• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    流体—超镁铁质岩相互作用与硬玉岩的形成

    祁敏 向华 钟增球 周汉文

    祁敏, 向华, 钟增球, 周汉文, 2011. 流体—超镁铁质岩相互作用与硬玉岩的形成. 地球科学, 36(3): 511-520. doi: 10.3799/dqkx.2011.052
    引用本文: 祁敏, 向华, 钟增球, 周汉文, 2011. 流体—超镁铁质岩相互作用与硬玉岩的形成. 地球科学, 36(3): 511-520. doi: 10.3799/dqkx.2011.052
    QI Min, XIANG Hua, ZHONG Zeng-qiu, ZHOU Han-wen, 2011. Fluid-Ultramafic Rock Interaction and Formation of Jadeite Rocks. Earth Science, 36(3): 511-520. doi: 10.3799/dqkx.2011.052
    Citation: QI Min, XIANG Hua, ZHONG Zeng-qiu, ZHOU Han-wen, 2011. Fluid-Ultramafic Rock Interaction and Formation of Jadeite Rocks. Earth Science, 36(3): 511-520. doi: 10.3799/dqkx.2011.052

    流体—超镁铁质岩相互作用与硬玉岩的形成

    doi: 10.3799/dqkx.2011.052
    基金项目: 

    国家自然科学基金 40873044

    详细信息
      作者简介:

      祁敏(1982-), 女, 博士研究生, 主要从事宝玉石研究

      通讯作者:

      钟增球, E-mail: zqzhong@cug.edu.cn

    • 中图分类号: P588.36

    Fluid-Ultramafic Rock Interaction and Formation of Jadeite Rocks

    • 摘要: 俯冲带中流体与岩石相互作用以及流体循环一直是地质学家关注的焦点之一.硬玉岩(翡翠)作为高档宝玉石材料, 其成因一直备受关注.硬玉岩产于与俯冲带有关的蛇纹石化超镁铁质岩中, 是俯冲带中流体与超镁铁岩相互作用的特殊产物.岩石组合、岩相学、显微结构及矿物化学特征表明: 橄榄岩与流体的作用可以分为5个阶段, 分别为蛇纹石化→(绿泥石、金云母)→角闪石→辉石→(方沸石、钠长石)阶段.结合热力学相图, 总结了橄榄岩与流体作用过程中矿物的演化序列.硬玉岩的形成需要富Na、Al、Si流体和较高的压力.缅甸硬玉岩中, 钠质闪石总是与硬玉岩伴生, 钠质闪石成分变化大, 且能与流体发生再平衡从而调节自身和流体的成分.钠质闪石在硬玉形成过程中充当了Na、Al、Si的缓冲剂, 使Na、Al、Si达到一定比例有利于硬玉的结晶.

       

    • 图  1  缅甸及邻区地质构造简图(a)(丘志力等,2008)及缅甸翡翠矿区地质简图(b)(Shi et al., 2008)

      1.第四纪; 2.安山岩; 3.玄武岩; 4.硅质岩; 5.含硬玉砾石岩; 6.火山角砾岩; 7.花岗岩; 8.蛇纹石化橄榄岩; 9.结晶片岩类; 10.第三纪沉积岩; 11.硅质角砾岩; △.硬玉岩; ■.铬铁矿; ●.金矿化点

      Fig.  1.  Simplified tectonic map of Myanmar and the adjacent areas (a) and geological map of the Myanmar jadeite area (b)

