Metallogenic Mechanism, Magma Source and Zircon U-Pb Age of Jinduicheng Granitic Porphyry, East Qinling
-
摘要: 通过LA-ICP-MS方法测得金堆城和老牛山花岗岩体中锆石U-Pb年龄分别为143.7±3 Ma和144.5±4.4 Ma,与金堆城钼矿床中辉钼矿的Re-Os年龄139±3.0 Ma在误差范围内一致,界定了金堆城成岩成矿时代为侏罗纪末-白垩纪初,2个岩体为同期岩浆事件的产物,与燕山运动有关.金堆城岩体较老牛山岩体富SiO2、K2O,岩石地球化学数据显示2个岩体都具有一致的高硅、富碱、过铝质系列和钙碱性岩石系列特征;高的εSr(t)、低的εNd(t)及Pb同位素图解证明2个岩体主要来自下地壳物质部分熔融,可能有少量地幔物质加入.年代学与岩石地球化学数据证实老牛山岩体和金堆城岩体的岩浆源区与岩石成因相同,推测老牛山岩体在深部发生分异演化,为金堆城小岩体提供了大量的热液和矿物质,从而出现了金堆城小岩体成大矿现象.Abstract: Zircon U-Pb isotopic ages of Jinduicheng and Laoniushan granite are measured by LA-ICP-MS techniques, and we find that the mean ages are 143.7±3 Ma and 144.5±4.4 Ma respectively, which correspond to the molybdenite Re-Os age 139±3.0 Ma of Jinduicheng molybdenite polymetallic deposit. It indicates that the diagenetic and metallogenic ages of Jinduicheng deposit are between Jurassic and Cretaceous, related with Yanshan movement. Granites in Jinduicheng are richer in SiO2, K2O than those in Laoniushan. The geochemical data demonstrate that Jinduicheng and Laoniushan granites are both characterized with high Si, rich alkali, peraluminous rock series and the calcium alkaline rock series, which indicate that the rock-bodies belong to the continental crust granite; the high εSr (t), low εNd(t), and the Pb isotope values prove the main source of the rock-bodies is partial melting of lower continental-crust materials. The chronology and the litho-geochemical data confirm that Laoniushan and Jinduicheng granite are the same magma source area, and it is concluded that Laoniushan rock body has provided mass hydrothermal and mineral substance in depth for the small Jinduicheng rock body, which in turn led to the phenomenon of the Jinduicheng small rock body containing large ore deposit.
-
Key words:
- zircon U-Pb isotopic age /
- metallogenic mechanism /
- granite /
- geochemistry
-
图 1 金堆城钼矿床地质(黄典豪等,1987)
1.中元古界熊耳群火山岩;2.中元古界熊耳群板岩;3.中元古界高山河组石英砂岩;4.燕山期二长花岗岩;5.花岗斑岩;6.辉绿玢岩;7.角岩化;8.黑云母化;9.不整合接触界线;10.断层;11.背斜轴;12.向斜轴;13.采样位置
Fig. 1. Geological map of Jinduicheng porphyry molybdenum deposit
图 5 金堆城与老牛山岩体SiO2-K2O图解(a)与A/MF-C/MF图解(b) (肖庆辉等,2002)
Fig. 5. SiO2-K2O and A/MF-C/MF diagrams of Jinduicheng and Laoniushan granite
图 6 206Pb/204Pb-208Pb/204Pb图(Zartman and Haines, 1988)
Fig. 6. 206Pb/204Pb-208Pb/204Pb diagram of the granite
图 7 金堆城与老牛山岩体铅同位素及来源关系(底图据周作侠等,1993)
A.地幔;B.造山带;C.上地壳;D.下地壳;E.下岩石圈;1.全岩;2.钾长石;3.方铅矿(实线圈出了各区80%的投点,虚线圈出了可能的平均值)
Fig. 7. Diagram showing Pb isotopic compositions and sources of the Granite in Jinduicheng and Laoniushan
表 1 金堆城斑岩体中锆石U-Pb年龄测试结果
Table 1. U-Pb isotopic analysesfor zircons from Jinduicheng granitic porphyry
