Geological Significance and Geochronology of Paleoproterozoic Mafic Dykes of Xiaoqinling Gold District, Southern Margin of the North China Craton
-
摘要: 产于太古代-古元古代变质地体中的石英脉型金矿是世界上最重要的金矿类型之一, 大多数金矿区内基性脉岩非常发育, 空间上与含金石英脉密切相关.但目前对基性脉岩与石英脉型金矿的成因联系尚未取得一致认识.以华北克拉通南缘小秦岭金矿区为例, 对典型矿区(东闯、大湖、枪马)采矿巷道内的基性脉岩开展精确的U-Pb年代学研究.4个脉岩样品给出一致的锆石207Pb/206Pb加权平均年龄(1 819±10 Ma, 1σ); 1个样品中的黑云母给出了略微年轻的40Ar/39Ar坪年龄(1 719.0±21.0 Ma, 2σ).定年结果表明: (1)小秦岭金矿区内大量基性脉岩形成于古元古代晚期, 是华北克拉通东西块体在1.85 Ga左右发生碰撞后伸展作用的产物; (2)前人获得的基性脉岩K-Ar和Rb-Sr年龄(187.6~75.9 Ma)可能并非脉岩真实侵位年龄, 而是代表这些脉岩遭受中生代构造-热事件影响的扰动年龄(或冷却年龄).最新的成矿年代学研究结果表明, 小秦岭地区绝大多数金矿床形成于早白垩世130~120 Ma, 大大晚于上述古元古代基性脉岩的侵位时代, 因此两者之间没有成因联系(尽管它们的空间关系十分密切).小秦岭地区是否存在与金矿床同时的晚中生代基性岩浆活动, 对于讨论本区金矿床的矿床成因和成矿构造环境非常重要, 但本文工作尚不能明确回答这一问题, 今后需要对矿区内各期基性脉岩进行系统的同位素定年.Abstract: Lode gold deposit is the most economically important type of gold deposits worldwide. It commonly occurs in Archean to Paleoproterozoioc metamorphic terrains and has close spatial relationship with mafic dykes. However, it is still in dispute whether mafic dykes and gold mineralization are genetically related. In this paper, we present LA-ICPMS zircon U-Pb and biotite 40Ar-39Ar ages of four mafic dikes samples collected from three major gold deposits (Dongchuang, Dahu and Qiangma deposits) in the Xiaoqinling gold district, southern margin of the North China craton. Four samples yielded a consistent zircon LA-ICPMS age (207Pb/206Pb 1 819±10 Ma) and a slightly younger 40Ar/39Ar plateau age (1 719.0±21.0 Ma) of biotite. Our results suggest that: (1) numerous mafic dikes in the Xiaoqinling gold district formed in Paleoproterozoioc, in an extensional setting after the collision between the eastern and western blocks of the North China craton at ca. 1.85 Ga; (2) previous whole rock K-Ar and Rb-Sr ages (187.6-75.9 Ma) which are significantly younger than our ages represent thermal perturbation (or cooling ages) caused by Mesozoic tectonic-thermal event. Recent geochronological studies show that the majority of gold deposits formed in Early Cretaceous (130-120 Ma) in the Xiaoqinling district. Therefore, the mineralization event had no relationship with Paleoproterozoic mafic dykes although they were spatially associated. However, this study does not rule out the possibility of existence of Mesozoic mafic dykes in the Xiaoqinling area, which may be very important for the understanding of the metallogeny and regional tectonic setting.
