• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    斑岩型矿床——非传统矿产资源研究的重要对象

    张寿庭 赵鹏大

    张寿庭, 赵鹏大, 2011. 斑岩型矿床——非传统矿产资源研究的重要对象. 地球科学, 36(2): 247-254. doi: 10.3799/dqkx.2011.025
    引用本文: 张寿庭, 赵鹏大, 2011. 斑岩型矿床——非传统矿产资源研究的重要对象. 地球科学, 36(2): 247-254. doi: 10.3799/dqkx.2011.025
    ZHANG Shou-ting, ZHAO Peng-da, 2011. Porphyry Ore Deposits: Important Study Subjects of Nontraditional Mineral Resources. Earth Science, 36(2): 247-254. doi: 10.3799/dqkx.2011.025
    Citation: ZHANG Shou-ting, ZHAO Peng-da, 2011. Porphyry Ore Deposits: Important Study Subjects of Nontraditional Mineral Resources. Earth Science, 36(2): 247-254. doi: 10.3799/dqkx.2011.025

    斑岩型矿床——非传统矿产资源研究的重要对象

    doi: 10.3799/dqkx.2011.025
    基金项目: 

    国家"十二·五"科技支撑计划项目 2010BAE00281-6

    详细信息
      作者简介:

      张寿庭(1964-), 男, 博士, 教授, 博士生导师, 主要从事固体矿产勘查评价等方面教研工作.E-mail: zst@cugb.edu.cn

    • 中图分类号: P588.1

    Porphyry Ore Deposits: Important Study Subjects of Nontraditional Mineral Resources

    • 摘要: 多年来, 斑岩型矿床在传统意义上被认为是铜和钼的主要来源.然而, 斑岩型矿床成岩成矿地质条件复杂, 矿化类型丰富, 尤其是对一些大型-超大型斑岩矿床, 均为多元素综合性的巨型矿床, 除传统意义上的铜、钼等矿产外, 非传统矿产的成矿-找矿潜力巨大, 包括: 金、银、锡、钨、铋、铅、锌、铼、铀、钴、硫、硒、碲、铂族元素、磁铁矿等, 金红石和稀有金属如钽、铌等也值得关注.开展斑岩型矿床成岩成矿地质背景、矿床地质特征与非传统矿产矿化富集分布规律研究, 总结斑岩型矿床非传统矿产资源潜力预测评价标志, 指导找矿预测与资源潜力评价, 具有重要的理论价值和现实意义.

       

    • 图  1  滇西北喜山期富碱斑岩岩石化学组成及主要矿化类型分布特征

      Fig.  1.  The lithogeochemical composition and main mineralization contribution of alkali rich porphyry in Xishan period in Northwest of Yunnan Province, China

      表  1  多宝山等斑岩型矿床中辉钼矿的Re、Os含量

      Table  1.   Re, Os contents in the porphyry deposits of Duobaoshan etc.

      矿床 样号 样重(mg) Re(μg/g) 187Re(μg/g) 187Os(ng/g) 资料来源
      多宝山铜矿 Du-9 9 567±19 355±12 3 044±47 赵一鸣等(1997)
      Du-20 13.8 537.9±25 336.74±1.59 2 824±26
      D865 18.6 303.2±1.5 189.81±0.95 1 586.6±7.1
      铜山铜矿 832~860 9 822±21 515±13 4 288±50
      832~2 11.3 497±6 311±4 2 434±67
      乌奴格吐山铜矿 W-48 12.46 50.9±0.4 31.9±0.3 81±9
      金堆城钼矿 J82-1 85 12.9±0.4 8.1±0.3 17.2±0.7 黄典豪等(1994)
      J82-9 150 19.7±0.5 12.3±0.3 26.4±0.4
      J82-0 498~512 15.8±0.5 9.9±0.3 22.6±0.4
      下载: 导出CSV

      表  2  滇西北喜山期富碱斑岩成矿专属性与成矿多样性特征

      Table  2.   The metallogenic relation and mineralizing diversity of alkali rich porphyry in Xishan period in Northwest of Yunnan Province, China

