A Further Discussion on Formation Background and Tectonic Constraints of Igneous Rocks in Central Sub-Basin of the South China Sea
-
摘要: 文章拟通过分析南海中央次海盆海山火山岩样品的岩石学及地球化学资料来审视研究区的岩浆过程及其构造背景.综合位于南海中央次海盆的中南、珍贝-黄岩、涨中、宪北、玳瑁、尖峰这6条海山链的火山岩资料及最新分析结果, 将来自各条海山链的洋岛型碱性玄武岩、具有过渡性质的拉斑玄武岩, 以及粗面岩、粗面安山岩、流纹英安岩等纳入统一的岩浆分异体系进行地球化学特征检验.相关参数表明, 中央次海盆海山火山岩岩浆具有连续的演化关系但源区性质并不均一, 属于EMⅠ和DMM双端员混合.根据分析样品的Mg#值、分异指数DI以及主、微量元素的分布特征, 初步判定原始岩浆在上地幔经历了橄榄石、辉石分离结晶作用后继续演化, 产生包括拉斑玄武岩、碱性玄武岩、粗面岩等在内的岩石组合.其中, 富集型OIB的多项地化参数特征表明, 岩浆在演化过程中似有陆壳成分的加入, 这可能是被动大陆边缘破裂留给南海海盆的最重要的遗产之一.Abstract: Based on analysis of petrological and geochemical information of igneous rocks sampled from central sub-basin of the South China Sea, this article attempts to address the magmatic processes and tectonic background of the research area. By renewing the available datas and combining them with latest test results of igneous rock samples collected from 6 seamount chains in the central sub-basin of South China Sea (SCS), we analyze the alkali basalt, transitional tholeiite, trachyte, trachyandesite and rhyodacite under a unified magmatic differentiation system in this paper. The geochemical indices show that the evolutionary relationship of these igneous rocks was relatively consistent and the regional mantle source was heterogeneous, consisting of two end-members: EMⅠ and DMM. According to the Mg#, differentiation index (DI), attributes of major and minor elements, we conclude that subsequent to the fractional crystallization of olivine and pyroxene in upper mantle, the primitive magma continues its evolution to bring about this rock association. Furthermore, geological datas also indicate that during the process of magma evolving, different degrees of contamination occurred in different stages of sea-floor expansion, which may be one of the most important heritage left by the rupture of passive continental margin.
-
图 2 南海中央次海盆海山火山岩TAS定名
HY.黄岩海山样品;JF.尖峰海山样品;ZZ.涨中海山样品;ZB.珍贝海山样品;DM.玳瑁海山样品;ZN.中南海山样品;XB.宪北海山样品,下同;底图引自Irvine et al., 1971;划分岩性系列曲线Ir据Maitre et al., 1989
Fig. 2. TAS diagram of igneous rocks sampled from seamounts in central sub-basin of the SCS
图 3 南海中央次海盆海山亚碱性火山岩AFM判别(底图引自Irvine et al., 1971)
Fig. 3. AFM diagram of sub-alkali basalts sampled from seamounts in central sub-basin of the SCS
图 4 南海中央次海盆海山火山岩稀土元素配分曲线
a.海山拉斑玄武岩稀土元素球粒陨石标准化模式;b.海山碱性玄武岩稀土元素球粒陨石标准化模式;c.尖峰海山安山岩、英安岩稀土元素球粒陨石标准化模式;球粒陨石数据采用Sun and McDonough, 1989;OIB、N-MORB、E-MORB数据来自Sun and Nesbitt, 1977;大陆边缘及岛弧安山岩数据来自Culler and Medaris, 1977
Fig. 4. Chondrite-normalized REE patterns of igneous rocks sampled from seamounts in central sub-basin of the SCS
图 5 南海中央次海盆海山火山岩微量元素原始地幔标准化蛛网图
a.海山拉斑玄武岩微量元素原始地幔标准化模式;b.海山碱性玄武岩微量元素原始地幔标准化蛛网;PM数据引自Sun and McDonough, 1989;OIB、N-MORB数据引自Sun and Nesbitt, 1977
Fig. 5. PM-Normalized trace elements pattern of igneous rocks sampled from seamounts in central sub-basin of the SCS
图 6 南海中央次海盆海山火山岩Sr-Nd同位素关系(底图据Zindler and Hart, 1986)
Fig. 6. Sr-Nd diagram of igneous rocks sampled from seamounts in central sub-basin of the SCS
图 7 南海中央次海盆海山火山岩铅同位素演化图解(地幔端员数据据Zindler and Hart, 1986;半球参考线NHRL据Hart, 1984)
Fig. 7. Pb isotopes diagram of igneous rocks sampled from seamounts in central sub-basin of the SCS
表 1 南海中央次海盆海山火山岩样品基本信息统计
Table 1. The statistics of basic features of igneous rocks sampled from seamounts in central sub-basin of the SCS