-
Key words:
- mafic dikes /
- geochronology /
- lode gold deposit /
- Xiaoqinling gold district /
- lithology
-
图 1 华北克拉通古元古代构造单元简图(a)(据Zhao et al., 2002)及中部造山带基性岩墙群分布(b)(据Peng et al., 2008)
Fig. 1. (a) Schematic illustration of Paleoproterozoic tectonic units for the North China craton (after Zhao et al., 2002); (b) Distribution of the ca. 1.8 Ga mafic dyke swarms in the Trans-North China orogen (after Peng et al., 2008)
表 1 小秦岭金矿区内基性脉岩锆石的LA-ICPMS锆石U-Pb分析结果
Table 1. Results of LA-ICPMS zircons U-Pb dating for the mafic dykes from the Xiaoqinling gold district
测试点号 含量(μg/g) U-Th-Pb同位素比值 年龄(Ma) Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ XQL-DC DC-1 219 3 206 0.07 0.112 0.002 5.160 0.098 0.330 0.005 1 839 28 1 846 16 1 839 23 DC-2 746 3 615 0.21 0.112 0.002 5.128 0.126 0.329 0.009 1 836 64 1 841 21 1 833 42 DC-3 150 3 984 0.04 0.112 0.001 5.106 0.069 0.328 0.003 1 827 22 1 837 11 1 830 15 DC-4 194 3 642 0.05 0.112 0.001 5.160 0.070 0.330 0.003 1 837 21 1 846 12 1 839 15 DC-5 156 4 034 0.04 0.111 0.001 5.075 0.054 0.328 0.003 1 820 16 1 832 9 1 828 14 DC-6 800 3 294 0.24 0.110 0.001 4.974 0.044 0.325 0.002 1 811 13 1 815 7 1 812 12 XQL-DH DH-1 4 029 1 020 3.95 0.106 0.003 4.883 0.162 0.326 0.010 1 800 50 1 799 28 1 821 50 DH-2 2 742 1 251 2.19 0.110 0.005 4.885 0.237 0.320 0.016 1 796 78 1 800 41 1 791 78 DH-3 1 178 928 1.27 0.109 0.004 4.621 0.168 0.312 0.014 1 791 61 1 753 30 1 749 71 DH-4 5 340 1 456 3.67 0.109 0.001 4.916 0.148 0.323 0.008 1 789 27 1 805 25 1 807 41 DH-5 188 234 0.80 0.111 0.002 5.233 0.111 0.343 0.005 1 810 19 1 858 18 1 902 25 DH-6 1 584 1 275 1.24 0.162 0.002 10.426 0.187 0.462 0.006 2 479 22 2 473 17 2 448 27 DH-7 394 281 1.40 0.110 0.005 4.991 0.237 0.304 0.011 1 795 75 1 818 40 1 712 53 DH-8 642 866 0.74 0.112 0.002 5.076 0.079 0.329 0.005 1 832 13 1 832 13 1 833 23 DH-9 411 240 1.71 0.110 0.004 5.064 0.183 0.327 0.007 1 802 33 1 830 31 1 826 32 DH-10 321 503 0.64 0.161 0.003 10.322 0.172 0.465 0.007 2 467 13 2 464 15 2 462 30 DH-11 365 890 0.41 0.153 0.003 9.381 0.146 0.445 0.006 2 479 12 2 476 14 2 474 29 DH-12 7 422 7 700 0.96 0.110 0.002 4.599 0.073 0.303 0.004 1 804 13 1 749 13 1 705 21 DH-13 856 413 2.07 0.113 0.004 5.033 0.185 0.324 0.006 1 844 39 1 825 31 1 809 30 DH-14 828 408 2.03 0.113 0.005 4.799 0.216 0.308 0.007 1 848 50 1 785 38 1 732 33 DH-15 793 471 1.68 0.113 0.004 4.926 0.150 0.317 0.006 1 844 31 1 807 26 1 776 27 DH-16 1 105 4 568 0.24 0.158 0.002 10.024 0.145 0.459 0.006 2 439 11 2 437 13 2 436 29 XQL-QM QM-1 48 201 0.24 0.156 0.015 10.048 0.942 0.464 0.014 2 413 161 2 439 87 2 457 61 QM-2 242 105 2.29 0.112 0.005 5.005 0.222 0.325 0.007 1 827 48 1 820 38 1 814 35 QM-3 88 119 0.74 0.111 0.004 5.100 0.164 0.328 0.005 1 833 62 1 836 27 1 830 26 QM-4 137 112 1.22 0.140 0.006 8.240 0.659 0.413 0.022 2 221 78 2 258 73 2 231 100 QM-5 200 830 0.24 0.095 0.001 2.783 0.055 0.211 0.003 1 524 27 1 351 15 1 236 17 QM-6 287 1 149 0.25 0.095 0.001 2.726 0.044 0.206 0.002 1 531 24 1 335 12 1 208 12 QM-7 847 555 1.53 0.111 0.001 5.023 0.086 0.326 0.004 1 817 22 1 823 15 1 818 19 QM-8 83 111 0.74 0.110 0.004 4.824 0.153 0.318 0.007 1 811 67 1 789 27 1 779 33 QM-9 57 89 0.64 0.112 0.004 5.060 0.161 0.321 0.005 1 832 64 1 830 27 1 794 23 QM-10 75 32 2.31 0.112 0.007 4.774 0.306 0.307 0.006 1 832 113 1 780 54 1 728 32 QM-11 374 138 2.70 0.112 0.002 4.919 0.118 0.324 0.007 1 826 38 1 805 20 1 811 34 QM-12 63 30 2.10 0.113 0.004 5.139 0.186 0.331 0.007 1 841 37 1 843 31 1 844 33 QM-13 627 445 1.41 0.111 0.002 5.014 0.103 0.327 0.006 1 822 17 1 822 17 1 821 27 XQL-QM2 QM2-1 449 1 066 0.42 0.110 0.002 4.929 0.107 0.324 0.006 1 804 18 