      图  2  手标本照片

      a.硬玉岩与钠长石岩接触界线;b.硬玉岩外围的角闪石带以及硬玉中的角闪石;Jd.硬玉;Ab.钠长石;Amp.角闪石

      Fig.  2.  Hand specimen photos

      图  3  显微结构照片

      a.细小叶片状斜绿泥石及铬铁矿残余,部分铬铁矿周围有有绿色钠铬辉石(单偏光);b.角闪石与绿泥石共生(正交偏光);c.角闪石边缘及内部的毛发状钠质辉石(单偏光);d.角闪石中细粒钠质辉石包裹体(单偏光);e.钠质角闪石中大量针状钠质辉石析出(单偏光);f.长柱状角闪石与自形粒状的硬玉共生(正交偏光);g.角闪石边缘被硬玉交代(BSE图像);h.早期粗粒硬玉核部包含大量包裹体,边部较干净(单偏光);i.硬玉的韵律环带(正交偏光);j.自形的硬玉晶体间空隙被后期的方沸石充填(正交偏光);k.钠长石细脉穿插在角闪石晶体中(BSE);l.硬玉岩中的钠长石细脉(正交偏光);Jd=硬玉;Ab=钠长石;Amp=角闪石;Chl=绿泥石;Chr=铬铁矿;Na-Cpx=钠质辉石;Acm=方沸石;Ko=钠铬辉石

      Fig.  3.  Micrographs showing the microtextures of the jadeitites

      图  4  角闪石成分变化图解

      a.Na-Al-(Si-6)图解;b.Na-Al图解

      Fig.  4.  The diagrams of amphibole composition

      图  5  斜方辉石成分图解(a)和斜方辉石Ca vs. Na(b)

      Fig.  5.  Compositional trend of orthopyroxene (a) and orthopyroxene Ca vs.Na (b)

      图  6  ACF及AFNa图解

      A=Al2O3+Fe2O3+Cr2O3;C=CaO;F=FeO+MgO+MnO;Na=Na2O

      Fig.  6.  Correlation of ACF and AFNa

      图  7  log aSiO2(aq)-log aCa2+/ $a_{\rm{H}}^2 + $示意(Allen et al., 2003)(a)和log aSiO2(aq)-log aNa+×aAl(OH)4-示意(b)

      Fig.  7.  Schematic diagram of log aSiO2(aq)-log aCa2+/$a_{\rm{H}}^2 + $ (a) and log aSiO2(aq)-log aNa+×aAl(OH)4- (b)

      图  8  BSE图像显示角闪石沿边缘及裂隙成分变化

      Fig.  8.  Backscatter electron (BSE) images showing the change of chemical composition along border and fractures of the amphibole porphyroblasts

      表  1  各种矿物代表性电子探针成分分析结果(主量元素单位:%)

      Table  1.   Representative electron microprobe data of minerals from the jadeitite