海山名称 采样位置 水深(m) 样品编号 岩性 全岩年龄(Ma) 附近磁条带 N E 编号年龄(Ma) 中南 14°00′ 115°35′ 2 881~3 213 10-1,2;D10 碱性玄武岩 3.49±0.9 6A 21 珍贝 14°48′ 116°30′ 2 735~3 488 9-1,2,3;D9;D9-1, 2, 3 碱性/拉斑玄武岩 9.1±0.2~10.0±2 5d 17 黄岩 15°14′ 117°5′ 3 348 9DG,9DG2 粗面岩 7.77±0.49 5d 17 涨中 15°35′ 116°09′ 1 290 SO4-12-8, 10, 11, 12, 18, 20, 21, 22;SO4-12DG 碱性玄武岩 4.76~5.78 6A 21 宪北 16°37′ 116°41′ —— CB-2, 5;CB-7-1, 2, 3 碱性/拉斑玄武岩 碱性15-23;拉斑38 6B 23 玳瑁 17°37′ 116°59′ 2 981~3 877.5 8-1, 2, 3, 4, 5G, 6, 7, 7G;D8-1, 2, 3, 4;V36-D8-1,3 拉斑玄武岩 14.1±1.14 8 26 尖峰 19°20′ 116°10′ 1 500~2 000 ZF-1,ZFF-2 英安岩、安山岩 18.61±4.88 10 30 注: 各海山样品数据来源:中南、珍贝、玳瑁海山数据引自 Tu et al., 1992 ;黄岩海山王叶剑等(2009);涨中海山鄢全树等(2008);宪北、尖峰海山李兆麟等(1991);本文测试样品编号为SO4-12DG和V36-D8-1,3,下同.表 2 南海中央次海盆海山火山岩地球化学数据
Table 2. Geological data of igneous rocks sampled from seamounts in central sub-basin of the SCS
原编号 10-2 D10 9-3 D9-1 D9-2 9DG-2 9DG SO4-12-8 SO4-12-10 SO4-12-11 SO4-12-12 SO4-12-18 SO4-12-20 SO4-12-21 SO4-12-22 主量元素 SiO2 41.45 46.31 47.39 49.13 48.91 63.59 60.33 48.75 48.28 47.57 45.43 50.03 46.97 48.48 42.35 TiO2 3.22 3.36 3.46 2.19 3.67 0.31 0.48 2.33 2.36 2.07 2.59 2.04 2.20 2.18 2.54 Al2O3 14.65 16.53 15.58 16.08 15.77 17.55 17.56 19.14 19.04 17.12 18.12 19.15 16.95 17.5 17.41 Fe2O3 9.59 2.38 7.51 2.51 2.58 —— —— 3.21 3.34 4.42 8.72 4.33 5.33 2.61 13.00 FeO 3.33 8.57 4.27 9.05 9.3 3.97 4.84 4.28 4.48 5.2 2.73 2.7 4.85 6.84 1.47 MnO 0.88 0.20 0.11 0.14 0.14 0.22 0.55 0.14 0.15 0.23 0.23 0.11 0.33 0.2 0.44 MgO 5.40 6.32 2.69 5.50 3.38 0.38 0.51 2.42 2.60 5.74 3.81 2.13 5.91 5.61 3.80 CaO 6.58 9.37 7.91 11.00 8.99 1.16 1.73 8.52 8.83 8.1 9.87 8.45 7.96 8.11 8.19 Na2O 3.02 3.42 3.46 3.02 3.51 5.52 5.8 5.13 5.13 4.58 3.21 5.10 4.05 4.89 2.87 K2O 2.62 2.67 2.41 0.77 2.42 6.01 5.13 2.78 2.74 2.32 1.28 2.83 2.04 2.61 1.01 P2O5 0.65 0.89 1.30 0.61 1.33 0.07 0.15 0.77 0.83 0.85 0.95 0.94 0.70 0.68 1.17 LOI 8.44 —— 2.79 —— —— 0.66 1.70 2.33 1.96 1.98 3.02 2.15 2.83 0.67 4.26 总量 99.30 100.02 98.61 100.00 100.00 99.44 98.78 99.80 99.70 100.2 100.00 100.00 100.10 100.40 98.50 σ —— 11.20 7.85 5.95 6.46 6.89 10.88 11.73 10.42 8.30 8.95 9.34 10.26 —— Mg# 44.83 51.50 30.51 46.68 34.36 14.70 15.94 37.80 38.47 52.96 39.33 36.76 52.44 52.36 34.18 稀土元素 La 42.8 51.29 33.10 16.20 51.21 83.47 82.25 66.90 64.60 49.10 48.80 70.20 60.20 57.00 65.80 Ce 187.20 109.01 87.18 33.23 106.44 162.30 154.84 108.00 158.00 86.90 87.40 111.00 96.60 97.10 111.00 Pr 11.16 —— 10.32 —— —— 16.19 18.11 12.40 12.00 9.26 9.64 12.30 10.50 10.60 13.00 Nd 34.04 57.74 36.43 23.42 54.89 54.82 61.19 46.60 45.80 34.50 39.40 46.00 40.10 40.30 52.10 Sm 7.75 11.56 9.56 4.80 11.24 8.76 11.39 8.78 8.58 6.61 7.66 8.49 7.74 7.64 10.29 Eu 2.82 3.81 3.31 1.74 3.76 1.14 3.02 2.82 2.81 2.19 2.52 2.70 2.52 2.45 3.18 Gd 5.33 —— 8.64 —— —— 6.34 9.06 7.48 7.58 5.68 6.69 7.49 6.71 6.67 9.49 Tb 1.19 1.86 1.36 0.88 1.74 1.01 1.32 1.16 1.16 0.86 0.99 1.12 1.03 0.95 1.37 Dy 6.38 —— 7.48 —— —— 5.21 7.25 6.32 6.37 4.85 5.59 6.54 5.9 5.32 7.79 Ho 1.86 1.7 2.66 —— —— 0.96 1.43 1.18 1.24 0.92 1.05 1.21 1.11 1.02 1.46 Er 2.67 —— 3.27 —— —— 2.51 3.76 3.37 3.48 2.85 3.01 3.54 3.15 2.85 4.16 Tm 0.31 —— 0.36 —— —— 0.39 0.54 0.45 0.48 0.36 0.39 0.47 0.45 0.38 0.53 Yb 3.02 2.46 3.51 1.96 2.64 2.20 3.41 2.88 2.95 2.24 2.43 3.05 2.65 2.39 3.20 Lu 0.31 0.43 0.44 0.36 0.43 0.35 0.53 0.44 0.46 0.35 0.37 0.48 0.41 0.36 0.48 Y 29.56 43.10 41.24 39.00 45.00 23.11 31.78 34.00 35.10 24.20 30.20 37.10 31.00 26.50 45.60 ∑REE 336.40 282.96 248.86 121.59 277.35 368.75 