1 807 18 1 810 28 QM2-2 527 807 0.65 0.110 0.002 4.853 0.091 0.320 0.005 1 798 15 1 794 16 1 791 27 QM2-3 361 731 0.49 0.111 0.002 5.029 0.096 0.330 0.006 1 810 15 1 824 16 1 837 27 QM2-4 352 298 1.18 0.111 0.003 4.905 0.137 0.321 0.006 1 810 26 1 803 24 1 797 29 QM2-5 347 999 0.35 0.111 0.002 4.976 0.089 0.325 0.005 1 818 14 1 815 15 1 813 27 QM2-6 1 232 758 1.63 0.112 0.002 5.007 0.089 0.325 0.005 1 831 14 1 821 15 1 812 27 QM2-7 562 410 1.37 0.110 0.002 4.880 0.091 0.321 0.005 1 803 15 1 799 16 1 795 27 QM2-8 389 887 0.44 0.111 0.002 4.991 0.099 0.326 0.006 1 816 16 1 818 17 1 820 27 QM2-9 414 470 0.88 0.110 0.002 4.873 0.091 0.322 0.005 1 797 15 1 798 16 1 798 27 QM2-10 528 416 1.27 0.112 0.002 5.049 0.090 0.328 0.006 1 829 14 1 828 15 1 826 27 QM2-11 445 896 0.50 0.111 0.002 4.949 0.084 0.324 0.005 1 812 14 1 811 14 1 809 26 QM2-12 402 272 1.48 0.111 0.002 5.020 0.094 0.327 0.006 1 822 15 1 823 16 1 824 27 QM2-13 905 573 1.58 0.112 0.002 5.090 0.090 0.329 0.006 1 838 14 1 834 15 1 832 27 QM2-14 424 295 1.44 0.111 0.003 4.986 0.116 0.325 0.006 1 820 20 1 817 20 1 814 28 QM2-15 619 641 0.96 0.111 0.002 4.968 0.095 0.324 0.005 1 818 15 1 814 16 1 811 27 QM2-16 1 665 2 556 0.65 0.110 0.002 4.925 0.089 0.324 0.005 1 805 15 1 807 15 1 808 26 QM2-17 276 497 0.56 0.111 0.002 4.980 0.091 0.325 0.005 1 817 15 1 816 16 1 815 27 QM2-18 413 910 0.45 0.112 0.002 5.068 0.087 0.329 0.005 1 830 14 1 831 15 1 831 26 QM2-19 469 1 009 0.46 0.111 0.002 5.007 0.088 0.327 0.005 1 818 14 1 821 15 1 823 26 QM2-20 324 598 0.54 0.112 0.002 5.068 0.089 0.328 0.005 1 836 14 1 831 15 1 826 27 QM2-21 322 195 1.65 0.135 0.002 7.357 0.140 0.395 0.007 2 165 15 2 156 17 2 146 31 QM2-22 460 341 1.35 0.112 0.002 5.104 0.095 0.330 0.006 1 837 15 1 837 16 1 837 27 QM2-23 563 424 1.33 0.112 0.002 5.106 0.094 0.330 0.006 1 838 15 1 837 16 1 836 27 注:中国地质大学(武汉)地质过程与矿产资源国家重点实验室测试. 表 2 小秦岭地区枪马金矿基性脉岩黑云母40Ar/39Ar分析结果
Table 2. 40Ar/39Ar analytical results for incremental heating experiments on mafic dykes from Qiangma gold deposit, Xiaoqinling gold district
样品和阶段号 激光功率 36Ar 39Ar 40Ar* 40Ar 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39Ar(%) 40Ar(mol) K/Ca ± 2σ 表观年龄 误差 XQL-QM 照射参数J=0.009 826 0±0.000 014 7 08G2077B 3.0 0.000 028 0.000 0.223 0.231 4 468.132 1.868 0.533 0.07 7.631E-19 0.299 0.11 6 803.36 590.31 08G2077C 3.5 0.000 012 0.000 0.062 0.065 563.445 1.582 0.102 0.15 2.151E-19 0.354 0.08 3 305.45 323.79 08G2077D 4.0 0.000 008 0.000 0.058 0.060 171.149 1.074 0.024 0.45 1.988E-19 0.521 0.07 1 733.19 111.30 08G2077E 4.5 0.000 009 0.001 0.086 0.089 146.431 0.850 0.014 0.78 2.930E-19 0.658 0.06 1 578.62 20.32 08G2077F 5.5 0.000 013 0.001 0.158 0.161 161.241 0.867 0.013 1.29 5.327E-19 0.645 0.05 1 687.92 27.21 08G2077H 6.5 0.000 009 0.001 0.199 0.202 134.593 2.568 0.007 1.93 6.668E-19 0.218 0.02 1 509.04 14.91 08G2077I 7.5 0.000 009 0.005 0.601 0.604 128.104 3.926 0.003 6.04 1.992E-18 0.142 0.01 1 468.82 7.63 08G2077J 8.5 0.000 008 0.006 0.868 0.870 153.986 4.245 0.003 7.24 2.872E-18 0.131 0.01 1 663.70 8.08 08G2077K 9.0 0.000 006 0.007 1.082 1.083 161.084 4.363 0.002 8.62 3.575E-18 0.128 0.01 1 714.29 7.29 08G2077L 9.5 0.000 005 0.009 1.426 1.427 162.382 4.325 0.002 11.26 4.710E-18 0.129 0.01 1 723.78 5.53 08G2077N 10.0 0.000 004 0.006 0.919 0.920 156.852 4.257 0.002 7.51 3.035E-18 0.131 0.01 1 685.34 5.22 08G2077O 11.0 0.000 006 0.008 1.368 1.369 167.759 4.366 0.002 10.46 4.519E-18 0.128 0.01 1 760.11 6.97 08G2077P 12.5 0.000 007 0.011 1.763 1.766 164.632 4.442 0.002 13.74 5.826E-18 0.126 0.01 1 739.07 5.05 08G2077Q 14.0 0.000 009 0.010 1.629 1.631 164.999 4.747 0.002 12.66 5.383E-18 0.117 0.01 1 741.43 6.63 08G2077R 16.0 0.000 006 0.011 1.789 1.791 157.448 4.565 0.002 14.57 5.910E-18 0.122 0.01 1 690.10 5.78 08G2077T 18.0 0.000 001 0.002 0.237 0.237 145.267 4.694 0.002 2.09 7.824E-19 0.119 0.01 1 603.45 14.45 08G2077U 25.0 0.000 001 0.001 0.135 0.135 152.195 5.176 0.002 1.14 4.454E-19 0.108 0.01 1 652.86 33.91 注:40Ar*=40Ar-295.5×36Ar(36Ar、40Ar表示测量值),表中Ar同位素单位为伏(V);测试单位为中国科学院广州地球化学研究所同位素年代学和地球化学重点实验室. -