      系列 亚系列 矿床类型 矿产组合 典例
      喜山期富碱斑岩成矿系列 花岗斑岩类成矿亚系列 斑岩型、矽卡岩-角岩型、热液(脉)型 主要Cu-Mo-(Au)次要:Pb-Zn-Ag 马厂箐矿区
      二长斑岩类成矿亚系列 斑岩型、矽卡岩-角岩型、热液(脉)型 主要:Cu-Au-(Mo)次要:Pb-Zn-Ag 西范坪-罗卜地矿区
      正长斑岩类成矿亚系列 斑岩型、矽卡岩-角岩型、热液(脉)型 主要:Pb-Zn-Ag-Au次要:Cu-Mo-W-Fe 北衙矿区、姚安矿区
      富钾煌斑岩类成矿亚系列 热液型 主要:Au 老王寨矿区、姚安矿区
      碱性杂岩成矿亚系列 岩浆型、热液型 主要:霞石正长岩-磷灰石-稀土-Au 卓潘矿区
      下载: 导出CSV
    • [1] Armstrong, F.C., 1974. Uranium resources of the future-porphyry uranium depsits, formation of uranium ore deposits. International Atomic Energy Agecy, Vienna, 625-634.
      [2] Babcock, R.C., Ballantyne, G.H., Phillips, C.H., 1995. Summary of the geology of the Bingham district, Utah. In: Pierce, F.W., Bolm, J.G., eds., Porphyry copper deposits of the American Cordillera. Arizona Geological Society Digest, 20: 316-335.
      [3] Clark, G.H., 1990. Panguna copper-gold deposit. In: Hughes, F.E., ed., Geology of the mineral deposits of Australia and Papua New Guinea. Australian Institute of Mining and Metallurgy, Australian, 1807-1816.
      [4] Desborough, G.A., Mihalik, P., 1980. Accessory minerals in the igneous host of molybdenum ore, Henderson Mine, Colorado. US Geological Survey, Open-File Report, 80-661.
      [5] Desbomugh, G.A., Sharp, W.N., 1978. Tantalum, uranium, and scandium in heavy accessory oxides, Climax molybdenum mine, Climax, Colorado. Economic Geology, 73(8): 1749-1751. doi: 10.2113/gsecongeo.73.8.1749
      [6] Du, Q., Zhao, Y.M., Lu, B.G., et al., 1988. Porphyry Cu (Mo) deposits in Duobaoshan. Geological Publishing House, Beijing, 225-247 (in Chinese).
      [7] Halter, W., E., Pettke, T., Heinrich, C.A., 2002. The origin of Cu/Au ratios in porphyry-type ore deposits. Science, 296(5574): 1844-1846. doi: 10.1126/science.1070139
      [8] Hou, Z.Q., 2004. Porphyry Cu-Mo-Au deposits: some new insights and advances. Earth Science Frontiers, 11(1): 131-144 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200401014.htm
      [9] Hou, Z.Q., Ma, H.W., Za, W.K., et al., 2003. The Himalayan Yulong porphyry copper belt: product of large-scale strike-slip faulting in eastern Tibet. Economic Geology, 98: 125-145. http://www.researchgate.net/publication/247864181_The_Himalayan_Yulong_Porphyry_Copper_Belt_Product_of_Large-Scale_Strike-Slip_Faulting_in_Eastern_Tibet
      [10] Huang, C.K., Bai, Y., Zhu, Y.S., et al., 2001. Copper deposits in China (Rudin). Geological Publishing House, Beijing (in Chinese).
      [11] Huang, D.H., Wu, C.Y., Du, A.D., et al., 1994. Re-Os isotope ages of molybdenum deposits in East Qinling and their significance. Mineral Deposits, 12(3): 221-230 (in Chinese with English abstract).
      [12] Jr, A.A., Hedenquist, J.W., Itaya, T., et al., 1995. Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in northern Luzon, Philippines. Geology, 23(4): 337-340. doi:10.1130/0091-7613(1995)?023<0337:CFOAPA>?2.3.CO;2
      [13] Li, J.X., Qin, K.Z., Li, G.M., 2006. Basic characteristics of gold-rich porphyry copper deposits and their ore sources and evolving processes of high oxidation magma and ore-forming fluid. Acta Petrologica Sinica, 22(3): 678-688.
      [14] Li, W.C., Pan, G.T., Hou, Z.Q., et al., 2010. Metallogenic theory and prospecting technology in the polyarc-basin series of "Three-River" region in Southwest China. Geological Publishing House, Beijing (in Chinese).
      [15] Macdonald, G.D., Amold, L.C., 1994. Geological and geochemical zoning of the Grasberg igneous complex, Irian Jaya, Indonesia. Journal of Geochemical Exploration, 50(1-3): 143-178. doi: 10.1016/0375-6742(94)90023-X
      [16] Meldrum, S.J., Aquino, R.S., Gonzales, R.I., et al., 1994. The Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia. Journal of Geochemical Exploration, 50(1-3): 203-220. doi: 10.1016/0375-6742(94)90025-6
