Depositional Characteristics and Their Geological Implications of the Permo-Carboniferous Carbonate Rocks from Yingen-Ejinaqi and Their Surrounding Areas, Inner Mongolia, China
-
摘要: 从碳酸盐岩的岩石学、建造特征的分析入手, 研究了区内石炭-二叠纪碳酸盐岩的沉积特征及其地质意义.野外调查表明, 本区域石炭-二叠纪碳酸盐岩以砾屑灰岩、海百合灰岩和微晶灰岩为主, 块状构造和粒序层理常见, 作为碳酸盐岩建造底座及夹层的火山岩或火山碎屑岩发育, 显示了本区域石炭-二叠纪期间张裂频繁、火山作用强烈、地形较陡和覆水较深的浅海古地理背景.本区域石炭-二叠纪碳酸盐岩建造发育于火山岩或火山碎屑岩、辫状三角洲或扇三角洲砂砾岩、海岸泥岩和陆架泥岩等底座之上, 分别形成了火山抬高型(VEF)、三角洲垫高型(DEF)、海岸/隆起沉没型(CSF/USF)和陆架变浅型(SSF)4种碳酸盐岩建造.不同类型的碳酸盐岩建造, 是区域构造和海平面升降联合作用的产物, 但其形成机制有别, 其中, 火山垫高型建造最普遍, 含火山岩或火山碎屑岩夹层, 系区域海平面长期上升的背景下, 构造张裂引发的火山喷发引起相对海平面下降的产物; 三角洲垫高型建造分布也较广, 含砂砾岩夹层, 为区域海平面长期上升的背景下, 构造抬升造成辫状三角洲或扇三角洲进积导致相对海平面下降形成; 海岸/隆起淹没型和陆架变浅型建造为纯灰岩建造, 相对较少, 则是在区域构造稳定的构造背景下, 短期相对海平面变化驱动的结果.然而, 不同类型碳酸盐岩建造的沉积特征, 则受沉积环境制约.同时, 针对这4种不同的碳酸盐岩建造, 分别建立了火山垫高型碳酸盐台地(VEP)、三角洲垫高型碳酸盐台地(DEP)、海岸/隆起淹没型碳酸盐缓坡(CSR/USR)和陆架变浅碳酸盐缓坡(SSR)4种沉积模式, 不同的沉积模式形成了沉积特征有别的碳酸盐岩建造.该时期浅海陆棚的古地理背景, 不仅为区内海相烃源岩的发育创造了良好的古地理条件, 也使得这一时期的碳酸盐岩、底座火山岩或火山碎屑岩、辫状三角洲或扇三角洲砂砾岩, 以及碳酸盐岩建造中的火山岩、火山碎屑岩和砂砾岩夹层, 成为本区域石炭-二叠纪的潜在油气储层.Abstract: A study of depositional characteristics on carbonate rocks of Permo-Carboniferous was carried out by analyzing of petrology and their formation characteristics of carbonate rocks. A lot of fieldworks of the Permo-Carboniferous system in the study area indicate that, the carbonate rocks of Permo-Carboniferous are dominated by calcirudite, crinoidal limestone and micrite with massive structure and graded bedding, volcanic or pyroclastic rocks acting as pedestals and interbeds of the carbonate formations prevail in the area, which show the neritic paleoenvironmental settings of frequent tension-faulting, strong volcanism, steep topography and deeper water during the period of Permo-Carboniferous. The Permo-Carboniferous carbonate rock formations respectively on the pedestals of volcanic or pyroclastic rocks, granulites from braided river or fan deltas, mudstones originated from littoral zone and shelf comprise volcano-elevated carbonate rock formation (VEF), delta-elevated carbonate rock formation (DEF), coast-subsiding carbonate rock formation (CSF) and shelf-shoaling carbonate rock formation (SSF).The formations, all of which were formed by working together of region tectonics and change in sea level, show the distinct mechanism of construction. Among of them, the volcano-elevated formation, with volcanic or pyroclastic interbeds and prevailling in the area, originated from the relative sea level fall driven by volcano eruption resulting from tectonic extension, in the setting of long-term rise in sea level. The delta-elevated formation inferior to the volcano-elevated in development, with granulite interbeds, arose from the relative sea level fall driven by braided river or fan deltas progradation resulting from tectonic uplifting, in the context of long-term rise in sea level. The coast-subsiding and shelf-shoaling formations, subordinate to the former two, came from short-term sea level fall under the circumstances of regional steady tectonics. However, the depositional characteristics of the carbonate rock formations having the differences in lithology, depositional texture, depositional structure and paleo-fauna assemblage, are constrained by depositional environment. Besides, four kinds of deposition models for the four carbonate rock formations above, i.e. volcano-elevated carbonate platform (VEP), delta-elevated carbonate platform (DEP), coast/uplift-subsiding carbonate ramp (CSR) and shelf-shoaling carbonate ramp (SSR), are produced with distinct depositional characteristics respectively. The neritic shelf paleoenvironment of the age is favorable to development of the marine-originated source rocks. As a result of this, the carbonate rocks, the volcanic rocks, pyroclastic rocks, and the granulites of pedestals and interbeds, originated from braided river and fan deltas become the potential reservoirs of Permo-Carboniferous for oil and gas in the area.