样品分析号 含量(μg/g) Th/U 同位素比值 年龄(Ma) 206Pbc 232Th 238U 207Pb*/206Pb* (±1σ) 207Pb*/205U (±1σ) 206Pb*/238U (±1σ) 207Pb*/206Pb 207Pb*/235U 206Pb*/238U JDC01 25.28 112.44 255.62 0.44 0.075 71±0.002 03 0.257 78±0.005 10 0.024 66±0.000 28 1 087±22 223±4 157±2 JDC02 65.04 217.27 510.79 0.43 0.055 89±0.002 26 0.176 21±0.006 84 0.022 87±0.000 27 448±92 165±6 146±2 JDC03 223.4 820.44 2 612.33 0.32 0.057 97±0.001 40 0.169 62±0.002 77 0.021 19±0.000 23 529±18 159±2 135±1 JDC04 233.04 803.61 2 942.89 0.27 0.050 62±0.001 72 0.143 94±0.004 62 0.020 62±0.000 23 224±81 137±4 132±1 JDC05 397.68 669.19 3 458.76 0.19 0.050 63±0.002 08 0.163 58±0.006 44 0.023 47±0.000 28 224±97 154±6 150±2 JDC06 389.15 2 567.6 4 167.88 0.62 0.073 96±0.003 08 0.230 19±0.009 16 0.022 57±0.000 27 1 040±86 210±8 144±2 JDC07 240.69 844.55 2 254.03 0.37 0.062 14±0.001 83 0.197 76±0.005 35 0.023 08±0.000 26 679±64 183±5 147±2 JDC08 340 1 173.59 3 877.4 0.30 0.050 32±0.001 13 0.153 02±0.003 0 0.022 05±0.000 24 210±53 145±3 141±2 JDC09 218.87 1 142.33 2 352.98 0.49 0.068 44±0.002 75 0.202 88±0.007 77 0.021 50±0.000 26 882±85 188±7 137±2 JDC10 323.87 880 3 538.32 0.25 0.048 06±0.001 01 0.150 64±0.001 83 0.022 72±0.000 24 102±13 142±2 145±2 JDC11 241.83 964.52 2 607.63 0.37 0.050 44±0.001 08 0.159 16±0.002 02 0.022 88±0.000 25 215±13 150±2 146±2 JDC12 297.08 1 048.08 3 294.53 0.32 0.047 69±0.001 01 0.149 36±0.001 85 0.022 72±0.000 24 84±13 141±2 145±2 JDC13 523.46 927.83 5 145.28 0.18 0.049 82±0.001 04 0.170 51±0.002 07 0.024 83±0.000 27 187±13 160±2 158±2 JDC14 68.79 311.05 632.44 0.49 0.052 13±0.001 47 0.176 60±0.003 91 0.024 57±0.000 28 291±30 165±3 156±2 JDC15 266.66 708.63 2 180.1 0.32 0.046 05±0.003 01 0.134 59±0.008 66 0.021 20±0.000 24 128±8 135±2 JDC16 304.93 1 258.72 3 491.47 0.36 0.051 75±0.001 31 0.159 01±0.003 62 0.022 29±0.000 24 274±59 150±3 142±2 JDC17 96.5 398.1 869.25 0.46 0.049 94±0.002 55 0.159 03±0.007 89 0.023 09±0.000 28 192±118 150±7 147±2 JDC18 115.89 418.04 1 364.89 0.31 0.054 07±0.001 92 0.156 59±0.005 27 0.021 00±0.000 24 374±82 148±5 134±2 JDC19 279.15 1 644.11 3 008.51 0.55 0.048 35±0.001 03 0.154 63±0.002 03 0.023 22±0.000 25 116±14 146±2 148±2 JDC20 563.71 1 032.02 715 1.44 0.103 91±0.002 21 3.066 03±0.034 99 0.214 22±0.002 32 1 695±9 1 424±9 1 251±12 JDC21 118.2 298.18 1 264.17 0.24 0.061 16±0.001 80 0.194 13±0.005 24 0.023 02±0.000 27 645±65 180±4 147±2 JDC22 292.32 788.22 3 088.46 0.26 0.049 21±0.001 03 0.161 63±0.002 03 0.023 86±0.000 26 158±13 152±2 152±2 JDC23 200.65 733.94 2 202.5 0.33 0.056 28±0.002 29 0.165 93±0.006 45 0.021 38±0.000 25 464±92 156±6 136±2 JDC24 215.69 748.08 2 280.59 0.33 0.050 39±0.001 25 0.165 77±0.003 01 0.023 91±0.000 27 213±22 156±3 152±2 JDC25 236.81 658.58 2 493.39 0.26 0.059 84±0.002 19 0.182 75±0.006 34 0.022 15±0.000 26 598±81 170±5 141±2 JDC26 380.41 1 433.09 4 589.65 0.31 0.050 32±0.001 16 0.142 09±0.002 26 0.020 53±0.000 23 210±18 135±2 131±1 JDC27 829.18 1 389.39 4 403.29 0.32 0.104 04±0.036 15 0.255 15±0.088 08 0.017 79±0.000 71 1 697±774 231±71 114±4 JDC28 169.58 799.65 1 885.82 0.42 0.058 33±0.001 88 0.174 61±0.005 23 0.021 71±0.000 26 542±72 163±5 138±2 注:测试在西北大学大陆动力学国家重点实验室完成,2007. 表 2 老牛山花岗岩体中锆石U-Pb年龄测试结果
Table 2. U-Pb isotopic analyses for zircons from Laoniushan granite