      Ol* Chr Serp Chl Chl Phl Eck Gla Mg-Kat Nyb Rich Tre Ko Cr-Jd Jd Omp Ab Acm
      SiO2 41.55 0.14 41.99 36.90 34.87 42.98 57.18 58.23 52.29 53.74 56.36 55.71 53.36 56.82 59.23 56.16 68.33 59.52
      Al2O3 0.00 7.15 1.38 13.44 7.44 12.49 7.01 4.94 7.41 7.56 6.80 2.44 2.36 15.15 24.65 8.75 19.24 24.97
      TiO2 0.00 0.04 0.02 0.01 0.03 0.05 0.07 0.12 0.18 0.08 0.04 0.04 0.48 0.26 0.03 0.21 0.03 0.00
      Cr2O3 0.00 58.28 0.15 1.34 8.82 0.92 1.02 7.82 0.02 5.60 1.10 1.44 26.52 6.29 0.00 0.00 0.00 0.00
      MgO 51.36 1.09 36.94 27.94 27.93 23.32 17.96 13.27 18.90 16.31 18.47 21.87 0.65 2.65 0.16 10.37 0.00 0.06
      FeO 7.39 28.97 7.94 6.09 7.71 4.84 4.01 5.46 4.63 2.47 3.93 2.35 2.32 2.26 0.12 2.99 0.03 0.10
      MnO 0.00 3.61 0.07 0.07 0.26 0.12 0.10 0.05 0.10 0.05 0.09 0.19 0.07 0.05 0.00 0.00 0.00 0.00
      CaO 0.00 0.04 0.08 0.67 0.90 0.02 3.04 0.41 8.92 2.03 3.97 11.16 0.78 3.59 0.20 14.70 0.08 0.11
      Na2O 0.00 0.00 0.32 0.06 0.04 0.04 9.23 8.27 4.61 10.03 8.82 1.90 13.37 12.76 15.25 6.28 11.78 9.88
      K2O 0.00 0.00 0.02 2.76 0.03 10.23 0.19 0.19 0.20 0.08 0.24 0.12 0.00 0.00 0.01 0.00 0.02 0.03
      Total 100.30 99.31 88.91 89.27 88.02 95.00 99.81 98.76 97.25 97.95 99.82 97.21 99.90 99.82 99.64 99.46 99.49 94.67
      Si 1.002 0.005 3.951 3.479 3.420 3.056 7.676 7.961 7.279 7.428 7.593 7.692 1.991 1.988 2.001 1.996 2.997 2.064
      Al 0.000 0.302 0.153 1.493 0.860 1.047 1.110 0.795 1.216 1.232 1.080 0.397 0.104 0.625 0.981 0.367 0.995 1.020
      Ti 0.000 0.001 0.001 0.001 0.002 0.003 0.007 0.013 0.019 0.008 0.004 0.004 0.013 0.007 0.001 0.006 0.001 0.000
      Fe3 0.000 0.033 0.000 0.000 0.000 0.000 0.197 0.170 0.271 0.114 0.202 0.136 0.072 0.066 0.003 0.062 0.001 0.000
      Cr 0.000 1.653 0.011 0.100 0.684 0.052 0.108 0.845 0.002 0.612 0.117 0.158 0.782 0.174 0.000 0.000 0.000 0.000
      Mg 1.847 0.058 5.181 3.926 4.084 2.472 3.594 2.704 3.921 3.361 3.710 4.501 0.036 0.138 0.008 0.550 0.000 0.003
      Fe2 0.149 0.837 0.625 0.480 0.632 0.288 0.253 0.454 0.268 0.171 0.241 0.135 0.000 0.000 0.000 0.027 0.000 0.003
      Mn 0.000 0.110 0.006 0.005 0.021 0.007 0.011 0.006 0.011 0.006 0.010 0.023 0.002 0.002 0.000 0.000 0.000 0.000
      Ca 0.000 0.001 0.008 0.067 0.095 0.001 0.437 0.060 1.330 0.301 0.573 1.651 0.031 0.134 0.007 0.560 0.004 0.004
      Na 0.000 0.000 0.058 0.012 0.008 0.006 2.402 2.193 1.245 2.689 2.305 0.507 0.967 0.865 0.999 0.433 1.001 0.664
      K 0.000 0.000 0.002 0.332 0.004 0.928 0.032 0.032 0.036 0.015 0.042 0.021 0.000 0.000 0.001 0.000 0.001 0.001
      O 4 4 14 14 14 11 23 23 23 23 23 23 6 6 6 6 8 6
      Mg# 0.93 0.07 0.89 0.89 0.87 0.90 0.93 0.86 0.94 0.95 0.94 0.97 0.99 1.00 1.00 0.95 1.00 0.49
      注: *施光海等,2001.
      下载: 导出CSV
    • [1] Acharyya, S.K., 2007. Collisional emplacement history of the Naga-Andaman ophiolites and the position of the eastern Indian suture. Journal of Asian Earth Sciences, 29(2-3): 229-242. doi: 10.1016/j.jseaes.2006.03.003
      [2] Allen, D.E., Seyfried Jr., W.E., 2003. Compositional controls on vent fluids from ultramatic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400 ℃, 500 bars. Geochimica et Cosmochimica Acta, 67(8): 1531-1542. doi: 10.1016/S0016-7037(02)01173-0
      [3] Barley, M.E., Pickard, A.L., Khin, Z., et al., 2003. Jurassic to Miocene magmatism and metamorphism in the Mogok metamorphic belt and the India-Eurasia collision in Myanmar. Tectonics, 22(3): 1019. doi: 10.1029/2002TC001398