      [17] Qu, X.M., Hou, Z.Q., Huang, W., 2001. Is Gangdese porphyry copper belt the second "Yulong" copper belt?Mineral Deposits, 20(4): 355-366 (in Chinese with English abstract). http://www.researchgate.net/publication/284665935_Is_Gangdese_porphyry_copper_belt_the_second_Yulong_copper_belt
      [18] Richard, J.P., Boyce, A.J., Pringle, M.S., 2001. Geologic evolution of the Escondia area, northern Chile: a model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96(2): 271-305. doi: 10.2113/gsecongeo.96.2.271
      [19] Rui, Z.Y., Huang, C.K., Qi, G.M., et al., 1984. Porphyry Cu(Mo) deposits in China. Geological Publishing House, Beijing, 242-272 (in Chinese).
      [20] Rush, P.M., Seegers, H.J., 1990. Ok Tedi copper-gold deposits. In: Hughes, F.E., ed., Geology of the mineral deposits of Australia and Papua New Guinea. Australian Institute of Mining and Metallurgy, Australian, 1747-1754.
      [21] Sillitoe, R.H., 1983. Unconventional metals in porphyry deposits. In: Shanks, W.C., III, ed., Society of mining engineers. Am. Inst. of Mining, Metallurg. & Petrol. Eng., New York, 207-221.
      [22] Titey, S.R., Beane, R.E., 1981. Porphyry copper deposits, PartⅠ: Geologic settings, petrology, and tectogensis. Economic Geology, 75: 214-235. http://ci.nii.ac.jp/naid/20000481718
      [23] Tooker, E.W., 1990. Gold in the Bingham district, Utah. U.S. Geological Survey Bulletin, 1857 E: 1-16.
      [24] Wang, D.H., Chen, Y.C., Xu, Y., et al., 2005. Cenozoic mineralization in China (Rudin). Geological Publishing House, Beijing (in Chinese).
      [25] Xia, B., Chen, G.W., Wang, H., 2003. Analysis of tectonic settings of global superlarge porphyry copper deposits. Science in China (Series D), 46(Suppl. ): 110-122.
      [26] Zhang, Y.Q., Xie, Y.W., Qiu, H.N., et al., 1998. Shoshonitic series: Sr, Nd, and Pb isotopic compositions of ore bearing porphyry for Yulong copper ore belt in the eastern Xizang (Tibet). Chinese Journal of Geology, 33(3): 359-366 (in Chinese with English abstract).
      [27] Zhao, P.D., 2003. An introduction to nontraditional mineral resources. Geological Publishing House, Beijing (in Chinese).
      [28] Zhao, Y.M., Zhang, D.Q., 1997. Metallogeny and evaluation of copper-polymetallic deposits in the Dahinggan Mountains and its adjacent regions. Geological Publishing House, Beijing (in Chinese).
      [29] Zheng, M.H., et al., 1993. Principle of ore geology. Press of Chengdu University of Science and Technology, Chengdu (in Chinese).
      [30] 杜琦, 赵玉明, 卢秉刚, 等, 1988. 多宝山斑岩铜矿床. 北京: 地质出版社, 225-247.
      [31] 侯增谦, 2004. 斑岩Cu-Mo-Au矿床: 新认识与新进展. 地学前缘, 11(1): 131-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401014.htm
      [32] 黄崇轲, 白冶, 朱裕生, 等, 2001. 中国铜矿床(上册). 北京: 地质出版社.
      [33] 黄典豪, 吴澄宇, 杜安道, 等, 1994. 东秦岭地区钼矿床的铼-锇同位素年龄及其意义. 矿床地质, 13(3): 221-230. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ403.003.htm
      [34] 李文昌, 潘桂棠, 侯增谦, 等, 2010. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术. 北京: 地质出版社.
      [35] 曲晓明, 侯增谦, 黄卫, 2001. 冈底斯斑岩铜矿(化)带: 西藏第二条"玉龙"铜矿带. 矿床地质, 20(4): 355-366. doi: 10.3969/j.issn.0258-7106.2001.04.009
      [36] 芮宗瑶, 黄崇轲, 齐国明, 等, 1984. 中国斑岩铜(钼)矿床. 北京: 地质出版社, 242-272.
      [37] 王登红, 陈毓川, 徐钰, 等, 2005. 中国新生代成矿作用(上). 北京: 地质出版社.
      [38] 夏斌, 陈根文, 王核, 2002. 全球超大型斑岩铜矿床形成的构造背景分析. 中国科学(D辑), 32(增刊): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2002S1009.htm
      [39] 张玉泉, 谢应雯, 邱华宁, 等, 1998. 钾玄岩系列: 藏东玉龙铜矿带含矿斑岩Sr、Nd、Pb同位素组成. 地质科学, 33(3): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX803.010.htm
      [40] 赵鹏大, 2003. 非传统矿产资源概论. 北京: 地质出版社.
      [41] 赵一鸣, 张德全, 1997. 大兴安岭及其邻区铜多金属矿床成矿规律与远景评价. 北京: 地震出版社.
      [42] 郑明华, 等编著, 1993. 矿床地质原理. 成都: 成都科技大学出版社.
    • 加载中
    图(1) / 表(2)
    计量
    • 文章访问数:  3067
    • HTML全文浏览量:  116
    • PDF下载量:  154
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-10-25
    • 刊出日期:  2011-03-01

    目录

      /

      返回文章
      返回