389.87 302.78 350.61 230.87 246.14 311.60 270.07 261.53 329.36 LREE 285.77 233.41 179.9 79.39 227.54 326.68 330.80 245.50 291.79 188.56 195.42 250.60 217.66 215.09 255.28 HREE 50.63 49.55 68.96 42.20 49.81 42.07 59.07 57.28 58.82 42.31.0 50.72 61.00 52.41 46.44 74.08 LREE/HREE 5.64 4.71 2.60 1.88 4.56 7.76 5.60 4.28 4.96 4.45 3.85 4.10 4.15 4.63 3.44 (La/Yb)N 10.17 14.96 6.76 5.93 13.91 27.26 17.32 16.66 15.71 15.72 14.41 16.51 16.29 17.11 14.75 微量元素 Li 17.00 —— —— —— —— 12.64 15.40 8.34 8.69 11.60 16.90 9.88 14.40 8.36 19.40 Sc 23.00 23.20 —— 42.00 24.00 4.28 4.63 18.70 20.30 18.00 23.70 18.50 18.70 18.80 23.70 V —— 249.20 —— 298.00 308.00 29.15 17.34 150.00 163.00 148.00 219.00 141.00 146.00 152.00 201.00 Cr —— 146.40 —— 200.00 15.00 3.45 2.01 111.00 124.00 149.00 195.00 155.00 140.00 121.00 161.00 Co 79.00 58.30 79.00 50.00 54.00 5.67 24.80 30.10 32.40 46.40 44.10 28.30 57.20 44.10 76.60 Ni 237.00 76.50 60.00 43.00 15.00 26.70 84.25 13.60 16.60 100.00 67.60 22.40 112.00 77.20 171.00 Cu 160.00 47.90 24.00 87.00 27.00 25.30 59.13 42.40 41.80 39.80 42.70 43.40 43.30 42.00 38.50 Zn —— 118.30 —— 152.00 161.00 94.88 62.35 96.00 101.00 102.00 129.00 84.20 107.00 91.30 141.00 Rb 54.00 60.70 68.00 34.00 54.00 36.38 87.09 83.20 82.90 66.80 16.90 85.50 54.40 78.80 16.40 Sr 349.00 819.20 400.00 301.00 749.00 31.62 235.48 721.00 737.00 652.00 597.00 685.00 631.00 661.00 1 929.00 Zr 330.00 348.50 274.00 156.00 344.00 419.00 646.50 316.00 203.00 250.00 232.00 336.00 275.00 279.00 211.00 Nb 84.00 83.50 60.00 22.00 53.00 —— 99.74 82.80 81.50 69.30 58.80 87.70 71.60 74.50 56.10 Cs 28.00 —— 31.00 —— —— —— 0.58 1.25 1.14 0.92 0.34 1.26 0.77 1.07 0.53 Ba 810.00 853.60 423.00 —— 411.00 108.30 1633.01 625.00 650.00 538.00 485.00 603.00 492.00 592.00 348.00 Hf —— 8.10 —— —— —— —— 16.72 6.14 6.17 5.28 5.17 6.42 5.92 5.61 5.16 Ta 2.50 4.00 1.60 —— —— —— 7.00 5.03 4.89 4.49 3.57 5.15 4.63 4.33 3.66 Pb —— —— —— —— —— 19.26 37.66 7.44 7.42 6.82 7.90 7.16 9.75 7.26 36.50 Bi —— —— —— —— —— —— 0.50 0.10 0.12 0.13 0.14 0.13 0.15 0.14 0.49 Th 13.60 5.40 9.50 —— —— —— 14.85 9.85 9.78 8.92 6.66 10.8 8.59 9.07 8.19 U 24.80 —— 5.30 —— —— —— 1.37 2.24 2.27 1.98 1.27 2.65 1.69 2.02 1.68 Mo 9.40 —— —— —— —— —— —— 5.12 5.38 4.51 2.84 5.46 4.21 5.28 5.60 同位素 87Sr/86Sr —— 0.704 007 —— —— 0.703 976 0.704 433 0.704 183 0.703 963 —— —— 0.704 038 0.703 961 0.704 137 —— —— 143Nd/144Nd —— 0.512 805 —— —— 0.512 813 0.512 922 0.512 827 0.512 901 —— —— 0.512 863 0.512 894 0.512 855 —— —— 206Pb/204Pb —— 18.875 —— —— 18.954 18.667 18.687 18.409 —— —— 18.622 18.372 18.501 —— —— 207Pb/204Pb —— 15.593 —— —— 15.588 15.535 15.680 15.558 —— —— 15.596 15.534 15.596 —— —— 203Pb/204Pb —— 38.931 —— —— 38.991 38.677 39.002 38.523 —— —— 38.767 38.443 38.665 —— —— 资料来源 ① ② ① ② ② ③ ③ ④ ④ ④ ④ ④ ④ ④ ④ 原编号 SO4-12-DG CB-2 CB-5 CB-7-1 CB-7-2 CB-7-3 8-5 8-6 8-7 D8-2 D8-4 V36-D8-1 V36-D8-3 ZF-1 ZFF-2 主量元素 SiO2 —— 48.80 42.39 42.34 44.09 43.70 46.38 47.39 48.54 49.20 49.73 —— —— 67.21 58.06 TiO2 —— 1.76 2.55 2.77 2.74 2.38 1.93 2.09 2.04 2.14 2.09 —— —— 0.23 0.82 Al2O3 —— 13.66 12.46 13.13 12.40 13.18 14.13 14.96 13.67 15.82 15.97 —— —— 13.22 15.67 Fe2O3 —— 6.75 5.81 5.83 4.82 4.73 4.86 8.54 6.59 2.52 2.42 —— —— 2.55 4.23 FeO —— 6.02 5.55 5.88 6.23 5.97 7.87 3.52 5.71 9.07 8.71 —— —— 2.43 3.33 MnO —— 0.68 0.56 0.89 0.25 0.18 0.21 0.28 0.50 0.19 0.13 —— —— 0.22 0.65 MgO —— 6.67 12.29 10.54 12.79 