Crustal Growth of the Eastern North China Craton and Sulu Orogen as Revealed by U-Pb Dating and Hf Isotopes of Detrital Zircons from Modern Rivers
-
摘要: 来自年轻沉积物或现代河流的碎屑锆石是研究大陆地壳生长演化的理想载体.为揭示华北克拉通东部和苏鲁造山带大陆地壳的生长演化, 采集了中国东部大清河、潮白河、辽河、大沽河和胶莱河的5个地方的河沙样品, 并对分选出来的碎屑锆石进行了LA-ICP-MS和MC-LA-ICP-MS U-Pb定年和Hf同位素微区原位分析, 获得了396个锆石U-Pb谐和年龄及其对应的Hf同位素组成.2.4~2.5 Ga和1.8~1.9 Ga两个年龄特征峰指示大清河、潮白河和辽河的碎屑锆石来源于华北克拉通东部.辽河一部分100~500 Ma的锆石具有正的εHf(t)值和年轻的Hf模式年龄, 显示出显生宙的地壳生长.苏鲁造山带大沽河和胶莱河的碎屑锆石U-Pb年龄分布相对比较复杂, 但锆石U-Pb年龄和Hf同位素特征表明其为华北克拉通和扬子克拉通的混合来源.来自大清河、潮白河和辽河的锆石U-Pb年龄和Hf同位素证据, 表明华北克拉通东部地壳生长的主要时期为2.4~3.0 Ga, 并在2.6~2.7 Ga时处于生长的最高峰, 次一级的生长期为1.3~2.3 Ga, 而在其他阶段几乎没有地壳的生长或者不明显.华北克拉通东部现存大陆地壳的80%来源于太古代和古元古代的生长, 而自古元古代开始大陆地壳的演化就以古老地壳的重熔再改造为主.此外, 大沽河碎屑锆石的Hf同位素组成揭示出苏鲁造山带在古生代(300~500 Ma)存在明显的地壳生长.Abstract: Detrial zircon from clastic sediment or sands of modern rivers is an ideal sample for studying the growth and evolution of the continental crust. In order to reveal the crustal growth of eastern North China craton and Sulu orogen, 396 concordant detrital zircons in three sand samples from the Daqing River, Chaobai River, Liao River, Dagu River and Jiaolai River in eastern North China were measured for U-Pb age and Hf isotopic compositions by excimer laser-ablation ICP-MS and MC-ICP-MS, respectively. The Daqing River, Chaobai River and Liao River are characterized by two age peaks of 2.4-2.5 Ga and 1.8-1.9 Ga, which indicate contributions from the eastern North China craton. Some 100-500 Ma zircons from the Liao River with positive εHf(t) values and young Hf model ages, suggesting Phanerozoic crustal growth. In contrast, U-Pb ages of the Dagu River and Jiaolai River, which run through the Sulu orogen, are more complicated and characterized by age groups of 2.4-2.5 Ga, 1.8-1.9 Ga and 700-800 Ma, implying a mixed provenance of eastern North China craton and Yangtze craton. The Lu-Hf isotope compositions of the Daqing River, Chaobai River and Liao River demonstrate the dominant growth at 2.4-3.0 Ga, with a peak at 2.6-2.7 Ga and minor growth during 1.3-2.3 Ga. However, there is insignificant crustal growth during other periods. In addition, 80% of the existing crust in eastern North China craton was produced before Paleoproterozoic and reworking of preexisting continental crust became dominant since then. Meanwhile, a Paleozoic (300-500 Ma) crustal growth characterizes zircon Hf isotopes of the Dagu River of the Sulu orogen.