-
图 1 中晚泥盆世-三叠纪区域大地构造位置及部分野外工作剖面(图b据徐学义等,2008修改)
各剖面出露的石炭-二叠系:1.东部的乌兰敖包、264界碑、哈尔霍布、查古尔-尚丹和乌力吉等剖面,仅有上石炭统-下二叠统阿木山组,其中,乌兰敖包、哈尔霍布和乌力吉等剖面为阿木山组中部,查古尔-尚丹剖面包括中部和中下部,264界碑剖面为阿木山组上部;2.中东部的好比如仅有下石炭统好比如组;3.中部的乌登汗剖面仅有阿木山组;4.中部的埋汗哈达、杭乌拉剖面包括中下二叠统双堡塘组和中二叠统金塔组,前者还包括乌哈西比组;5.中部的哈尔苏海、特默乌拉、哈尔霍布和灰石山东北剖面,仅有上二叠统哈尔苏海组;6.西部的古洞井剖面仅有中、下二叠统双堡塘组;7.西部的大白山剖面包括下石炭统红柳园组和上石炭统笈笈台子组;8.南部努尔盖剖面包括上石炭统-下二叠统干泉群、中二叠统菊石滩组和上二叠统
Fig. 1. Regional tectonics position from middle Devonian to Triassic and some fieldwork sections taken in the study area
图 2 石炭-二叠纪的碳酸盐岩及结构
a.海百合灰岩(甘肃大白山,上石炭统笈笈台子组);b.海百合灰岩(内蒙额济纳旗乌登汗,上石炭统-下二叠统阿木山组);c.介壳灰岩(内蒙乌兰特后期乌兰敖包,上石炭统-下二叠统阿木山组);d. GFDA2壳灰岩(内蒙阿左旗哈尔霍布,上石炭统-下二叠统阿木山组);e.砾屑灰岩(甘肃大白山,上石炭统笈笈台子组);f.砾屑灰岩(内蒙阿左旗哈尔霍布,上石炭统-下二叠统阿木山组);g.鲕粒灰岩(内蒙阿左旗哈尔霍布,上石炭统-下二叠统阿木山组);h.含砾砾屑灰岩(内蒙额济纳旗埋汗哈达,中下二叠统双堡塘组)
Fig. 2. Carbonates and their textures of Permo-Carboniferous in the study area
图 3 石炭-二叠纪碳酸盐岩中的沉积构造
a.海百合灰岩中的粒序层理(正粒序)(内蒙阿右旗杭乌拉,中、下二叠统双堡塘组);b、c.海百合灰岩中的粒序层理(逆粒序)(内蒙额济纳旗埋汗哈达,中、下二叠统双堡塘组);d.微晶灰岩中的水平层理(内蒙阿左旗哈尔霍布,上石炭统-下二叠统阿木山组);e.微晶灰岩中的水平层理(内蒙阿右旗杭乌拉,中、下二叠统双堡塘组);f.砾屑灰岩中的交错层理(内蒙阿右旗杭乌拉,中、下二叠统双堡塘组);g.微晶灰岩中变形层理(内蒙乌兰特后期乌兰敖包,上石炭统-下二叠统阿木山组)
Fig. 3. Sedimentary structures from Permo-Carboniferous carbonates in the study area
图 4 火山垫高型碳酸盐岩的建造模式
a.含火山岩的碳酸盐岩建造与底座间夹砂岩层;b.含火山岩的碳酸盐岩建造与底座间夹砂砾岩层;c.纯碳酸盐岩建造与底座间夹泥岩层;1.底座火山岩;2.台地相石灰岩夹火山岩;3.台地相石灰岩;4.浅海陆棚相泥岩夹粉细砂岩和透镜状灰岩;5.碳酸盐岩建造与底座间的砂砾岩夹层;6.碳酸盐岩建造与底座间的泥质粉砂岩夹层;7.碳酸盐岩建造与底座间的含粉砂泥岩夹层
Fig. 4. The sketch of carbonate formation models from volcano-elevated carbonate platform in the study area
图 5 三角洲垫高型碳酸盐岩的建造模式
a.含砂砾岩的碳酸盐岩建造与底座直接接触;b.含砂砾岩的碳酸盐岩建造与底座间夹砂岩层;c.含泥岩的碳酸盐岩建造与底座间夹泥岩层;1.辫状三角洲或扇三角洲相底座砂砾岩;2.台地相石灰岩夹砂砾岩;3.台地相石灰岩夹砂质泥岩;4.浅海陆棚相泥岩夹粉细砂岩和透镜状灰岩;5.碳酸盐岩建造与底座间的钙质粉砂岩夹层;6.碳酸盐岩建造与底座间的含粉砂泥岩夹层;7.中酸性岩体
Fig. 5. The sketch of carbonate formation models from delta-elevated carbonate platform in the study area
表 1 银根-额济纳旗及邻区石炭-二叠系横向对比
Table 1. The Permo-Carboniferous correlation from Yingen-Ejinaqi and it's surrounding areas
年代地层 西部(北山) 中东部(阿拉善) 二叠系 上统 方山口组 哈尔苏海组 中统 金塔组 金塔组 菊石滩组 下统 双堡塘组 双堡塘组 乌哈西比组 干泉群 阿木山组 石炭系 上统 笈笈台子组 缺失 石板山组 下统 红柳园组/白山组 好比如组 绿条山组 注:此表据宁夏回族自治区地质局,1982①;中国地层典编委会, 2000a, 2000b;中国地质调查局地层古生物研究中心(2005). -