样品分析号 含量(μg/g) Th/U 同位素比值 年龄(Ma) 206Pbc 232Th 238U 207Pb*/206Pb* (±1σ) 207Pb*/205U (±1σ) 206Pb*/238U (±1σ) 207Pb*/ 206Pb 207Pb*/ 235U 206Pb*/ 238U LN01 259.53 746.44 2 563.46 0.29 0.048 95±0.002 58 0.159 1±0.007 81 0.023 62±0.000 37 145±84 150±7 150±2 LN02 205.41 747.16 2 241.70 0.33 0.048 27±0.001 01 0.154 12±0.002 10 0.023 21±0.000 25 113±15 146±2 148±2 LN03 64.04 439.58 405.64 1.08 0.057 13±0.004 46 0.168 67±0.012 94 0.021 41±0.000 31 497±178 158±11 137±2 LN04 35.45 313.19 380.77 0.82 0.058 11±0.004 14 0.174 64±0.012 18 0.021 80±0.000 32 534±161 163±11 139±2 LN05 141.34 456.75 1 348.93 0.34 0.051 12±0.001 33 0.172 86±0.004 06 0.024 53±0.000 27 246±61 162±4 156±2 LN06 152.78 507.90 1 673.79 0.30 0.049 33±0.001 28 0.152 56±0.003 05 0.022 47±0.000 26 164±26 144±3 143±2 LN07 166.85 620.53 1 852.08 0.34 0.048 98±0.001 04 0.151 8±0.002 09 0.022 52±0.000 25 147±15 143±2 144±2 LN08 84.00 133.04 697.70 0.19 0.053 61±0.001 46 0.223 36±0.004 81 0.030 27±0.000 35 355±28 205±4 192±2 LN09 267.98 648.24 3 127.11 0.21 0.046 55±0.000 95 0.140 17±0.001 75 0.021 87±0.000 24 26±13 133±2 139±2 LN10 249.81 967.06 2 923.51 0.33 0.050 35±0.001 11 0.148 53±0.002 20 0.021 43±0.000 24 211±16 141±2 137±2 LN11 8.41 68.55 97.94 0.70 0.050 13±0.005 83 0.152 48±0.017 19 0.022 09±0.000 60 201±203 144±15 141±4 LN12 12.69 149.67 149.13 1.00 0.048 92±0.002 87 0.151 78±0.008 41 0.022 53±0.000 36 144±96 143±7 144±2 LN13 148.73 523.73 1 702.41 0.31 0.048 80±0.001 07 0.150 18±0.002 20 0.022 35±0.000 25 138±16 142±2 142±2 LN14 544.07 2 202.24 5 784.73 0.38 0.098 88±0.002 26 0.329 26±0.005 14 0.024 18±0.000 28 1 603±14 289±4 154±2 LN15 196.94 615.07 2 299.19 0.27 0.053 43±0.001 43 0.161 1±0.003 90 0.021 87±0.000 25 347±62 152±3 139±2 LN16 14.90 142.51 158.35 0.90 0.053 89±0.002 82 0.165 51±0.008 03 0.022 90±0.000 34 366±82 156±7 142±2 LN17 81.52 296.65 918.76 0.32 0.047 68±0.001 43 0.156 47±0.003 85 0.023 82±0.000 28 83±36 148±3 152±2 LN18 124.35 489.49 1 377.23 0.36 0.050 89±0.001 31 0.160 95±0.003 12 0.022 95±0.000 26 236±25 152±3 146±2 LN19 99.84 601.04 1 007.59 0.60 0.050 28±0.001 51 0.189 18±0.004 67 0.027 31±0.000 33 208±35 176±4 174±2 LN20 272.25 655.49 2 858.58 0.23 0.049 30±0.001 07 0.164 92±0.002 31 0.024 27±0.000 27 162±15 155±2 155±2 LN21 129.81 482.55 1 669.15 0.29 0.052 0±0.001 480 0.139 2±0.003 62 0.019 42±0.000 22 285±67 132±3 124±1 LN22 203.69 543.09 2 251.25 0.24 0.048 64±0.001 39 0.137 84±0.003 61 0.020 55±0.000 24 131±69 131±3 131±2 LN23 421.54 1 520.47 4 890.90 0.31 0.049 46±0.001 40 0.124 82±0.003 21 0.018 30±0.000 21 170±67 119±3 117±1 LN24 350.83 1 483.70 4 226.40 0.35 0.056 75±0.001 86 0.158 05±0.004 86 0.020 20±0.000 23 482±74 149±4 129±1 LN25 178.58 499.02 1 921.21 0.26 0.051 08±0.001 15 0.168 93±0.002 51 0.023 98±0.000 27 244±16 158±2 153±2 LN26 19.98 252.99 241.60 1.03 0.053 33±0.002 17 0.167 04±0.006 06 0.022 71±0.000 30 343±58 157±5 145±2 LN27 151.44 595.82 1 821.32 0.33 0.106 78±0.002 57 0.333 68±0.005 57 0.022 65±0.000 26 1745±15 292±4 144±2 LN28 224.36 