-
Key words:
- North China craton /
- Sulu orogen /
- detrital zircon /
- crustal growth /
- U-Pb dating /
- Hf isotope /
- geochemistry
-
图 5 华北克拉通和扬子克拉通的年龄特征对比
华北克拉通的数据来自文献Zhao et al.(2001)和Gao et al.(2004)及其所引文献,扬子克拉通的数据来自文献Liu et al.(2008)
Fig. 5. Comparison of zircon U-Pb age distributions of Yangtze craton and North China craton
图 7 辽河及中亚造山带东部显生宙锆石的TDM2(Hf)分布对比(中亚造山带东部的数据来自文献程瑞玉等, 2006; Chen et al., 2009; Meng et al., 2010)
Fig. 7. Comparison of two-stage Hf crust formation model ages of Phanerozoic zircons for the Liao River and eastern of the eastern Central Asian orogenic belt (CAOB)
-
[1] Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/s0009-2541(02)00195-x [2] Bichert-Toft, J., Albarède, F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258. doi: 10.1016/s0012-821x(97)00040-x [3] Campbell, I.H., Allen, C.M., 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1(8): 554-558. doi: 10.1038/ngeo259 [4] Cawood, P.A., Nemchin, A.A., Strachan, R., et al., 2007. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. Journal of the Geological Society, 164(2): 257-275. doi: 10.1144/0016-76492006-115 [5] Chen, B., Jahn, B.M., Tian, W., 2009. Evolution of the Solonker suture zone: constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, 34(3): 245-257. doi: 10.1016/j.jseaes.2008.05.007 [6] Chen, B., Jahn, B.M., Wilde, S., et al., 2000. Two contrasting paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics, 328(1-2): 157-182. doi: 10.1016/s0040-1951(00)00182-7 [7] Cheng, R.Y., Wu, F.Y., Ge, W.C., et al., 2006. Emplacement age of the Raohe complex in eastern Heilongjiang Province and the tectonic evolution of the eastern part of northeastern China. Acta Petrologica Sinica, 22(2): 353-376 (in Chinese with English abstract). http://www.researchgate.net/publication/279566079_Emplacement_age_of_the_Raohe_Complex_in_eastern_Heilongjiang_Province_and_the_Tectonic_evolution_of_the_eastern_part_of_Northeastern_China [8] Chu, N.C., Taylor, R.N., Chavagnac, V., et al., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. doi: 10.1039/b206707b [9] Condie, K.C., 1998. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters, 163(1-4): 97-108. doi: 10.1016/s0012-821x(98)00178-2 [10] Condie, K.C., 2000. Episodic continental growth models: afterthoughts and extensions. Tectonophysics, 322(1-2): 153-162. doi: 10.1016/s0040-1951(00)00061-5 [11] Condie, K.C., Aster, R.C., 2010. Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Research, 180(3-4): 227-236. doi: 10.1016/j.precamres.2010.03.008 [12] Condie, K.C., Belousova, E., Griffin, W.L., et al., 2009. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Research, 15(3-4): 228-242. doi: 10.1016/j.gr.2008.06.001 [13] Condie, K.C., Beyer, E., Belousova, E., et al., 2005. U-Pb isotopic ages and Hf isotopic composition of single zircons: the search for juvenile Precambrian continental crust. Precambrian Research, 139(1-2): 42-100. doi: 10.1016/j.precamres.2005.04.006 [14] Coogan, L.A., Hinton, R.W., 2006. Do the trace element compositions of detrital zircons require Hadean continental crust?Geology, 34(8): 633-636. doi: 10.1130/g22737 [15] De Bieve, P., Taylor, P.D.P., 1993. Table of the isotopic composition of elements. International Journal of Mass Spectrometry Ion and Process, 123: 149-166. doi: 10.1016/0168-1176(93)87009-h [16] DePaolo, D.J., Linn, A.M., Schubert, G., 1991. The continental crustal age distribution: methods of determining mantle separation ages from Sm-Nd isotopic data and applicatoin to the southwestern United States. Journal of Geophysical Research, 96 (B2): 2071-2088. doi: 10.1029/90jb02219 [17] Fan, W.M., Guo, F., Wang, Y.J., et al., 2003. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Dahinggan Mountains, northeastern China. Journal of Volcanology and Geothermal Research, 121(1-2): 115-135. doi: 10.1016/s0377-0273(02)00415-8 [18] Faure, M., Lin, W., Le Breton, N., 2001. Where is the North China-South China block boundary in eastern China. Geology, 29(2): 119-122. doi:10.1130/0091-7613(2001)029<0119 [19] Ferry, J.M., Watson, E.B., 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. doi: 10.1007/s00410-007-0201-0 [20] Gao, S., Rudnick, R.L., Carlson, R.W., et al., 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 198(3-4): 307-322. doi: 10.1016/s0012-821x(02)00489-2 [21] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019): 892-897. doi: 10.1038/nature03162 [22] Gao, S., Zhang, J.F., Xu, W.L., et al., 2009. Delamination and destruction of the North China craton. Chinese Science Bulletin, 54(19): 3367-3378. doi: 10.1007/s11434-009-0395-9 [23] Ge, W.C., Wu, F.Y., Zhou, C.Y., et al., 2005. Zircon U-Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, Central Da Hinggan Mountain. Acta Petrologica Sinica, 21(3): 749-762 (in Chinese with English abstract). [24] Gilder, S.A., Leloup, P.H., Courtillot, V., et al., 1999. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic data. Journal of Geophysical Research-Solid Earth, 104(B7): 15365-15390. doi: 10.1029/1999jb900123 [25] Goldschmidt, V.M., 1933. Grundlagen der quantitativen geochemie. Fortschritte der Mineralogic Kirstlographie Petrographie, 17: 112. http://www.researchgate.net/publication/284038540_Grundlagen_der_quantitativen_Geochemie [26] Griffin, W.L., Belousova, E.A., Shee, S.R., et al., 2004. Archean crustal evolution in the northern Yilgam craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131(3-4): 231-282. doi: 10.1016/j.precamres.2003.12.011 [27] Hacker, B.R., Wallis, S.R., McWilliams, M.O., et al., 2009. 40Ar/39Ar constraints on the tectonic history and architecture of the ultrahigh-pressure Sulu orogen. Journal of Metamorphic Geology, 27(9): 827-844. doi: 10.1111/j.1525-1314.2009.00840.x [28] Hanchar, J.M., Hoskin, P.W.O., 2003. Zircon: reviews in mineralogy and geochemistry. Mineralogical Society of America, 53: 500. [29] Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., et al., 2010. The generation and evolution of the continental crust. Journal of the Geological Society, 167(2): 229-248. doi: 10.1144/0016-76492009-072 [30] Hawkesworth, C.J., Kemp, A.I.S., 2006a. Evolution of the continental crust. Nature, 443(7113): 811-817. doi: 10.1038/nature05191 [31] Hawkesworth, C.J., Kemp, A.I.S., 2006b. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3-4): 144-162. doi: 10.1016/j.chemgeo.2005.09.018 [32] Hu, Z.C., Gao, S., 2008. Upper crustal abundances of trace elements: a revision and update. Chemical Geology, 253(3-4): 205-221. doi: 10.1016/j.chemgeo.2008.05.010 [33] Iizuka, T., Hirata, T., 2005. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chemical Geology, 220(1-2): 121-137. doi: 10.1016/j.chemgeo.2005.03.010 [34] Iizuka, T., Hirata, T., Komiya, T., et al., 2005. U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand: implications for reworking and growth of continental crust. Geology, 33(6): 485-488. doi: 10.1130/g21427.1 [35] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69. doi: 10.1016/j.chemgeo.2004.06.017 [36] Jahn, B.M., Capdevila, R., Liu, D.Y., et al., 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, 23(5): 629-653. doi: 10.1016/s1367-9120(03)00125-1 [37] Jahn, B.M., Wu, F.Y., Capdevila, R., et al., 2001. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59(4): 171-198. doi: 10.1016/s0024-4937(01)00066-4 [38] Jahn, B.M., Wu, F.Y., Chen, B., 2000a. Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth and Environmental Sciences, 350: 181-193. doi: 10.1130/0-8137 [39] Jahn, B.M., Wu, F.Y., Hong, D.W., 2000b. Important crustal growth in the Phanerozoic: isotopic evidence of granitoids from East-Central Asia. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 109(1): 5-20. doi: 10.1007/bf02719146 [40] Jian, P., Liu, D.Y., Kroner, A., et al., 2008. Time scale of an early to Mid-Paleozoic orogenic cycle of the long-lived Central Asian orogenic belt, Inner Mongolia of China: implications for continental growth. Lithos, 101(3-4): 233-259. doi: 10.1016/j.lithos.2007.07.005 [41] Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., et al., 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439(7076): 580-583. doi: 10.1038/nature04505 [42] Kusky, T.M., Santosh, M., 2009. The Columbia connection in North China. Geological Society of London: Special Publications, 323: 49-71. doi: 10.1144/sp323.3 [43] Li, S.Z., Kusky, T.M., Liu, X.C., et al., 2009. Two-stage collision-related extrusion of the western Dabie HP-UHP metamorphic terranes, Central China: evidence from quartz c-axis fabrics and structures. Gondwana Research, 16(2): 294-309. doi: 10.1016/j.gr.2009.03.003 [44] Li, X.H., Li, Z.X., Ge, W.C., et al., 2003. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma. Precambrian Research, 122(1-4): 45-83. doi: 10.1016/s0301-9268(02)00207-3 [45] Li, X.H., Li, Z.X., Zhou, H.W., et al., 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Research, 113(1-2): 135-154. doi: 10.1016/s0301-9268(01)00207-8 [46] Li, Z.X., 1994. Collision between the North and South China blocks: a crustal-detachment model for suturing in the region east of the Tanlu fault. Geology, 22(8): 739-742. doi:10.1130/0091-7613(1995)023<0574:cbtnas>2.3.CO [47] Liu, D.Y., Nutman, A.P., Compston, W., et al., 1992. Remnants of ≥3 800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20(4): 339-342. doi:10.1130/0091-7613(1992)020<0339:romcit>2.3.CO [48] Liu, W., Siebel, W., Li, X.J., et al., 2005. Petrogenesis of the Linxi granitoids, northern Inner Mongolia of China: constraints on basaltic underplating. Chemical Geology, 219(1-4): 5-35. doi: 10.1016/j.chemgeo.2005.01.013 [49] Liu, X.M., Gao, S., Diwu, C.R., et al., 2008. Precambrian crustal growth of Yangtze craton as revealed by detrital zircon studies. American Journal of Science, 308(4): 421-468. doi: 10.2475/04.2008.02 [50] Ludwig, K.R., 2003. ISOPLOT 3: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Centre Special Publication, Berkeley, California, 70. [51] McLennan, S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems, 2(4): 1021-1044. doi: 10.1029/2000gc000109 [52] Meng, F.X., Gao, S., Yuan, H.L., et al., 2010. Permian-triassic (260-220 Ma) crustal growth of eastern central Asian orogenic belt as revealed by detrital zircon studies. American Journal of Science, 310(5): 364-404. doi: 10.2475/05.2010.02 [53] Meng, Q.R., Zhang, G.W., 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323(3-4): 183-196. doi: 10.1016/s0040-1951(00)00106-2 [54] Miao, L.C., Fan, W.M., Liu, D.Y., et al., 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling orogenic belt, China. Journal of Asian Earth Sciences, 32(5-6): 348-370. doi: 10.1016/j.jseaes.2007.11.005 [55] Oh, C.W., Kusky, T., 2007. The Late Permian to Triassic Hongseong-odesan collision belt in South Korea, and its tectonic correlation with China and Japan. International Geology Review, 49(7): 636-657. doi: 10.2747/0020-6814.49.7.636 [56] Okay, A.I., Sengör, A.M.C., 1992. Evidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China. Geology, 20(5): 411-414. doi:10.1130/0091-7613(1992)020<0411:efitre>2.3.CO [57] Pietranik, A.B., Hawkesworth, C.J., Storey, C.D., et al., 2008. Episodic, mafic crust formation from 4.5 to 2.8 Ga: new evidence from detrital zircons, Slave craton, Canada. Geology, 36(11): 875-878. doi: 10.1130/g24861a.1 [58] Rudnick, R.L., Gao, S., 2003. Composition of the continental crust: the crust: treatise on geochemistry. Elsevier Science, 3: 1-64. doi: 10.1016/b0-08-043751-6/03016-4 [59] Samson, S.D., Hibbard, J.P., Wortman, G.L., 1995. Nd isotopic evidence? For juvenile crust in the Carolina terrane, southern Appalachians. Contributions to Mineralogy and Petrology, 121(2): 171-184. doi: 10.1007/s004100050097 [60] Samson, S.D., McClelland, W.C., Patchett, P.J., et al., 1989. Evidence from neodymium isotopes for mantle contributions to Phanerozoic crustal genesis in the Canadian Cordillera. Nature, 337: 705-709. doi: 10.1038/337705a0 [61] Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the