11.96 7.85 6.53 5.00 5.65 6.10 —— —— 0.59 1.70 CaO —— 10.02 10.00 10.33 9.53 9.66 9.96 10.11 6.85 11.03 10.77 —— —— 2.07 2.85 Na2O —— 2.40 2.70 3.03 3.02 3.03 2.56 3.00 3.00 3.09 3.15 —— —— 4.41 5.46 K2O —— 1.19 1.73 2.03 1.85 1.96 0.6 0.64 1.28 0.74 0.59 —— —— 1.92 3.70 P2O5 —— 0.10 0.65 0.76 0.60 0.96 0.25 0.48 0.34 0.54 0.34 —— —— 0.00 0.40 LOI —— 1.28 2.61 1.79 1.28 2.01 —— —— 7.40 —— —— —— —— —— —— 总量 —— 99.33 99.30 99.32 99.33 99.45 99.77 100.65 98.92 99.99 100.00 —— —— 99.64 99.31 σ —— 2.22 —— —— 21.76 35.57 2.95 3.02 3.30 2.37 2.08 —— —— 1.66 5.57 Mg# —— 50.00 57.77 63.03 68.54 58.39 53.58 51.19 48.36 47.28 50.21 —— —— 18.35 30.01 稀土元素 La 66.86 9.00 60.42 70.08 49.36 58.26 9.30 13.92 11.83 17.47 17.53 19.32 20.90 20.99 122.86 Ce 106.70 24.37 121.20 137.40 90.07 101.60 46.25 52.70 51.89 34.10 40.54 34.17 38.24 47.10 116.86 Pr 14.12 4.12 13.66 15.60 11.64 12.79 3.20 4.05 3.79 —— —— 5.11 5.31 6.36 24.88 Nd 56.36 18.00 50.50 56.44 39.00 47.02 11.22 14.21 13.87 15.56 20.06 22.46 23.13 25.19 84.82 Sm 11.47 5.25 10.03 11.02 8.37 9.06 3.32 3.82 4.33 5.12 5.12 5.50 5.59 6.51 15.98 Eu 3.77 1.54 2.93 3.12 2.37 2.79 1.27 1.29 1.44 1.61 1.78 1.83 1.89 1.99 3.23 Gd 12.60 7.68 9.26 10.08 7.59 8.36 3.17 3.42 5.39 —— —— 6.06 6.28 7.50 13.49 Tb 1.80 1.41 1.37 1.53 1.18 1.23 0.64 0.67 1.04 0.81 0.75 0.94 0.97 1.40 1.80 Dy 10.68 8.69 6.57 8.05 6.44 5.83 3.53 3.35 5.48 —— —— 5.58 5.79 6.12 9.95 Ho 2.19 1.80 1.22 1.44 1.29 1.08 1.01 0.99 1.68 0.80 0.60 1.13 1.18 1.77 2.08 Er 6.00 4.85 3.01 3.49 2.94 2.85 1.65 1.41 2.71 —— —— 3.10 3.22 5.96 5.74 Tm 0.80 0.71 0.47 0.49 0.39 0.39 0.27 0.19 0.28 —— —— 0.43 0.45 0.81 0.84 Yb 4.70 4.60 2.61 1.89 2.30 2.36 1.82 1.49 3.25 2.33 1.91 2.64 2.70 5.51 5.13 Lu 0.72 0.66 0.36 0.4 0.31 0.33 0.22 0.16 0.31 0.38 0.37 0.38 0.41 0.81 0.73 Y 54.32 39.49 31.31 31.92 23.21 27.31 18.82 20.59 28.99 33.60 29.50 19.27 21.18 45.55 57.90 ∑REE 298.77 132.17 352.95 246.46 281.26 314.92 105.69 122.26 111.78 118.16 136.28 108.64 116.05 183.57 466.29 LREE 259.28 62.28 293.66 200.81 231.52 258.74 74.56 89.99 73.86 85.03 87.15 88.39 95.06 108.14 368.63 HREE 39.50 69.89 59.29 45.65 49.74 56.18 31.13 32.27 37.92 33.13 49.13 20.26 20.99 75.43 97.66 LREE/HREE 6.56 0.89 4.95 4.39 4.65 4.6 2.39 2.78 1.94 2.56 1.77 4.36 4.53 1.43 3.77 (La/Yb)N 14.21 1.40 26.60 15.39 17.71 16.61 3.67 6.70 5.38 6.58 2.61 7.33 7.73 2.73 17.18 微量元素 Li —— 17.10 —— 10.70 9.60 —— 14.00 56.00 13.00 —— —— —— —— 22.90 32.00 Sc —— 44.60 —— 27.40 25.40 —— 31.00 27.00 25.00 38.40 34.50 —— —— 17.20 11.90 V —— —— —— —— —— —— —— —— —— 288.10 288.50 —— —— —— —— Cr —— 204.00 —— 298.00 545.00 —— —— —— —— 32.30 174.90 —— —— 18.30 14.10 Co —— 72.90 —— 73.90 52.50 —— 79.00 39.60 55.00 54.00 59.60 —— —— 10.00 22.60 Ni —— 166.00 —— 242.00 315.00 —— 158.00 95.00 158.00 37.90 47.70 —— —— 33.90 82.90 Cu —— 178.00 —— 72.10 66.20 —— 64.00 80.00 80.00 93.80 84.80 —— —— 78.70 82.60 Zn —— —— —— —— —— —— —— —— —— 166.60 128.90 —— —— —— —— Rb 13.17 —— —— —— —— —— 34.00 38.00 30.00 19.30 12.50 7.28 22.44 —— —— Sr 941.20 94.50 —— 653.00 569.00 —— 162.00 170.00 145.00 320.60 313.90 360.80 353.60 107.00 386.00 Zr 283.40 138.00 —— 270.00 244.00 —— 120.00 135.00 153.00 157.30 149.80 132.80 146.50 336.00 260.00 Nb 54.32 6.90 —— 63.80 52.40 —— 21.00 24.50 25.00 23.40 20.60 19.27 21.18 10.30 8.70 Cs —— —— —— —— —— —— 25.00 26.00 21.00 —— —— —— —— —— —— Ba 603.20 39.90 —— 632.00 544.00 —— 99.00 —— —— 32.00 15.10 120.50 113.40 407.00 1 200.00 Hf 6.03 4.40 —— 6.20 5.40 —— 3.20 3.70 3.10 3.39 8.00 5.50 Ta 3.88 1.40 —— 4.00 4.00 —— —— 0.80 —— 1.40 1.20 1.24 1.36 2.40 2.60 Pb —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— Bi —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— Th 7.31 8.50 —— 16.60 15.00 —— 4.00 6.00 5.00 1.60 2.20 2.51 2.51 5.50 12.40 U —— 349.00 —— 228.00 220.00 —— 5.30 5.30 5.30 —— —— —— —— 24.10 149.00 Mo —— —— —— —— —— —— 1.30 0.30 5.60 —— —— —— —— —— —— 同位素 87Sr/86Sr —— —— —— —— —— —— —— —— —— 0.703 594 0.703 561 —— —— —— —— 143Nd/144Nd —— —— —— —— —— —— —— —— —— 0.512 929 0.512 916 —— —— —— —— 206Pb/204Pb —— —— —— —— —— —— —— —— —— 18.704 18.600 —— —— —— —— 207Pb/204Pb —— —— —— —— —— —— —— —— —— 15.609 15.632 —— —— —— —— 203Pb/204Pb —— —— —— —— —— —— —— —— —— 38.325 38.848 —— —— —— —— 资源来源 本次测 ⑤ ⑤ ⑤ ⑤ ⑤ ① ① ① ② ② 本次测 本次测 ⑤ ⑤ 注:表中主量元素单位为%,微量元素及稀土元素单位为μg/g;①梁德华和李扬,1991;② Tu et al., 1992 ;③王叶剑等,2009;④鄢全树等,2008;⑤李兆麟等,1991.表 3 由宪北海山地幔岩包体估算的研究区原始地幔主量元素比值及两类富集地幔端员同类比值
Table 3. Average magma compositions of study area estimated by mantle xenoliths from Xianbei seamount and those of enriched mantle end members
CBB1 CBB2 CBB3 EMⅠ EMⅡ DMM K2O/TiO2 0.97 0.93 0.83 0.32~0.44 0.42~0.68 0.078 CaO/Al2O3 0.64 0.78 0.46 0.53~0.61 0.79~0.94 0.750 注: CBB-1,2,3数据梁德华和李扬,1991;EMⅠ、EMⅡ和DMM数据引自Jackson and Dasgupta, 2008. -
[1] Bao, C.W., Xue, W.J., 1993. Distribution patterns and forming environment of seamounts and sea knolls in abyssal plain of the South China Sea. Acta Oceanol. Sinica, 15(6): 83-90 (in Chinese with English abstract). [2] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the tertiary tectonics of Southeast Asia. J. Geophys. Res. , 98(B4): 6299-6328. doi: 10.1029/92JB02280 [3] Chauvel, C., Hofmann, A.W., Vsdal, P., 1992. HIMU-EM: the French Polynesian connection. Earth Planet Sci. , 110(1-4): 99-119. doi: 10.1016/0012-821X(92)90042-T [4] Chen, C.H., Shieh, Y.N., Lee, T., et al., 1990. Nd-Sr-O isotopeic evidence for source contamination and an unusual mantle compoment under Luzon Arc. Geochim. Cosmochim. Acta, 54(9): 2473-2483. doi: 10.1016/0016-7037(90)90234-C [5] Chen, J.F., Jiang, B.M., 1999. Nd-Sr-Pb isotopic tracing and crustal evolution of the Southeast China. In: Zheng, Y.F., ed., Chemical geodynamics. Science Press, Beijing, 262-287 (in Chinese). [6] Culler, R.L., Medaris, G., 1977. Rare earth elements in carbonatite and cogenetic alkaline rocks: examples from Seabrook Lake and Callander bay, Ontario. Mineral. Petrol. , 65(2): 143-153. doi: 10.1007/BF00371054 [7] Frey, F.A., Haskin, M.A., Poetz, J.A., et al., 1968. Rare earth abundances in some basic rocks. J. Geophys. Res. , 73(18), 6085-6098. doi: 10.1029/JB073i018p06085 [8] Ghiorso, M.S., Sack, R.O., 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrb. Mineral. Petrol. , 199(2-3): 199-212. doi: 10.1007/BF00307281 [9] Green, D.H., 1976. Experimental testing of 'equilibrium' partial melting of peridotite under water-saturated, high-pressure conditions. Can. Mineral. , 14: 255-268. http://www.researchgate.net/publication/245539573_Experimental_testing_of_'equilibrium'_partial_melting_of_peidotite_under_water-saturated_high_pressure_conditions [10] Hart, S.R., 1984. A large-scale isotope anomaly in the southern hemisphere mantle. Nature, 309(5971): 753-757. doi: 10.1038/309753a0 [11] Hayes, D.E., Nissen, S.S., Buhl, P., et