765.31 2 567.54 0.30 0.073 19±0.003 70 0.221 83±0.010 81 0.021 98±0.000 29 1 019±105 203±9 140±2 LN29 178.80 529.43 2 066.07 0.26 0.050 60±0.001 43 0.154 38±0.003 98 0.022 13±0.000 26 223±67 146±3 141±2 LN30 228.01 629.00 2 668.90 0.24 0.050 25±0.001 18 0.152 29±0.003 13 0.021 98±0.000 25 206±56 144±3 140±2 LN31 172.70 790.02 1 758.06 0.45 0.059 61±0.001 63 0.202 58±0.004 99 0.024 65±0.000 29 589±61 187±4 157±2 LN32 174.74 695.94 2 082.87 0.34 0.049 58±0.001 57 0.152 61±0.004 49 0.022 32±0.000 26 175±76 144±4 142±2 LN33 201.07 560.36 2 449.34 0.23 0.048 32±0.001 56 0.142 8±0.004 30 0.021 44±0.000 25 115±75 136±4 137±2 LN34 389.79 1 604.77 4 408.44 0.36 0.049 03±0.001 07 0.155 33±0.002 09 0.022 93±0.000 25 149±14 147±2 146±2 注:测试在西北大学大陆动力学国家重点实验室完成,2007. 表 3 金堆城花岗斑岩和老牛山花岗岩主量元素分析结果(%)
Table 3. Major element analysis result of Jinduicheng granitic porphyry and Laoniushan granite
岩体 样品号 SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O 金堆城花岗斑岩 JD-1 74.00 0.20 13.00 1.89 0.10 0.3 1.00 2.20 6.00 金堆城花岗斑岩 JD-10 73.20 0.15 12.60 2.09 0.09 0.37 1.08 1.63 6.61 金堆城花岗斑岩 L303① 78.14 0.04 11.18 0.53 0.02 0.10 0.52 1.19 7.70 金堆城花岗斑岩 L401① 74.22 0.11 12.71 1.34 0.04 0.21 0.98 1.23 7.58 金堆城花岗斑岩 L403① 72.87 0.13 14.01 1.65 0.06 0.24 1.21 3.75 5.09 老牛山花岗岩 LN1 72.08 0.14 14.75 2.01 0.09 0.31 1.59 3.99 4.39 老牛山花岗岩 LN2 73.61 0.13 14.4 1.82 0.09 0.26 0.76 3.76 4.67 老牛山花岗岩 M601② 75.46 0.06 13.91 0.50 0.01 0.07 0.48 3.55 5.77 老牛山花岗岩 M602② 71.49 0.13 15.80 1.56 0.07 0.26 1.51 4.13 5.01 老牛山花岗岩 M615② 76.39 0.06 13.74 0.46 0.03 0.08 0.59 3.90 4.59 老牛山花岗岩 M616② 70.31 0.16 16.25 1.83 0.08 0.30 1.62 4.17 4.44 岩体 样品号 P2O5 LOI Total δ Na2O+K2O K2O/Na2O ACNK ANK Mg# 金堆城花岗斑岩 JD-1 0.00 1.50 100.00 2.17 8.20 1.80 1.08 1.28 0.24 金堆城花岗斑岩 JD-10 0.04 2.08 99.90 2.25 8.24 2.67 1.07 1.28 0.26 金堆城花岗斑岩 L303① 0.01 0.68 99.99 2.25 8.89 6.47 0.99 1.08 0.27 金堆城花岗斑岩 L401① 0.04 1.43 99.90 2.49 8.81 6.16 1.06 1.24 0.24 金堆城花岗斑岩 L403① 0.05 1.10 100.00 2.62 8.84 1.36 1.01 1.20 0.22 老牛山花岗岩 LN1 0.06 0.75 100.16 2.42 8.38 0.73 1.04 1.30 0.24 老牛山花岗岩 LN2 0.05 0.63 100.18 2.32 8.43 0.82 1.14 1.28 0.22 老牛山花岗岩 M601② 0.02 0.52 100.35 2.68 9.32 1.63 1.07 1.15 0.22 老牛山花岗岩 M602② 0.05 0.32 100.33 2.93 9.14 1.21 1.06 1.29 0.25 老牛山花岗岩 M615② 0.02 0.45 100.31 2.16 8.49 1.18 1.10 1.21 0.26 老牛山花岗岩 M616② 0.06 0.60 99.82 2.71 8.61 1.06 1.11 1.39 0.25 注:西北大学大陆动力学国家重点实验室XRF法测定,①据王新(2001);②据朱赖民等(2008);Mg#=Mg/(Mg+Fe). 表 4 金堆城斑岩体Sr、Nd同位素数据
Table 4. Nd and Sr isotopic data of Jinduicheng granitic porphyry
样品 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr Error(2s) (87Sr/86Sr)i εSr(143.7 Ma) Q-JD-2 303.6 85.07 10.35 0.732 141 0.000 011 0.7109 998 49 94.65 Q-JD-1 303.9 51.86 17.01 0.743 934 0.000 011 0.709 188 977 68.94 Q-JD-3 288.6 130.82 6.39 0.721 431 0.000 011 0.708 378 637 57.43 样品 Sm(10-6) Nd(10-6) 147Sm/144Nd 143Nd/144Nd Error(2s) (143Nd/144Nd)i εNd(143.7 Ma) Q-JD-2 2.514 8.603 0.176 7 0.511 995 0.000 013 0.511 828 86 -12.18 Q-JD-1 2.376 12.27 0.117 1 0.511 857 0.000 013 0.511 746 898 -13.78 Q-JD-3 3.374 17.24 0.118 3 0.511 891 0.000 013 0.511 779 77 -13.14 测试单位:中国科学院地质与地球物理研究所,2007. 表 5 老牛山岩体Sr同位素数据