lutetium-hafnium clock. Science, 293(5530): 683-687. doi: 10.1126/science.1061372 [62] Shi, G.H., Miao, L.C., Zhang, F.Q., et al., 2004. Emplacement age and tectonic implications of the Xilinhot A-type granite in Inner Mongolia, China. Chinese Science Bulletin, 49(7): 723-729. doi: 10.1360/03wd0436 [63] Shao, J.A., Han, Q.J., Zhang, L.Q., et al., 1999. Two kinds of vertical accretion of the continental crust: an example of the Da Hinggan Mts. . Acta Ptrologica Sinica, 49(7): 600-606 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199904013.htm [64] Song, B., Nutman, A.P., Liu, D.Y., et al., 1996.3 800 to 2 500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research, 78(1-3): 79-94. doi: 10.1016/0301-9268(95)00070-4 [65] Sun, D.Y., Wu, F.Y., Li, H.M., et al., 2001. Emplacement age of the postorogenic A-type granites in northwestern Lesser Xing'an ranges, and its relationship to the eastward extension of Suolushan-Hegenshan-Zhalaite collisional suture zone. Chinese Science Bulletin, 46(5): 428-433. [66] Taylor, S.R., McLennan, S.M., 1985. Continental crust: its composition and evolution. Blackwell Scientific, Oxford, 311. doi: 10.1016/0031-9201(86)90093-2 [67] Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241-265. doi: 10.1029/95rg00262 [68] Taylor, S.R., McLennan, S.M., McCulloch, M.T., 1983. Geochemistry of loess, continental crustal composition and crustal model ages. Geochimica et Cosmochimica Acta, 47(11): 1897-1905. doi: 10.1016/0016-7037(83)90206-5 [69] Veevers, J.J., Saeed, A., Belousova, E.A., et al., 2005. U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modem sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgam craton. Earth-Science Reviews, 68(3-4): 245-279. doi: 10.1016/j.earscirev.2004.05.005 [70] Vermeesch, P., 2004. How many grains are needed for a provenance study?Earth and Planetary Science Letters, 224(3-4): 441-451. doi: 10.1016/j.cpsl.2004.05.037 [71] Vervoort, J.D., Patchett, P.J., 1996. Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta, 60(19): 3717-3733. doi: 10.1016/0016-7037(96)00201-3 [72] Wang, L., Kusky, T.M., Li, S.Z., 2010. Structural geometry of an exhumed UHP terrane in the eastern Sulu orogen, China: implications for continental collisional processes. Journal of Structural Geology, 32(4): 423-444. doi: 10.1016/j.jsg.2010.01.012 [73] Wang, T., Zheng, Y.D., Li, T.B., et al., 2004. Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. Journal of Asian Earth Sciences, 23(5): 715-729. doi: 10.1016/s1367-9120(03)00133-0 [74] Watson, E.B., Harrison, T.M., 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308(5723): 841-844. doi: 10.1126/science.1110873 [75] Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. doi: 10.1007/s00410-006-0068-5 [76] Weislogel, A.L., Graham, S.A., Chang, E.Z., et al., 2006. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: sedimentary record of collision of the North and South China blocks. Geology, 34(2): 97-100. doi: 10.1130/g21929 [77] Woodhead, J., Hergt, J., Shelley, M., et al., 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology, 209(1-2): 121-135. doi: 10.1016/j.chemgeo.2004.04.026 [78] Wu, F.Y., Jahn, B.M., Wilde, S., et al., 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1-2): 89-113. doi: 10.1016/s0040-1951(00)00179-7 [79] Wu, F.Y., Jahn, B.M., Wilde, S.A., et al., 2003. Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos, 66(3-4): 241-273. doi: 10.1016/s0024-4937(02)00222-0 [80] Wu, F.Y., Sun, D.Y., Li, H.M., et al., 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173. doi: 10.1016/s0009-2541(02)00018-9 [81] Wu, F.Y., Zhao, G.C., Sun, D.Y., et al., 2007. The Hulan Group: its role in the evolution of the central Asian orogenic belt of NE China. Journal of Asian Earth Sciences, 30(3-4): 542-556. doi: 10.1016/j.jseaes.2007.01.003 [82] Wu, F.Y., Zhao, G.C., Wilde, S.A., et al., 2005. Nd isotopic constraints on crustal formation in the North China craton. Journal of Asian Earth Sciences, 24(5): 523-545. doi: 10.1016/j.jseaes.2003.10.011 [83] Xu, W.L., Ji, W.Q., Pei, F.P., et al., 2009. Triassic volcanism in eastern Heilongjiang and Jilin Provinces, NE China: chronology, geochemistry, and tectonic implications. Journal of Asian Earth Sciences, 34(3): 392-402. doi: 10.1016/j.jseaes.2008.07.001 [84] Yang, J., Gao, S., Chen, C., et al., 2009. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochimica et Cosmochimica Acta, 73(9): 2660-2673. doi: 10.1016/j.gca.2009.02.007 [85] Yang, J., Gao, S., Yuan, H.L., et al., 2007. Detrital zircon ages of Hanjiang River: constraints on evolution of northern Yangtze craton, South China. Journal of China University of Geosciences, 18(3): 210-222. doi: 10.1016/S1002-0705(08)60002-3 [86] Yin, A., Nie, S., 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, 12(4): 801-813. doi: 10.1029/93tc00313 [87] Yuan, H.L., Gao, S., Dai, M.N., et al., 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247(1-2): 100-118. doi: 10.1016/j.chemgeo.2007.10.003 [88] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. doi: 10.1111/j.1751-908x.2004.tb00755.x [89] Zhai, M.G., Gong, B.L., Guo, J.H., et al., 2000. Sm-Nd geochronology and petrography of garnet pyroxene granulites in the northern Sulu region of China and their geotectonic implication. Lithos, 52(1-4): 23-33. doi: 10.1016/s0024-4937(99)00082-1 [90] Zhang, C.L., Gao, S., Zhang, G.W., et al., 2003. Geochemistry of Early Paleozoic alkali dyke swarms in south Qinling and its geological significance. Science in China (Series D), 46(12): 1292-1306. doi: 10.1360/03yd0520 [91] Zhang, S.H., Zhao, Y., Song, B., et al., 2007. Carboniferous granitic plutons from the northern margin of the North China block: implications for a Late Palaeozoic active continental margin. Journal of the Geological Society, 164: 451-463. doi: 10.1144/0016-76492005-190 [92] Zhang, X.H., Zhang, H.F., Tang, Y.J., et al., 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: implication for tectonic setting and Phanerozoic continental growth in central Asian orogenic belt. Chemical Geology, 249(3-4): 262-281. doi: 10.1016/j.chemgeo.2008.01.005 [93] Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2000. Metamorphism of basement rocks in the central zone of the North China craton: implications for Paleoproterozoic tectonic evolution. Precambrian Research, 103(1-2): 55-88. doi: 10.1016/s0301-9268(00)00076-0 [94] Zhao, G.C., Sun, M., Wilde, S.A., et al., 2005. Late Archean to Paleoproterozoic evolution of the North China craton: key issues revisited. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002 [95] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China carton and its bearing on tectonic setting. International Geology Review, 40(8): 706-721. doi: 10.1080/00206819809465233 [96] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 1999. Thermal evolution of two textural types of mafic granulites in the North China craton: evidence for both mantle plume and collisional tectonics. Geological Magazine, 136(3): 223-240. doi: 10.1017/S001675689900254X [97] Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2001. Archean blocks and their boundaries in the North China craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73. doi: 10.1016/s0301-9268(00)00154-6 [98] Zhou, T.F., Yuan, F., Fan, Y., et al., 2008. Granites in the Sawuer region of the West Junggar, Xinjiang Province, China: geochronological and geochemical characteristics and their geodynamic significance. Lithos, 106(3-4): 191-206. doi: 10.1016/j.lithos.2008.06.014 [99] 程瑞玉, 吴福元, 葛文春, 等, 2006. 黑龙江省东部饶河杂岩的就位时代与东北东部中生代构造演化. 岩石学报, 22(2): 353-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602009.htm [100] 葛文春, 吴福元, 周长勇, 等, 2005. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义. 岩石学报, 21(3): 749-762. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503016.htm [101] 邵济安, 韩庆军, 张履桥, 等, 1999. 陆壳垂向增生的两种方式: 以大兴安岭为例. 岩石学报, 15(4): 600-606. doi: 10.3321/j.issn:1000-0569.1999.04.014