[1] Ålvaro, J.J., Ezzouhari, H., Ayad, N.T., et al., 2008. Short-term episodes of carbonate productivity in a Cambrian uplifted riftshoulder of the Coastal Meseta, Morocco. Gondwana Research, 14: 410-428. doi: 10.1016/j.gr.2008.04.003 [2] Bosence, D., 2005. A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic. Sedimentary Geology, 175(1-4): 49-72. doi: 10.1016/j.sedgeo.2004.12.030 [3] Burchette, T., Wright, V.P., 1992. Carbonate ramp depositional systems. Sedimentary Geology, 79: 3-57. doi: 10.1016/0037-0738(92)9003-A [4] Castro, J.M., De Gea, G.A., Ruiz-Ortiz, P.A., et al., 2008. Development of carbonate platforms on an extensional (rifted) margin: the Valanginian-Albian record of the Prebetic of Alicante (SE Spain). Cretaceous Research, 29(5-6): 848-860. doi: 10.1016/j.cretres.2008.05.012 [5] Cherchi, A., Murru, M., Simone, L., 2000. Miocene carbonate factories in the syn-rift Sardinia Graben sub-basins (Italy). Facies, 43(11), 223-240. doi: 10.1007/BF02536992 [6] Gao, C.L., Huang, Z.G., Liu, G.X., 2006. Paleo-Asian ocean and Palaeozoic basins in West China. West China Petroleum Geosciences, 2(2): 123-129, 180 (in Chinese with English abstract). [7] Gu, J.Y., Ma, F., Ji, L.D., 2009. Types, characteristics and main controlling factors of carbonate platform. Journal of Palaeogeography, 11(1): 21-27 (in Chinese with English abstract). http://www.researchgate.net/publication/285616181_Types_characteristics_and_main_controlling_factors_of_carbonate_platform [8] Institute of Geology Chinese Academy of Geological Sciences, Wuhan College of Geosciences, 1985. Atlas of the paleogeography of China. Cartographic Publishing House, Beijing (in Chinese). [9] Li, J.Y., Wang, K.Z., Sun, G.H., et al., 2006. Paleozoic active margin slices in the southern Turfan-Hami basin: geological records of subduction of the Paleo-Asian ocean plate in Central Asian regions. Acta Petrologica Sinica, 22(5): 1087-1102 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB200605004.htm [10] Liao, Z.T., Liu, L.J., 2003. The Carboniferous and Perman of Gansu-Xinjiang border area with remarks on the age of the surrounding strata of the Jinwozi gold ore. Journal of Stratigraphy, 27(3): 163-172 (in Chinese with English abstract). [11] Read, J.F., 1985. Carbonate platform facies models. AAPG Bull, 69(1): 1-21. http://aapgbull.geoscienceworld.org/content/69/1/1 [12] Stratigraphical Lexicon of China Compiling Commission, 2000a. Stratigraphical lexicon of China—Carboniferous system. Geological Publishing House, Beijing (in Chinese). [13] Stratigraphical Lexicon of China Compiling Commission, 2000b. Stratigraphical lexicon of China—Permian system. Geological Publishing House, Beijing (in Chinese). [14] The