[1] Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Chao, Y., 1989. The metallogenetic epoch of the Xiaoqinling gold deposit. Geology of Shanxi, 7(1): 52-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXDY198901006.htm [3] Chen, X.D., Shi, L.B., 1984. Preliminary study on diabase dike swarm in Wutai-Taihang Mountains. Chinese Science Bulletin, 29(6): 812-816. http://www.cnki.com.cn/Article/CJFDTotal-JXTW198406022.htm [4] Drew, L.J., Berger, B.R., Kurbanov, N.K., 1996. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum desert, Uzbekistan. Ore Geology Reviews, 11(4): 175-196. doi: 10.1016/0169-1368(95)00033-X [5] Durring, P., Hagemann, S.G., Cassidy, K.F., et al., 2004. Hydrothermal alteration, ore fluid characteristics, and gold depositional processes along a trondhjemite-komatiite contact at Tarmoola, western Australia. Economic Geology, 99(3): 423-451. doi: 10.2113/gsecongeo.99.3.423 [6] Goldfarb, R.J., Phillips, G.N., Nokleberg, W.J., 1998. Tectonic setting of synorogenic gold deposits of the Pacific rim. Ore Geology Reviews, 13(1-5): 185-218. doi: 10.1016/S0169-1368(97)00018-8 [7] Halls, H.C., Li, J.H., Davis, D., et al., 2000. A precisely dated Proterozoic paleomagnetic pole from the North China craton, and its relevance to palaeocontinental reconstruction. Geophysical Journal International, 143(1): 185-203. doi: 10.1046/j.1365-246x.2000.00231.x [8] Han, Y.G., Li, X.H., Zhang, S.H., et al., 2007. Single grain Rb-Sr dating of euhedral and cataclastic pyrite from the Qiyugou deposit in western Henan, Central China. Chinese Science Bulletin, 52(13): 1820-1826. doi: 10.1007/s11434-007-0248-3 [9] Hou, G.T., Halls, H., Davis, D., et al., 2009. Paleomagnetic poles of mafic dyke swarms from the North China craton and their relevance to the reconstruction of the supercontinent Columbia. Acta Petrologica Sinica, 25(3): 650-658 (in Chinese with English abstract). http://www.researchgate.net/publication/281475430_Paleomagnetic_poles_of_mafic_dyke_swarms_from_the_North_China_craton_and_their_relevance_to_the_reconstruction_of_the_supercontinent_Columbia [10] Hou, G.T., Liu, Y.L., Li, J.H., 2006. Evidence for ~1.8 Ga extension of the eastern block of the North China craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province. Journal of Asian Earth Sciences, 27(4): 392-401. doi: 10.1016/j.jseaes.2005.05.001 [11] Huston, D.L., Vandenberg, L., Wygralak, A.S., et al., 2007. Lode-gold mineralization in the Tanami region, northern Australia. Mineralium Deposita, 42(1-2): 175-204. doi: 10.1007/s00126-006-0106-2 [12] Koppers, A.A.P., 2002. ArArCALC-software for 40Ar/39Ar age calculations. Computers and Geosciences, 28(5): 605-619. doi: 10.1016/S0098-3004(01)00095-4 [13] Kröner, A., Wilde, S.A., Zhao, G.C., et al., 2006. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan complex of northern China: evidence for Late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China craton. Precambrian Research, 146(1-2): 45-67. doi: 10.1016/j.precamres.2006.01.008 [14] Kusky, T.M., Li, J.H., 2003. Paleoproterozoic tectonic evolution of the North China craton. Journal of Asian Earth Sciences, 22(4): 383-397. doi: 10.1016/S1367-9120(03)00071-3 [15] Li, J.H., Qian, X.L., Huang, X.N., et al., 2000. Tectonic framework of North China block and its cratonization in the Early Precambrian. Acta Petrologica Sinica, 16(1): 1-10 (in Chinese with English abstract). http://www.researchgate.net/publication/283887067_Tectonic_framework_of_North_China_Block_and_its_cratonization_in_the_early_Precambrian [16] Li, J.W., Li, Z.K., Zhou, M.F., et al., 2010. The Cretaceous Yangzhaiyu lode gold deposit, North China craton: a link between craton reactivation and gold veining. Submitted to Economic Geology. [17] Li, J.W., Vasconcelos, P., Zhou, M.F., et al., 2006. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China: implications for regional mineralization and geodynamic setting. Economic Geology, 101(5): 1023-1038. doi: 10.2113/gsecongeo.101.5.1023 [18] Li, J.W., Vasconcelos, P.M., Zhang, J., et al., 2003. 40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, eastern China. The Journal of Geology, 111(6): 741-751. doi: 10.1086/378486 [19] Li, N., Sun, Y.L., Li, J., et al., 2008. Molybdenite Re-Os isotope age of the Dahu Au-Mo deposit, Xiaoqinling and the Indosinian mineralization. Acta Petrologica Sinica, 24(4): 810-816 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200804021.htm [20] Li, S.M., Qu, L.Q., Su, Z.B., et al., 1996. The geology and metallogenic prediction of the gold deposit in Xiaoqinling. Geological Publishing House, Beijing, 39-53 (in Chinese). [21] Li, X.H., Sun, X.S., 1995. Lamprophyre and gold mineralization: an assessment of observations and theories. Geological Review, 41(3): 252-260 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-review_thesis/0201253284053.html [22] Li, Y.F., 2005. The temporal-spital evolution of Mesozoic granitoids in the Xiong'ershan area and their relationships to molybdenum-gold mineralization (Dissertation). China University of Geosciences, Beijing, 15-17 (in Chinese with English abstract). [23] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In situ analysis of major and trace elements of an hydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 [24] Lu, S.N., Li, H.Q., Li, H.M., et al., 1997. The basement characteristics and metallogenesis of the gold congestion areas—as exampled for Xiaoqinling, Jinbei and Jiaobei gold districts, China. Geological Publishing House, Beijing, 34-39 (in Chinese). [25] Lu, X.X., Li, M.L., Wang, W., et al., 2008. Indosinian movement and metallogenesis in Qinling orogenic belt. Mineral Deposits, 27(6): 762-773 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200806010.htm [26] Luan, S.W., Cao, D.C., Fang, Y.K., et al., 1985. Geochemistry of Xiaoqinling gold deposits. Journal of Mineralogy and Petrology, 5(2): 1-133 (in Chinese with English abstract). http://www.researchgate.net/publication/285127428_Geochemistry_of_Xiaoqinling_gold_deposits [27] Mao, J.W., Goldfarb, R.J., Zhang, Z.W., et al., 2002. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling Mountains, Central China. Mineralium Deposita, 37(3-4): 306-325. doi: 10.1007/s00126-001-0248-1 [28] McNeil, A.M., Kerrich, R., 1986. Archean lamprophyre dykes and gold mineralization, Matheson, Ontario: the conjunction of LILE-enriched mafic magmas, deep crustal structures, and Au concentration. Canadian Journal of Earth Sciences, 23(3): 324-343. doi: 10.1139/e86-035 [29] Müller, D., Groves, D.I., 1997. Potassic igneous rocks and associated gold-copper mineralization. Springer, London, 85-157. http://link.springer.com/978-3-319-23051-1 [30] Ni, S.J., Li, C.Y., Zhang, C., et al., 1994. Contributions of meso-basic dyke rocks to gold mineralization—as exampled for Xiaoqinling, China. Journal