• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    Principles of Probabilistic Regional Mineral Resource Estimation

    Agterberg Frits

    Agterberg Frits, 2011. Principles of Probabilistic Regional Mineral Resource Estimation. Earth Science, 36(2): 189-200. doi: 10.3799/dqkx.2011.020
    Citation: Agterberg Frits, 2011. Principles of Probabilistic Regional Mineral Resource Estimation. Earth Science, 36(2): 189-200. doi: 10.3799/dqkx.2011.020

    doi: 10.3799/dqkx.2011.020

    Principles of Probabilistic Regional Mineral Resource Estimation

    More Information
      • 关键词:
      •  / 
      •  / 
      •  / 
      •  / 
      •  / 
      •  / 
      •  / 
      •  / 
      •  
    • Fig.  1.  Pattern of probability index for 10 km×10 km cells with occurrence of large copper deposits in the Abitibi area of the Canadian Shield using 1968 mineral deposit data; single X denotes probability index greater than 4 (and < 8); XX for cells with probability index > 8. Probability index values and numbering of cells after Agterberg (1971, Appendix 3)

      Fig.  2.  Pattern comparison for 10 km×10 km cells with one or more large copper deposits in (A) 1968, (B) 1977 and (C) 2008. Original 1968 figures for production and reserves reported in short tons (st) were converted into tons (t). Single X denotes one or more deposits with copper production + reserves (Cu) between 1 000 short tons (st) of but less than 50 000 tons (t); XX for cells with 50 000 t < Cu (1 t=0.907 184×1 st). Numbering of cells as in Fig. 1

      Fig.  3.  Log-Log Ore Tonnage-Copper Grade plot (2008 data). The three points on the left may be outliers. When these 3 points are deleted, the correlation coefficient (r=0.079) is nearly zero suggesting lack of functional relationship between grade and ore tonnage

      Fig.  4.  Log-Log Weight-Rank plots for 1968 and 2008 data with straight lines fitted by least squares. (a) 1968 Copper Weight; (b) 1968 Ore Weight; (c) 2008 Copper Weight; (d) 2008 Ore Weight. Base of logarithm= 10; Weight measured in (metric) kilotons. Straight line approximates Pareto frequency distribution with fractal dimension estimated by inverse of slope. For 1968 data, first 18 of 27 data points were used to fit straight lines. For 2008 data, first 27 of 35 data points were used to fit straight lines

      Fig.  5.  Lognormal QQ-plots of copper and ore weights for 1968 and 2008 data with straight lines for ore weights fitted by least squares.(a) 1968 Copper Weight; (b) 1968 Ore Weight; (c) 2008 Copper Weight; (d) 2008 Ore Weight. Base of logarithm = 10; Weight measured in (metric) kilotons. Straight line approximates lognormal frequency distribution with logarithmic standard deviation estimated by inverse of slope. Curves in Fig. 5d represent 95% confidence belt for points deviating randomly from straight line. All data points were used to fit straight lines

      Fig.  6.  Best-fitting straight lines for 1968 data with slopes set equal to slopes of straight lines fitted to 2008 data. (a) Log-Log Copper Weight; points same as in Fig. 4a; (b) Lognormal QQ-plot of Ore Weight; points same as in Fig. 5b. Comparison with Figs. 4c and 5d shows 1968 to 2008 intercept increases