Researching Centre of Stratigrapgy and Paleontology, China Geological Survey, 2005. Division and correlation on the srata of all the geological ages in China. Geological Publishing House, Beijing (in Chinese). [15] Vigorito, M., Murru, M., Simone, L., 2005. Anatomy of a submarine channel system and related fan in aforamol/rhodalgal carbonate sedimentary setting: a case history from the Miocene syn-rift Sardinia basin, Italy. Sedimentary Geology, 174(1-2): 1-30. doi: 10.1016/j.sedgeo.2004.10.003 [16] Wilson, J.L., 1975. Carbonate facies in geologic history. Springer Verlag, New York. [17] Xie, F.K., 2002. Brief analyses on Carboniferous-Permian hydrocarbon prospective area in the north of China. Journal of Xinjiang Petroledm Institute, 14(3): 1-4 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSY200203000.htm [18] Xu, G.Y., 1993. The tectonic evolution of paleo-Asiatic ocean in the Northeast Asia area. Jilin Geology, 12(3): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JLDZ199303000.htm [19] Xu, X.Y., He, S.P., Wang, H.L., et al., 2008. An introduction to geology of Northwest China: Qinling, Qilian and Tianshan areas. Science Press, Beijing (in Chinese). [20] Zachariah, A.J., Gawthorpe, R., Dreyer, T., 2009. Evolution and strike variability of early post-rift deep-marine depositional systems: Lower to Mid-Cretaceous, North Viking Graben, Norwegian North Sea. Sedimentary Geology, 220 (1-2): 60-76. doi: 10.1016/j.sedgeo.2009.06.006 [21] 高长林, 黄泽光, 刘光祥, 2006. 中国西部古中亚洋与古生代沉积盆地. 中国西部油气地质, 2(2): 123-129, 180. [22] 顾家裕, 马锋, 季丽丹, 2009. 碳酸盐岩台地类型、特征及控制因素. 古地理学报, 11(1): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200901006.htm [23] 李锦轶, 王克卓, 孙桂华, 等, 2006. 东天山吐哈盆地南缘古生代活动陆缘残片: 中亚地区古亚洲洋板块俯冲的地质记录. 岩石学报, 22(5): 1087-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605004.htm [24] 廖卓庭, 刘陆军, 2003. 甘(肃)新(疆)交界地区的石炭系和二叠系——兼论金窝子金矿围岩地层的时代. 地层学杂志, 27(3): 163-172. doi: 10.3969/j.issn.0253-4959.2003.03.001 [25] 谢方克, 2002. 中国北方石炭-二叠系油气远景浅析. 新疆石油学院学报, 14(3): 1-4. doi: 10.3969/j.issn.1673-2677.2002.03.001 [26] 徐公愉, 1993. 东北亚地区古亚洲洋的构造演化特点. 吉林地质, 12(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ199303000.htm [27] 徐学义, 何世平, 王洪亮, 等, 2008. 中国西北部地质概论——秦岭、祁连、天山地区. 北京: 科学出版社. [28] 中国地层典编委会, 2000a. 中国地层典——石炭系. 北京: 地质出版社. [29] 中国地层典编委会, 2000b. 中国地层典——二叠系. 北京: 地质出版社. [30] 中国地质调查局地层古生物研究中心, 2005. 中国各地质时代地层划分与对比. 北京: 地质出版社. [31] 中国地质科学院地质研究所, 武汉地质学院, 1985. 中国古地理图集. 北京: 地图出版社.