al., 1995. Throughgoing crustal faults along the northern margin of the South China Sea and their role in crustal extension. J. Geophys. Res. , 100(B11): 22, 435-22, 466 doi: 10.1029/95JB01867 [12] Hofmann, A.W., 1986. Nb in Hawaiian magmas: constraints on source composition and evolution. Chem. Geol. , 57(1-2): 17-30. doi: 10.1016/0009-2541(86)90091-4 [13] Hughes, C.J., 1982. Igneous petrology. Elsevier Scientific Publishing, Oxford, New York. [14] Hyndman, D.W., 1972. Petrology of igneous and metamorphic rocks. Mc Graw-Hill BOOK, New York. [15] Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. , 8(5): 523-548. doi: 10.1139/e71-055 [16] Jackson, M.G., Dasgupta, R., 2008. Compositions of HIMU, EMⅠ and EMⅡ from global trends between radiogenic isotopes and major elements in ocean island basalt. Earth Planet Sci. , 276(1-2): 175-186. doi: 10.1016/j.epsl.2008.09.023 [17] Kushiro, I., Kuno, H., 1963. Origin of primary basalt magmas and classification of basaltic rock. J. Petrol. , 4(1): 75-87. doi: 10.1093/petrology/4.1.75 [18] Langmuir, C.H., Bender, J.F., Bence, A.E., et al., 1977. Petrogenesis of basalt from the FAMOUS area: mid-Atlantic ridge. Earth Planet. Sci. , 36(1): 133-156. doi: 10.1016/0012-821X(77)90194-7 [19] Lee, T.Y., Lawver, L.A., 1994. Cenozoic plate reconstruction of the South China Sea region. Tectoniphys, 235(1-2): 149-180. doi: 10.1016/0040-1951(94)90022-1 [20] Li, Z.L., Qiu, Z.L., Qin, S.C., et al., 1991. A study on the forming conditions of basalts in seamounts of the South China Sea. Acta Mineral. Sincia, 11(4): 326-333 (in Chinese with English abstract). [21] Liang, D.H., Li, Y., 1991. Ultramafic xenoliths in seamounts basalts, the South China Sea. South China Sea Geol. , 00: 122-133 (in Chinese with English abstract). [22] Liu, C.Q., Xie, G.H., Akimasa, M., 1995. Geochemistry of Cenozoic basalts from eastern China: (II) Sr, Nd, and Ce isotopic compositions. Geochem. , 24(3): 203-214 (in Chinese with English abstract). http://www.researchgate.net/publication/311345214_Geochemistry_of_Cenozoic_basalts_from_eastern_China_II_Sr_Nd_and_Ce_isotopic_compositions [23] Maitre, R. W, Bateman, P., Dudek, A., et al., 1989. A classification of igneous rocks of glossary of terms. Blackwell, Oxford. [24] Rollinsion, H.R., 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Group UK Ltd., London, 48-66. [25] Ru, K., Pigott, J.D., 1986. Episodic rifting and subsidence of the South China Sea. Am. Assoc. Pet. Geol. Bull. , 70: 1136-1155. doi: 10.1306/94886A8D-1704-11D7-8645000102C1865D [26] Saunders, A.D., Norry, M.J., Tarney, J., 1988. Origin of MORB and chemically-depleted mantle reservoirs: trace element constraints. J. Petrol. , 29: 415-445. doi: 10.1093/petrology/special_volume.1.415 [27] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M., eds., Magmatism in the Ocean basins. Geol. Soc. Spe. Publ., 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [28] Sun, S.S., Nesbitt, R.W., 1977. Chemical heterogeneity of the Archaean mantle, composition of the earth and mantle evolution. Earth and Planetary Science Letters, 35: 429-448. doi: 10.1016/0012-821X(77)90076-0 [29] Sun, W.D., Ling, M.X., Wang, F.Y., et al., 2008. Pacific plate subduction and Mesozoic geological event in eastern China. Bullet. Mineral. Petrol. Geochem. , 27(3): 218-225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200803003.htm [30] Tapponnier, P., Peltzer, G., Armijo, R., 1986. On the mechanics of the collision between India and Asia. In: Coward, M.P., Ries, A.C., eds., Collision tectonics. Geol. Soc. London, Spec. Publ., 19: 115-157. doi: 10.1144/GSL.SP.1986.019.01.07 [31] Tatsumoto, M., Nakamura, Y., 1991. DUPAL anomaly in the sea of Japan: Pb, Nd and Sr isotopic variations at the eastern Eurasian continental margin. Ceochim. Cosmochim. Acta, 55(12): 3697-3708. doi: 10.1016/0016-7037(91)90068-G [32] Taylor, B., Hayes, D.E., 1982. Origin and history of the South China Sea basin. In: Hayes, D.E., ed., The tectonic and geologic evolution of Southeast Asian seas and islands. Am. Geophys. Union, Geophys Monogr. Ser., 27: 25-56. [33] Treuil, M., Joron, J.M., 1975. Vilisation des elements hydrormagmatophiles pour la simplification de la mdelisation qualitative des processus magmatiques, Examples dél afar et de la dorsade medioatlatique. J. Soc. It Mineral. Petrol. , 31: 125. http://www.researchgate.net/publication/284065634_Utilisation_des_elements_hygromagmatophiles_pour_la_simplifications_de_la_modelisation_quantitative_des_precessus_magmatiques [34] Tu, K., Flower, M.F.J., Carlson, R.W., et al., 1992. Magmatism in the South China basin I: isotopic and trace-element evidence for an endogenous dupal mantle component. Chem. Geol. , 97(1-2): 47-63. doi: 10.1016/0009-2541(92)90135-R [35] Wang, X.J., Wu, M.Q., Liang, D.H., et al., 1984. Some geochemical features of the South China Sea basalts. Geochem. , 4: 332-340 (in Chinese with English abstract). [36] Wang, X.J., Wu, M.Q., Lang, D.H., et al., 1984. Some geochemical characteristics of basalts in the South China Sea. Geochem. , 4(4): 380-389. doi: 10.1007/BF02843275 [37] Wang, Y.J., Han, X.Q., Luo, Z.H., et al., 2009. Late Miocene magmatism and evolution of Zhenbei-Huangyan seamount in the South China Sea: evidence from petrochemistry and chronology. Acta Oceanol. Sinica, 31(4): 93-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC200904010.htm [38] Weaver, B.L., Wood, D.A., Tarney, J., et al., 1986. Role of sub-ducted sediment in the genesis of ocean-island basalt: geochemical evidence from South Atlantic Ocean islands. Geol. , 14: 275-278. doi: 10.1130/0091-7613(1986)14<275:ROSSIT>2.0.CO;2 [39] Woodhead, J.D., 1989. Geochemistry of the Mariana arc (western Pacific): source of composition and processes. Chem. Geol. , 76(1-2): l-25. doi: 10.1016/0009-2541(89)90124-1 [40] Xing, G.F., 1997. The DUPAL isotope anomaly: its concept, character, genesis and geological significance. Volcanol. Miner. Res. , 18(4): 281-291 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HSDZ199704003.htm [41] Xu, Z., Han, B.F., Zhang, L., et al., 2008. General characteristics and crystallization process of Early Tertiary Yinmawanshan gabbro in Liaodong Peninsula. Acta Petrol. Mineral. , 27(5): 390-397 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200805002.htm [42] Yan, Q.S., Shi, X.F., Wang, K.S., et al., 2008. Studies on major elements, trace elements and Sr-Nd-Pd isotopes of the Cenozoic alkali basalts, the South China Sea. Science in China (Ser. D), 38(1): 56-71 (in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=4000159024 [43] Yang, J.Y., Zhang, X.H., Wang, X.T., 2001. Some discussion about the character of the seamounts in South China Sea. Mar. Sci. , 25(7): 