    • [1] Agterberg, F.P., 1971. A probability index for detecting favourable geological environments. Canadian Institute of Mining and Metallurgy, Special Volume, 12(Decision-Making in the Mineral Industry): 82-91. http://www.researchgate.net/publication/283362735_A_probability_index_for_detecting_favourable_geological_environments
      [2] Agterberg, F.P., 1974. Geomathematics-mathematical background and geo-science applications. Elsevier, Amsterdam, 596.
      [3] Agterberg, F.P., 1989a. LOGDIA-FORTRAN 77 program for logistic regression with diagnostics. Computers & Geosciences, 15(4): 599-614. http://www.sciencedirect.com/science/article/pii/0098300489900265
      [4] Agterberg, F.P., 1989b. Systematic approach to dealing with uncertainty of geoscience information in mineral exploration. Chapter 18, Proceedings 21st APCOM Symposium, Society of Mining Engineers, Littleton, Colorado, 165-178.
      [5] Agterberg, F.P., 1995. Power-laws versus lognormal models in mineral exploration. Proceedings, CAMI'95, 3rd Canadian Conference on Computer Applications in the Mineral Industry, Can. Inst. Mining, Metall., Montréal, Québec, Canada, October 22-25, 1995.
      [6] Agterberg, F.P., 2007. Mixtures of multiplicative cascade models in geochemistry. Nonlinear Processes in Geophysics, 14: 201-209. doi: 10.5194/npg-14-201-2007
      [7] Agterberg, F.P., Chung, C.F., Fabbri, A.G., et al., 1972. Geomathematical evaluation of copper and zinc potential in the Abitibi area on the Canadian Shield. Geological Survey of Canada Paper 71-41, 55.
      [8] Agterberg, F.P., David, M., 1979. Statistical exploration. In: Weiss, A., ed., Computer methods for the 80's. Society of Mining Engineers, New York, 90-115.
      [9] Allais, M., 1957. Method of appraising economic prospects of mining exploration over large territories; Algerian Sahara case study. Management Science, 3: 285-347. doi: 10.1287/mnsc.3.4.285
      [10] Assad, R., Favini, G., 1980. Prévisions de minerai cupro-zincifère dans le Nord-Ouest Québécois. Ministère de l'Energie et des Ressources, Québéc, DVP-670, 59.
      [11] Bardossy, G., Fodor, J., 2004. Evaluation of uncertainties and risks in geology. Springer, Heidelberg, 222.
      [12] Bateman, A.M., 1919. Why ore is where it is. Economic Geology, 14(8): 640-642. doi: 10.2113/gsecongeo.14.8.640
      [13] Bernknopf, R., Wein, A., St-Onge, M., et al., 2007. Analysis of improved government geological map information for mineral exploration incorporating efficiency, productivity, effectiveness and risk considerations. Geological Survey of Canada Bulletin, 593: 45. http://ci.nii.ac.jp/ncid/BB02566502
      [14] Bonham-Carter, G.F., 1994. Geographic information systems for geoscientists: modelling with GIS. Pergamon, Oxford, 398.
      [15] Carranza, E.J.M., 2008. Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of Exploration and Environmental Geochemistry 11. Elsevier, Amsterdam, 368.
      [16] Carranza, E.J.M., 2009. Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Computers & Geosciences, 35(10): 2032-2046. http://dl.acm.org/citation.cfm?id=1618630
      [17] Cheng, Q., 2007. Singularity of mineralization process and power-law models for mineral resources quantitative assessments. Journal of China University of Geosciences, 18(Special Issue): 245-247. http://www.researchgate.net/publication/291873314_Singularity_of_mineralization_process_and_power-law_models_for_mineral_resources_quantitative_assessments
      [18] Cheng, Q., 2008. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. In: Bonham-Carter, G., Cheng, Q., eds., Progress in geomathematics. Springer, Heidelberg, 195-225.
      [19] de Kemp, 2006.3D interpretive mapping: an extension of GIS technologies for the earth scientist. In: Harris, J.R., ed., GIS for the earth sciences. Geological Association of Canada Special Publication, 44: 591-612.
      [20] Griffiths, J.C., 1966. Exploration for natural resources. Operations Research, 14: 189-209. doi: 10.1287/opre.14.2.189
      [21] Harris, D.P., 1965. An application of multivariate statistical analysis in mineral exploration(PhD thesis). Pennsylvania State University, University Park, Pa. 261.
      [22] Lovejoy, S., Schertzer, D., 2007. Scaling and multifractal fields in the solid earth and topography. Nonlinear Processes in Geophysics, 14: 465-502. doi: 10.5194/npg-14-465-2007
      [23] Lydon, J.W., 2007. An overview of the economic and geological contexts of Canada's major mineral deposit types. In: Goodfellow, W.D., ed., Mineral deposits in Canada. Geological Association of Canada Special Publication, 5: 3-48.
      [24] Mandelbrot, B.B., 1983. The fractal geometry of nature. Freeman, San Francisco, 468.
      [25] Singer, D.A., Menzie, W.D., 2010. Quantitative mineral resource assessments. Oxford University Press, New York, 219.
      [26] Wellmer, F.W., 1983. Neue entwicklungen in der exploration (II): Kosten, Erlöse, Technologien. Erzmetall, 36(3): 124-131.
      [27] Zhao, P., Cheng, Q., Xia, Q.L., 2008. Quantitative prediction for deep mineral exploration. Journal of China University of Geosciences, 19(4): 309-318. doi: 10.1016/S1002-0705(08)60063-1
    • 加载中
    图(6)
    计量
    • 文章访问数:  2585
    • HTML全文浏览量:  95
    • PDF下载量:  75
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-07-15
    • 刊出日期:  2011-03-01

    目录

      /

      返回文章
      返回