of Chengdu University of Technology, 21(3): 70-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG403.009.htm [31] Peng, P., Zhai, M.G., Ernst, R.E., et al., 2008. A 1.78 Ga large igneous province in the North China craton: the Xiong'er volcanic province and the North China dyke swarm. Lithos, 101(3-4): 260-280. doi: 10.1016/j.lithos.2007.07.006 [32] Qiu, H.N., 2006. Construction and development of new Ar-Ar laboratories in China: insight from GV-5400 Ar-Ar laboratory in Guangzhou Insitute of Geochemistry, Chinese Academy of Sciences. Geochimica, 35(2): 133-140 (in Chinese with English abstract). http://www.researchgate.net/publication/285634291_Construction_and_development_of_new_Ar-Ar_laboratories_in_China_Insight_from_GV-5400_Ar-Ar_laboratory_in_Guangzhou_Insitute_of_Geochemistry_Chinese_Academy_of_Sciences [33] Rock, N.M.S., Groves, D.I., 1988. Do lamprophyres carry gold as well as diamonds? Nature, 332: 253-255. doi: 10.1038/332253a0 [34] Tan, J., Wei, J.H., Guo, L.L., et al., 2008. LA-ICP-MS zircon U-Pb dating and phenocryst EPMA of dikes, Guocheng, Jiaodong Peninsula: implications for North China craton lithosphere evolution. Science in China (Ser. D), 51(10): 1483-1500. doi: 10.1007/s11430-008-0079-3 [35] Trull, T., Nadeau, S., Pineau, F., et al., 1993. C-He systematics in hotspot xenoliths: implications for mantle carbon contents and carbon recycling. Earth and Planetary Science Letter, 118(1-4): 43-64. doi: 10.1016/0012-821X(93)90158-6 [36] Tsai, C.H., Lo, C.H., Liou, J.C., et al., 2000. Evidence against subduction-related magmatism for the Jiaoziyan gabbro, northern Dabieshan, China. Geology, 28(10): 943-946. doi: 10.1130/0091-7613 [37] Tu, H.K., 2000. Discovery and gold preconcentration study of the lamprophyre alteration-type gold deposits in the Qinling area. Geological Review, 46(5): 543-548 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200005016.htm [38] Wang, H.Z., 1987. Geological characteristics and ore genesis of the Xiaoqinling gold field. Mineral Deposits, 6(1): 57-67 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ198701008.htm [39] Wang, T.H., Mao, J.W., Wang, Y.B., 2008a. Research on SHRIMP U-Pb chronology in Xiaoqinling Xiong'ershan area: the evidence of delamination of lithosphere in Qinling orogenic belt. Acta Petrologica Sinica, 24(6): 1273-1287 (in Chinese with English abstract). [40] Wang, T.H., Mao, J.W., Xie, G.Q., 2008b. Sr, Nd, Pb isotopic composition of the Meso-basic dykes in the Xiaoqinling-Xiong'ershan area, Henan Province, Central China and its tectonic significance. Acta Geological Sinica, 82(11): 1580-1591 (in Chinese with English abstract). http://www.researchgate.net/publication/286980339_Sr_Nd_Pb_isotopic_composition_of_the_meso-basic_dykes_in_the_Xiaoqinling-Xiong'ershan_Area_Henan_province_central_China_and_its_tectonic_significance [41] Wang, Y.J., Fan, W.M., Zhang, H.F., et al., 2006. Early Cretaceous gabbroic rocks from the Taihang Mountains: implications for a paleosubduction-related lithospheric mantle beneath the Central North China craton. Lithos, 86(3-4): 281-302. doi: 10.1016/j.lithos.2005.07.001 [42] Wang, Y.J., Peng, T.P., Fan, W.M., et al., 2007. Early proterozic mafic dikes in the North China craton and their tectonic implications. Bulletin of Mineralogy, Petrology and Geochemistry, 26(1): 1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200701000.htm [43] Wang, Y.J., Zhao, G.C., Fan, W.M., et al., 2007. LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province: implications for back-arc basin magmatism in the eastern block, North China craton. Precambrian Research, (1-2): 107-124. doi: 10.1016/j.precamres.2006.12.010 [44] Wang, Y.T., Mao, J.W., Lu, X.X., et al., 2002. 