Table 5. Sr isotopic data of Laoniushan granite
样品 岩性 测定对象 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i εSr(144.5 Ma) B20-1/1 花岗岩 全岩 0.481 82 0.345 79 1.393 4 0.713 29 0.710 427 947 86.54 B20-3/1 花岗岩 全岩 0.370 54 0.330 75 1.120 3 0.713 6 0.711 298 896 98.915 B20-3/3 花岗岩 全岩 0.002 089 0.183 76 0.011 367 0.705 31 0.705 286 652 13.55 B20-5/3 花岗岩 全岩 0.471 03 0.743 83 0.633 24 0.709 74 0.708 439 321 58.31 B20-5/5 花岗岩 全岩 0.525 13 0.552 92 0.949 73 0.710 15 0.708 199 248 54.90 B20-7/1 花岗岩 全岩 0.060 718 0.687 04 0.883 77 0.711 04 0.709 224 731 69.46 B20-7/1 花岗岩 长石 1.082 6 1.163 1 0.930 8 0.710 54 0.708 628 131 60.99 B20-7/1 花岗岩 云母 2.447 5 0.243 73 10.042 0.729 01 0.708 383 666 57.52 B20-7/1 花岗岩 云母 2.695 2 0.138 54 19.453 3 0.748 95 0.708 992 794 66.17 注:据尚瑞钧等(1988)数据重新计算初始值和εsr值. 表 6 金堆城斑岩体Pb同位素数据
Table 6. Pb isotopic data of Jinduicheng Granitic porphyry
原编号 岩石类型 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ Q-JD-1 全岩 17.724 9 0.007 15.529 5 0.007 38.089 7 0.008 Q-JD-2 全岩 17.696 4 0.009 15.527 9 0.011 38.098 9 0.014 Q-JD-3 全岩 17.969 3 0.009 15.502 9 0.01 38.108 9 0.012 JD-1 钾长石 17.563 7 0.006 15.471 3 0.006 37.918 8 0.007 JD-2 钾长石 17.594 1 0.009 15.462 0 0.01 37.895 7 0.012 JD-3 钾长石 17.594 0 0.008 15.462 0 0.008 37.876 0 0.01 JDC-18* 方铅矿 17.284 15.417 37.724 JDC-19* 钾长石 17.536 15.434 37.680 LN-20* 全岩 17.637 15.428 37.940 测试单位:中国科学院地质与地球物理研究所,2007;带*样品黄典豪等(1984);LN.老牛山,其他样品来自金堆城. -
[1] Andersen, T., 2002. Correction of common lead Pb in U-Pb analyses that do not report 204Pb. Chem. Geol., 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Bao, Z.W., Zeng, Q.S., Zhao, T.P., et al., 2009. Geochemistry and petrogenesis of the ore-related Nannihu and Shangfanggou granite porphyries from East Qinling belt and their constaints on the molybdenum mineralization. Acta Petrologica Sinica, 25(10): 2523-2536 (in Chinese with English abstract). [3] Chen, S.Y., Zhao, P.D., Zhang, S.T., et al., 2009. Mineralizing multiformity and deep prospecting of Gejiu super Sn-Cu multi-metal deposit, Yunnan, China. Earth Science—Journal of China University Geosciences, 34(2): 319-324 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.034 [4] Cheng, Q.M., Zhao, P.D., Chen, J.G., et al., 2009. Application of singularity theory in prediction of tin and copper mineral deposits in Gejiu district, Yunnan, China: weak information extraction and mixing information decomposition. Earth Science—Journal of China University Geosciences, 34(2): 232-242 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.021 [5] Guo, B., Zhu, L.M., Li, B., et al., 2009. Isotopic and element geochemical study of Jinduicheng superlarge porphyry Mo deposit in East Qinling area. Mineral Deposits, 28(3): 265-281 (in Chinese with English abstract). http://www.researchgate.net/publication/313430520_Isotopic_and_element_geochemical_study_of_Jinduicheng_superlarge_porphyry_Mo_deposit_in_East_Qinling_area [6] Huang, D.H., Nie, F.J., Wang, Y.C., et al., 1984. Lead isotope compositions of molybdenum deposits in East Qinling as applied to the problem of ore sources. Mineral Deposits, 3(4): 20-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ198404002.htm [7] Huang, D.H., Wu, C.Y., Du, A.D., et al., 1994. Re-Os isotope ages of molybdenum deposits in East Qinling and their significance. Mineral Deposits, 13(3): 221-230 (in Chinese with English abstract). [8] Huang, D.H., Wu, C.Y., Nie, F.J., 1987. Geological features and origin of the Jinduicheng porphyry molybdenum deposit, Shaanxi Province. Mineral Deposits, 6(3): 22-34 (in Chinese with English abstract). http://www.researchgate.net/publication/293214365_Geological_features_and_origin_of_the_Jinduicheng_porphyry_molybdenum_deposit_Shaanxi_province [9] Jiao, J.G., Yuan, H.C., He, K., et al., 2009. Zircon U-Pb and molybdenite Re-Os dating for the Balipo porphyry Mo deposit in East Qinling, China, and its geological implication. Acta Geologica Sinica, 83(8): 1159-1166 (in Chinese with English abstract). [10] Li, Y.F., Mao, J.W., Hu, H.B., et al., 2005. Geology, distribution, types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area. Mineral Deposits, 24(3): 292-304 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200503008.htm [11] Li, Y.F., Mao, J.W., Liu, D.Y., et al., 2006. SHRIMP zircon U-Pb and molybdenite Re-Os datings for the Leimengou porphyry molybdenum deposit, western Henan and its geological implication. Geological Review, 52(1): 122-131 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200601019.htm [12] Lu, X.X., Yu, Z.P., Feng, Y.L., et al., 2002. Mineralization and tectonic setting of deep-hypabyssal granites in East Qinling Mountain. Mineral Deposits, 21(2): 168-178 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200202011.htm [13] Mao, J.W., Xie, G.Q., Zhang, Z.H., et al., 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English abstract). http://www.researchgate.net/publication/282053876_Mesozoic_large-scale_metallogenic_pulses_in_North_China_and_Corresponding_geodynamic_setting [14] Mao, J.W., Zhang, Z.H., Yu, J.J., et al., 2003. The geodynamics setting of Mesozoic large-scale mineralization in North China: the revelation from accurate timing of metal deposits. Science in China (Series D), 33(4): 289-299 (in Chinese). [15] Nie, F.J., Fan, J.T., 1989. A study on REE geochemistry of the molybdenum-bearing granites in the Jinduicheng-Huanglongpu area, Shaanxi. Acta Petrologica et Mineralogica, 8(1): 22-33 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW198901002.htm [16] Shang, R.J., Yan, Z., Huang, Y.Y., 1988. Granite in Qinling and Dabashan. China University of Geosciences Press, Wuhan (in Chinese). [17] Tang, Z.L., Li, X.H., 2006. Small instrusions forming large deposits in two types of magma. Mineral Deposits, 25(Suppl. ): 35-38 