      [4] Coleman, R.G., 1961. Jadeite deposits of the clear Creek area, New Idria district, San Benito County, California. Journal of Petrology, 2(2): 209-247. doi: 10.1093/petrology/2.2.209
      [5] Cui, W.Y., Shi, G.H., Yang, F.X., et al., 2000. A new viewpoint-magma genesis of jadeite jade. Journal of Gems & Gemmology, 2(3): 16-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BSHB200003005.htm
      [6] Curray, J.R., 2005. Tectonics and history of the Andaman sea region. Journal of Asian Earth Sciences, 25(1): 187-228. doi: 10.1016/j.jseaes.2004.09.001
      [7] Frost, B.R., Beard, J.S., 2007. On silica activity and serpentinization. Journal of Petrology, 48(7): 1351-1368. doi: 10.1093/petrology/emg021
      [8] Garcia-Casco, A., Vega, A.R., Parraga, J.C., et al., 2009. A new jadeitite jade locality (Sierra del Convento, Cuba): first report and some petrological and archeological implications. Contributions to Mineralogy and Petrology, 158(1): 1-16. doi: 10.1007/s00410-008-0367-0
      [9] Harlow, G.E., 1994. Jadeitites, albitites and related rocks from the Motagua fault zone, Guatemala. Journal of Metamorphic Geology, 12(1): 49-68. doi: 10.1111/j.1525-1314.1994.tb00003.x
      [10] Harlow, G.E., Sorensen, S.S., 2005. Jade (nephrite and jadeitite) and serpentinite: metasomatic connections. International Geology Review, 47(2): 113-146. doi: 10.2747/0020-6814.47.2.113
      [11] Manning, C.E., 1998. Fluid composition at the blueschist-eclogite transition in the model system Na2O-MgO-Al2O3-SiO2-H2O-HCl. Schweizerische Mineralogische und Petrographische Mitteilungen, 78(2): 225-242.
      [12] Mitchell, A.H.G., Htay, M.T., Htun, K.M., et al., 2007. Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar. Journal of Asian Earth Sciences, 29(5-6): 891-910. doi: 10.1016/j.jseaes.2006.05.009
      [13] Morishita, T., Arai, S., Ishida, Y., 2007. Trace element compositions of jadeite (+omphacite) in jadeitites from the Itoigawa-Ohmi district, Japan: implications for fluid processes in subduction zones. Island Arc, 16(1): 40-56. doi: 10.1111/j.1440-1738.2007.00557.x
      [14] Morley, C.K., 2004. Nested strike-slip duplexes, and other evidence for Late Cretaceous-Palaeogene transpressional tectonics before and during India-Eurasia collision, in Thailand, Myanmar and Malaysia. Journal of the Geological Society, 161(5): 799-812. doi: 10.1144/0016-764903-124
      [15] Qiu, Z.L., Wu, F.Y., Yang, S.H., et al., 2008. Age and genesis of the Myanmar jadeite: constraints from U-Pb ages and Hf isotopes of zircon inclusions. Chinese Science Bulletin, 54(4): 658-668. doi: 10.1007/S1134-008-04903
      [16] Searle, M.P., Noble, S.R., Cottle, J.M., et al., 2007. Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks. Tectonics, 26(3): TC3014. doi: 10.1029/2006TC002083
      [17] Shi, G.H., Cui, W.Y., Cao, S.M., et al., 2008. Ion microprobe zircon U-Pb age and geochemistry of the Myanmar jadeitite. Journal of the Geological Society, 165: 221-234. doi: 10.1144/0016-76492006-119
      [18] Shi, G.H., Cui, W.Y., Liu, J., et al., 2001. Petrology of jadeite-bearing serpentinized peridotite and its country rocks from northwestern Myanmar (Burma). Acta Petrologica Sinica, 17(3): 483-490 (in Chinese with English abstract). http://www.oalib.com/paper/1473035