40Ar-39Ar dating and geological implication of auriferous altered rocks from the middle-deep section of Q875 gold-quartz vein in Xiaoqinling area, Henan, China. Chinese Science Bulletin, 47(20): 1750-1755. doi: 10.1360/02tb9383 [45] Wilde, S.A., Zhao, G.C., Sun, M., 2002. Development of the North China craton during the Late Archaean and its final amalgamation at 1.8 Ga: some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research, 5(1): 85-94. doi: 10.1016/S1342-937X(05)70892-3 [46] Wu, F.Y., Lin, J.Q., Wilde, S.A., et al., 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119. doi: 10.1016/j.epsl.2005.02.019 [47] Xie, G.Q., Mao, J.W., Li, R.L., et al., 2007. SHRIMP zircon U-Pb dating for volcanic rocks of the Daying Formation from Baofeng basin in eastern Qinling, China and its implications. Acta Petrologica Sinica, 23(10): 2387-2396 (in Chinese with English abstract). http://www.researchgate.net/publication/279695720_SHRIMP_zircon_U-Pb_dating_for_volcanic_rocks_of_the_Daying_Formation_from_Baofeng_basin_in_eastern_Qinling_China_and_its_implications [48] Xu, Q.D., Zhong, Z.Q., Zhou, H.W., et al., 1998. 40Ar/39Ar dating of the Xiaoqinling gold area in Henan Province. Geological Review, 44(3): 323-327 (in Chinese with English abstract). http://www.researchgate.net/publication/284646929_40Ar39Ar_dating_of_the_Xiaoqinling_gold_area_in_Henan_Province?ev=auth_pub [49] Xue, L.W., Zhou, C.M., Pang, J.Q., et al., 1996. Inversion tectonics and prospecting mineralogy of Tonggou gold deposit in Xiaoqinling region. China University of Geosciences Press, Wuhan, 50-57 (in Chinese). [50] Yang, J.H., Chung, S.L., Zhai, M.G., et al., 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73(3-4): 145-160. doi: 10.1016/j.lithos.2003.12.003 [51] Yang, J.H., Zhou, X.H., 2001. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite: implications for the age and genesis of lode gold deposits. Geology, 29(8): 711-714. doi: 10.1130/0091-7613 [52] Ye, H.S., Mao, J.W., Xu, L.G., et al., 2008. SHRIMP zircon U-Pb dating and geochemistry of the Taishanmiao aluminous A-type granite in western Henan Province. Geological Review, 54(5): 699-711 (in Chinese with English abstract). http://www.researchgate.net/publication/285118844_SHRIMP_zircon_U-Pb_dating_and_geochemistry_of_the_Taishanmiao_aluminous_A-type_granite_in_western_Henan_Province [53] Yu, Z.P., Cui, H.F., 2003. Orogeny and orogenic types and process of the Qinling Mountians. Journal of Northwest University (Natural Science Edition), 33(1): 65-69 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDZ200301019.htm [54] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [55] Zhai, J.P., Hu, K., Lu, J.J., 1996. A discussion on the new genetic model for lamprophyres and gold mineralization. Mineral Deposits, 15(1): 80-86 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ199601009.htm [56] Zhai, M.G., Liu, W.J., 2003. Palaeoproterozoic tectonic history of the North China craton: a review. Precambrian Research, 122(1-4): 183-199. doi: 10.1016/S0301-9268(02)00211-5 [57] Zhang, G.W., Meng, Q.R., Yu, Z.P., et al., 1996. Orogenesis and dynamics of the Qinling orogen. Science in China (Ser. D), 39(3): 225-234. http://www.cnki.com.cn/Article/CJFDTotal-JDXG199603000.htm [58] Zhang, J.J., Zheng, Y.D., Liu, S.W., 1998. The Xiaoqinling metamorphic core complex: structure, genetic mechanism and evolution. Ocean Press, Beijing, 17-63 (in Chinese). [59] Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2002. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125-162. doi: 10.1016/S0012-8252(02)00073-9 [60] Zhao, Z.F., Zheng, Y.F., Wei, C.S., et al., 2005. Zircon U-Pb age, element and C-O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in East-Central China. Lithos, 83(1-2): 1-28. doi: 10.1016/j.lithos.2004.12.014 [61] Zhou, H.W., Zhong, Z.Q., Ling, W.L., et al., 1998. Sm-Nd isochron for the amphibolites within Taihua complex from Xiaoqinling area, western Henan, and its geological implications. Geochimica, 27(4): 367-372 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199804007.htm [62] 晁援, 1989. 关于小秦岭金矿的成矿时代探讨. 陕西地质, 7(1): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY198901006.htm [63] 侯贵廷, Halls, H., Davis, D., 等, 2009. 华北基性岩墙群的古地质磁极及其哥伦比亚超大陆重建意义. 岩石学报, 25(3): 650-658. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903018.htm [64] 李江海, 钱祥麟, 黄雄南, 等, 2000. 华北陆块基底构造格局及早期大陆克拉通化过程. 岩石学报, 16(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200001000.htm [65] 李诺, 孙亚莉, 李晶, 等, 2008. 小秦岭大湖金钼矿床辉钼矿铼锇同位素年龄及印支期成矿事件. 岩石学报, 24(4): 810-816. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804021.htm [66] 黎世美, 瞿伦全, 苏振邦, 等, 1996. 小秦岭金矿地质和成矿预测. 北京: 地质出版社, 39-53. [67] 李献华, 孙贤鉥, 1995. "煌斑岩"与金矿的实际观察与理论评述. 地质论评, 41(3): 252-260. doi: 10.3321/j.issn:0371-5736.1995.03.008 [68] 李永峰, 2005. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用(学位论文). 北京: 中国地质大学, 15-17. [69] 陆松年, 李怀坤, 李惠民, 等, 1997. 金矿密集区的基底特征与成矿作用研究——以小秦岭、冀北和胶北金矿密集区为例. 北京: 地质出版社, 34-39. [70] 卢欣祥, 李明立, 王卫, 等, 2008. 秦岭造山带的印支运动及印支期成矿作用. 矿床地质, 27(6): 762-773. doi: 10.3969/j.issn.0258-7106.2008.06.009 [71] 栾世伟, 曹殿春, 方耀奎, 等, 1985. 小秦岭金矿床地球化学. 矿物岩石, 5(2): 1-133. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198502000.htm [72] 倪师军, 李朝阳, 张诚, 等, 1994. 中基性脉岩对金矿成矿的贡献——以小秦岭金矿区为例. 成都理工学院学报, 21(3): 70-78. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG403.009.htm [73] 邱华宁, 2006. 新一代Ar-Ar实验室建设与发展趋势: 以中国科学院广州地球化学研究所Ar-Ar实验室为例. 地球化学, 35(2): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200602003.htm [74] 涂怀奎, 2000. 秦岭地区蚀变煌斑岩型金矿的发现及金的预富集研究. 地质论评, 46(5): 543-548. doi: 10.3321/j.issn:0371-5736.2000.05.014 [75] 王亨治, 1987. 小秦岭金矿田地质特征及矿床成因. 矿床地质, 6(1): 57-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198701008.htm [76] 王团华, 毛景文, 王彦斌, 等, 2008a. 小秦岭-熊耳山地区岩墙锆石SHRIMP年代学研究——秦岭造山带岩石圈拆沉的证据. 岩石学报, 24(6): 1273-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806011.htm [77] 王团华, 毛景文, 谢桂青, 等, 2008b. 小秦岭-熊耳山地区中基性岩墙的Sr、Nd、Pb同位素组成及其大地构造意义. 地质学报, 82(11): 1580-1591. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200811015.htm [78] 王义天, 毛景文, 卢欣祥, 等, 2002. 河南小秦岭金矿区Q875脉中深部矿化蚀变岩的40Ar/39Ar年龄及其意义. 科学通报, 47(18): 1427-1431. doi: 10.3321/j.issn:0023-074X.2002.18.015 [79] 王岳军, 彭头平, 范蔚茗, 等, 2007. 华北陆块早元古代基性岩墙群及其构造意义. 矿物岩石地球化学通报, 26(1): 1-9. doi: 10.3969/j.issn.1007-2802.2007.01.001 [80] 谢桂青, 毛景文, 李瑞玲, 等, 2007. 东秦岭宝丰盆地大营组火山岩SHRIMP定年及其意义. 岩石学报, 23(10): 2387-2396. doi: 10.3969/j.issn.1000-0569.2007.10.007 [81] 徐启东, 钟增球, 周汉文, 等, 1998. 豫西小秦岭金矿区的一组40Ar/39Ar定年数据. 地质论评, 44(3): 323-327. doi: 10.3321/j.issn:0371-5736.1998.03.014 [82] 薛良伟, 周长命, 庞继群, 等, 1996. 小秦岭桐沟金矿反转构造及找矿矿物学. 武汉: 中国地质大学出版社, 50-57. [83] 叶会寿, 毛景文, 徐林刚, 等, 2008. 豫西太山庙铝质A型花岗岩SHRIMP锆石U-Pb年龄及其地球化学特征. 地质论评, 54(5): 699-711. doi: 10.3321/j.issn:0371-5736.2008.05.015 [84] 于在平, 崔海峰, 2003. 造山运动与秦岭造山. 西北大学学报(自然科学版), 33(1): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ200301019.htm [85] 翟建平, 胡凯, 陆建军, 1996. 有关煌斑岩与金矿化新成因模式的讨论. 矿床地质, 15(1): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199601009.htm [86] 张进江, 郑亚东, 刘树文, 1998. 小秦岭变质核杂岩的构造特征、形成机制及构造演化. 北京: 海洋出版社, 17-63. [87] 周汉文, 钟增球, 凌文黎, 等, 1998. 豫西小秦岭地区太华杂岩斜长角闪岩Sm-Nd等时线年龄及其地质意义. 地球化学, 27(4): 367-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199804007.htm