31-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=HYKX200107009&dbcode=CJFD&year=2001&dflag=pdfdown [44] Yao, B.C., 1996. Tectonic evolution of the South China Sea in Cenozoic. Mar. Geol. Quatern. Geol. , 16(2): 2-13 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-hydz602.000.htm [45] Yao, B.C., Zeng, W.J., Hayes, D.E., et al., 1994. Special publication of Sino-US collaboration investigation on the South China Sea geology. China University of Geosciences Press, Wuhan (in Chinese). [46] Zhao, H.L., Deng, J.F., Li, K.M., et al., 2002. Cenozoic volcanism in South China Sea and its vicinity and South China Sea spreading. J. China Uni. Geosci. , 13(3): 217-224. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020415184362.html [47] Zhou, D., Liu, H.L., Chen, H.Z., 2005. Mesozoic-Cenozoic magmatisim in southern South China Sea and its surrounding areas and its implication to tectonics. Geotet. Metal, 29(3): 354-363 (in Chinese with English abstract). http://www.researchgate.net/publication/285768309_Mesozoic-Cenozoic_magmatism_in_southern_South_China_Sea_and_its_surrounding_areas_and_its_implications_to_tectonics [48] Zindler, A., Hart, S., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. , 14: 493-571. doi: 10.1146/annurev.ea.14.050186.002425 [49] Zou, H.P., 1993. On the problem about the crust's attribution of South China Sea basin—discussion from comparative study on basalts of seamounts in South China Sea basin and the neighboring areas. Geotec. Metal. , 17(4): 293-303 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK199304000.htm [50] 鲍才旺, 薛万俊, 1993. 南海深海平原海山、海丘分布规律及形成环境. 海洋学报, 15(6): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC199306009.htm [51] 陈江峰, 江博明, 1999. 钕, 锶, 铅同位素示踪和中国东南大陆地壳演化. 见: 郑永飞编, 化学地球动力学. 北京: 科学出版社, 262-287. [52] 李兆麟, 丘志力, 秦社彩, 等, 1991. 南海海山玄武岩形成条件研究. 矿物学报, 11(4): 326-333. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199104004.htm [53] 梁德华, 李扬, 1991. 南海宪北海山玄武岩中超铁镁岩包体. 南海地质研究, 00: 122-133. [54] 刘丛强, 解广轰, 增田彰正, 1995. 中国东部新生代玄武岩的地球化学(II)Sr、Nd、Ce同位素组成. 地球化学, 24(3): 203-214. doi: 10.3321/j.issn:0379-1726.1995.03.001 [55] 孙卫东, 凌明星, 汪方跃, 等, 2008. 太平洋板块俯冲与中国东部中生代地质事件. 矿物岩石地球化学通报, 27(3): 218-225. doi: 10.3969/j.issn.1007-2802.2008.03.002 [56] 王贤觉, 吴明清, 梁德华, 等, 1984. 南海玄武岩的某些地球化学特征. 地球化学, 4: 332-340. doi: 10.3321/j.issn:0379-1726.1984.04.005 [57] 王叶剑, 韩喜球, 罗照华, 等, 2009. 晚中新世南海珍贝-黄岩海山岩浆活动及其演化: 岩石地球化学和年代学证据. 海洋学报, 31(4): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200904010.htm [58] 徐钊, 韩宝福, 张磊, 等, 2008. 辽东半岛早第三纪饮马湾山辉长岩体的基本特征及岩浆结晶过程. 岩石矿物学杂志, 27(5): 390-397. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200805002.htm [59] 邢光福, 1997. Dupal同位素异常的概念、成因及其地质意义. 火山地质与矿产, 18(4): 281-291. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ199704003.htm [60] 姚伯初, 1996. 南海海盆新生代的构造演化史. 海洋地质与第四纪地质, 16(2): 2-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ602.000.htm [61] 姚伯初, 曾维军, Hayes, D.E., 等, 1994. 中美合作调研南海地质专报. 武汉: 中国地质大学出版社. [62] 杨金玉, 张训华, 王修田, 2001. 南海中部海山性质研究. 海洋科学, 25(7): 31-34. doi: 10.3969/j.issn.1000-3096.2001.07.010 [63] 鄢全树, 石学法, 王昆山, 等, 2008. 南海新生代碱性玄武岩主量、微量元素及Sr-Nd-Pb同位素研究. 中国科学(D辑), 38(1): 56-71. doi: 10.3321/j.issn:1006-9267.2008.01.006 [64] 周蒂, 刘海龄, 陈汉宗, 2005. 南沙海区及其周缘中-新生代岩浆活动及构造意义. 大地构造与成矿学, 29(3): 354-363. doi: 10.3969/j.issn.1001-1552.2005.03.010 [65] 邹和平, 1993. 试谈南海海盆地壳属性问题——由南海海盆极其邻区玄武岩的比较研究进行讨论. 大地构造与成矿学, 17(4): 293-303. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK199304000.htm