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Conference_6270971.aspx [18] Wang, X., 2001. Identification of two porphyries in Jinduicheng molybdenum deposit (Dissertation). Northwest University, Xi'an, 1-56 (in Chinese with English abstract). [19] Xiao, Q.H., Deng, J.F., Ma, D.Q., et al., 2002. Granite research and methods of thinking. Geological Publishing House, Beijing (in Chinese). [20] Xu, K.Q., Zhu, J.C., Liu, C.S., et al., 1989. Genetic series and material sources of granitoids in South China. Journal of Nanjing University (Geoscience Ed. ), 25(3): 1-18 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10008463103 [21] Xu, Q.D., Xia, Q.L., Cheng, Q.M., 2009. Tectono-magmatic evolution related to metallogenic system in Gejiu ore-concentration area, Southeast Yunnan of China. Earth Science—Journal of China University Geosciences, 34(2): 307-313 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.032 [22] Yan, Z., Xu, Q.C., Zhang, H.J., 1985. Granite in Shaanxi Province. Xi'an Communication University Press, Xi'an (in Chinese). [23] Ye, H.S., Mao, J.W., Li, Y.F., et al., 2006. SHRIMP zircon U-Pb and molybdenite Re-Os dating for the superlarge Donggou porphyry Mo deposit in East Qinling, China, and its geological implication. Acta Geologica Sinica, 80(7): 1078-1088 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200607013.htm [24] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [25] Zartman, R.E., Haines, S.M., 1988. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs—a case for bidirectional transport. Geochimica et Cosmochimica Acta, 52: 1327-1339. doi: 10.1016/0016-7037(88)90204-9 [26] Zhang, G.W., Zhang, B.R., Yuan, X.C., et al., 2001. Qinling belt and continental dynamics. Science Press, Beijing, 1-729 (in Chinese). [27] Zhang, Z.W., Zhu, B.Q., Chang, X.Y., et al., 2001. Petrogenetic-metallogenetic background and time-space relationship of the East Qinling molybdenum ore belt, China. Geological Journal of China University, 7(3): 307-315 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253568319.html [28] Zhao, Y., Yang, Z.Y., Ma, X.H., 1994. Geotectonic transition from paleoasian system and paleotethyan system to paleopacific active continental margin in eastern Asia. Scientia Geologica Sinica, 29(2): 105-119 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX402.000.htm [29] Zhou, Z.X., Li, B.L., Guo, K.H., et al., 1993. Genesis of the gold (molybdenum) deposits in southern margin of the North China platform. Seismological Press, Beijing (in Chinese). [30] Zhu, L.M., Zhang, G.W., Guo, B., et al., 2008. U-Pb (LA-ICP-MS) zircon dating for the large Jinduicheng porphyry Mo deposit in the East Qinling, China, and its metallogenetic geodynamical setting. Acta Geologica Sinica, 82(2): 204-220 (in Chinese with English abstract). http://www.researchgate.net/publication/286716892_U-Pb_LA-ICP-MS_zircon_dating_for_the_large_Jinduicheng_porphyry_Mo_deposit_in_the_East_Qinling_China_and_its_metallogenetic_geodynamical_setting [31] 包志伟, 曾乔松, 赵太平, 等, 2009. 