      [19] Shi, G.H., Cui, W.Y., Tropper, P., et al., 2003. The petrology of a complex sodic and sodic-calcic amphibole association and its implications for the metasomatic processes in the jadeitite area in northwestern Myanmar, formerly Burma. Contributions to Mineralogy and Petrology, 145(3): 355-376. doi: 10.1007/s00410-003-0457-y
      [20] Shi, G.H., Cui, W.Y., Wang, C.Q., et al., 2000. The fluid inclusions in jadeitite from Pharkant area, Myanmar. Chinese Science Bulletin, 45(20): 1896-1900. doi: 10.1007/BF02886302
      [21] Shi, G.H., Stockhert, B., Cui, W.Y., 2005a. Kosmochlor and chromian jadeite aggregates from the Myanmar jadeitite area. Mineralogical Magazine, 69(6): 1059-1075. doi: 10.1180/026461056960308
      [22] Shi, G.U., Tropper, P., Cui, W.Y., et al., 2005b. Methane, (CH4)-bearing fluid inclusions in the Myanmar jadeitite. Geochemical Journal, 39(6): 503-516. doi: 10.2343/geochemj.39.503
      [23] Sorensen, S., Harlow, G.E., Rumble Ⅲ, D., 2006. The origin of jadeitite-forming subduction-zone fluids: CL-guided SIMS oxygen-isotope and trace-element evidence. American Mineralogist, 91(7): 979-996. doi: 10.2138/am.2006.1949
      [24] Sorensen, S.S., Sisson, V.B., Harlow, G.E., 2008. Fluids and the REE and O-isotopes of albitite, jadeitite and jadeite. Geochimica et Cosmochimica Acta, 72(12): A885-A885. http://adsabs.harvard.edu/abs/2008GeCAS..72Q.885S
      [25] Tsujimori, T., Moriguti, T., Kunihiro, T., et al., 2007. Large-scale fluid flow in a cold subduction-zone: SIMS Li-isotope study of jadeitite veins in Franciscan metagraywacke. Geochimica et Cosmochimica Acta, 71(15S): A1040-A1040. http://goldschmidt.info/2007/abstracts_Abs_Vol/4726.pdf
      [26] Wang, X.M., Zeng, Z.G., Chen, J.B., et al., 2009. Serpentinization of peridotites from the southern Mariana forearc. Progress in Natural Science, 19(10): 1287-1295. doi: 10.1016/j.pnsc.2009.04.004
      [27] Zhang, L.J., 2004. Characteristics and genesis of the primary jadeite jade orebody in Nammaw, Myanmar. Acta Petrologica et Mineralogica, 23(1): 49-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200401006.htm
      [28] Zhang, W.J., 2002. Jadeite deposit geology in Pharkant area, North Myanmar. Yunnan Geology, 21(4): 378-390 (in Chinese with English abstract). http://www.researchgate.net/publication/288861172_Jadeite_deposit_geology_in_Pharkant_area_North_Myanmar
      [29] 崔文元, 施光海, 杨富绪, 等, 2000. 一种新观点——翡翠新的岩浆成因说. 宝石和宝石学杂志, 2(3): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-BSHB200003005.htm
      [30] 丘志力, 吴福元, 杨树辉, 等, 2008. 缅甸翡翠形成时代和成因的锆石U-Pb年龄与Hf同位素制约. 科学通报, 53(24): 3104-3111. doi: 10.3321/j.issn:0023-074X.2008.24.019
      [31] 施光海, 崔文元, 刘晶, 等, 2001. 缅甸含硬玉的蛇纹石化橄榄岩及其围岩的岩石学研究. 岩石学报, 17(3): 483-490.
      [32] 施光海, 崔文元, 王长秋, 等, 2000. 缅甸帕敢地区硬玉岩中流体包裹体. 科学通报, 45(13): 1433-1437. doi: 10.3321/j.issn:0023-074X.2000.13.017
      [33] 张良钜, 2004. 缅甸纳莫原生翡翠矿体特征与成因研究. 岩石矿物学杂志, 23(1): 49-53. doi: 10.3969/j.issn.1000-6524.2004.01.008
      [34] 张位及, 2002. 缅甸北部帕敢地区翡翠矿床地质. 云南地质, 21(4): 378-390. doi: 10.3969/j.issn.1004-1885.2002.04.004
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  3083
    • HTML全文浏览量:  147
    • PDF下载量:  47
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-12-10
    • 刊出日期:  2011-05-01

    目录

      /

      返回文章
      返回