 1-25. doi: 10.1016/0146-6380(90)90022-R [29] Ungerer, P., Pelet, R., 1987. Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature, 327: 52-54. doi: 10.1038/327052a0 [30] Wang, J.Q., Wu, L.Y., Qian, J.L., 1984. Kinetic study of hydrocarbon-forming pyrolysis of source rock by using rock evaluation apparatus. Journal of China University of Petroleum, 8(1): 1-9 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SYDX198401003.htm [31] Wang, M., Lu, S.F., Xue, H.T., et al., 2011. Study of hydrocarbon generation kinetic characteristics from different types of organic matter. Acta Geologica Sinica (English Edition), 85 (in press). http://d.wanfangdata.com.cn/Periodical/dzxb-e201103020 [32] 黄第藩, 李晋超, 周翥红, 等, 1984. 陆相有机质演化和成烃机理. 北京: 石油工业出版社, 165-180. [33] 金强, 钱家麟, 黄醒汉, 1986. 生油岩干酪根热降解动力学研究及其在油气生成量计算中的应用. 石油学报, 7(3): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198603001.htm [34] 卢双舫, 1996. 有机质成烃动力学理论及其应用. 北京: 石油工业出版社. [35] 卢双舫, 李娇娜, 刘绍军, 等, 2009. 松辽盆地生油门限重新厘定及其意义. 石油勘探与开发, 36(2): 166-173. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200902004.htm [36] 卢双舫, 王子文, 黄第藩, 等, 1995. 煤岩显微组分的成烃动力学. 中国科学(B辑), 25(1): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199501015.htm [37] 王剑秋, 乌立言, 钱家麟, 1984. 应用岩石评价仪进行生油岩热解生烃动力学研究. 华东石油学院学报, 8(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX198401003.htm