东秦岭钼矿带南泥湖-上房沟花岗斑岩成因及其对钼成矿作用的制约. 岩石学报, 25(10): 2523-2536. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910018.htm [32] 陈守余, 赵鹏大, 张寿庭, 等, 2009. 个旧超大型锡铜多金属矿床成矿多样性与深部找矿. 地球科学——中国地质大学学报, 34(2): 319-324. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902015.htm [33] 成秋明, 赵鹏大, 陈建国, 等, 2009. 奇异性理论在个旧锡铜矿产资源预测中的应用: 成矿弱信息提取和复合信息分解. 地球科学——中国地质大学学报, 34(2): 232-242. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902001.htm [34] 郭波, 朱赖民, 李犇, 等, 2009. 东秦岭金堆城大型斑岩钼矿床同位素及元素地球化学研究. 矿床地质, 28(3): 265-281. doi: 10.3969/j.issn.0258-7106.2009.03.004 [35] 黄典豪, 聂凤军, 王义昌, 等, 1984. 东秦岭地区钼矿床铅同位素组成特征及其成矿物质来源初探. 矿床地质, 3(4): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198404002.htm [36] 黄典豪, 吴澄宇, 杜安道, 等, 1994. 东秦岭地区钼矿床的铼-锇同位素年龄及其意义. 矿床地质, 13(3): 221-230. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ403.003.htm [37] 黄典豪, 吴澄宇, 聂凤军, 1987. 陕西金堆城斑岩钼矿床地质特征及成因探讨. 矿床地质, 6(3): 22-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198703003.htm [38] 焦建刚, 袁海潮, 何克, 等, 2009. 陕西华县八里坡钼矿床锆石U-Pb和辉钼矿Re-Os年龄及其地质意义. 地质学报, 83(8): 1159-1166. doi: 10.3321/j.issn:0001-5717.2009.08.014 [39] 李永峰, 毛景文, 胡华斌, 等, 2005. 东秦岭钼矿类型、特征、成矿时代及其地球动力学背景. 矿床地质, 24(3): 292-304. doi: 10.3969/j.issn.0258-7106.2005.03.009 [40] 李永峰, 毛景文, 刘敦一, 等, 2006. 豫西雷门沟斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义. 地质论评, 52(1): 122-131. doi: 10.3321/j.issn:0371-5736.2006.01.016 [41] 卢欣祥, 于在平, 冯有利, 等, 2002. 东秦岭深源浅成型花岗岩的成矿作用及地质构造背景. 矿床地质, 21(2): 168-178. doi: 10.3969/j.issn.0258-7106.2002.02.009 [42] 毛景文, 谢桂青, 张作衡, 等, 2005. 中国北方大规模成矿作用的期次及其地球动力学背景. 岩石学报, 21(1): 169-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501018.htm [43] 毛景文, 张作衡, 余金杰, 等, 2003. 华北及邻区中生代大规模成矿的地球动力学背景: 从金属矿床年龄精测得到启示. 中国科学(D辑), 33(4): 289-299. [44] 聂凤军, 樊建廷, 1989. 陕西金堆城-黄龙铺地区含钼花岗岩类稀土元素地球化学研究. 岩石矿物学杂志, 8(1): 22-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW198901002.htm [45] 尚瑞钧, 严阵, 黄云玉, 1988. 秦巴花岗岩. 武汉: 中国地质大学出版社. [46] 汤中立, 李小虎, 2006. 两类岩浆的小岩体成大矿. 第八届全国矿床会议论文集, 25(增刊): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1014.htm [47] 王新, 2001. 金堆城钼矿区两类斑岩的识别(硕士学位论文). 西安: 西北大学, 1-56. [48] 肖庆辉, 邓晋福, 马大全, 等, 2002. 花岗岩研究与思维方法. 北京: 地质出版社. [49] 徐克勤, 朱金初, 刘昌实, 等, 1989. 华南花岗岩类的成因系列和物质来源. 南京大学学报(地球科学), 25(3): 1-18. [50] 徐启东, 夏庆霖, 成秋明, 2009. 云南个旧矿集区区域构造-岩浆演化与锡铜多金属成矿系统. 地球科学——中国地质大学学报, 34(2): 307-313. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902013.htm [51] 严阵, 许全成, 张海军, 1985. 陕西省花岗岩. 西安: 西安交通大学出版社. [52] 叶会寿, 毛景文, 李永峰, 等, 2006. 东秦岭东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义. 地质学报, 80(7): 1078-1088. doi: 10.3321/j.issn:0001-5717.2006.07.014 [53] 张国伟, 张本仁, 袁学诚, 等, 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1-729. [54] 张正伟, 朱炳泉, 常向阳, 等, 2001. 东秦岭钼矿带成岩成矿背景及时空统一性. 高校地质学报, 7(3): 307-315. doi: 10.3969/j.issn.1006-7493.2001.03.007 [55] 赵越, 杨振宇, 马醒华, 1994. 东亚大地构造发展的重要转折. 地质科学, 29(2): 105-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX402.000.htm [56] 周作侠, 李秉伦, 郭抗衡, 等, 1993. 华北地台南缘金(钼)矿床成因. 北京: 地震出版社. [57] 朱赖民, 张国伟, 郭波, 等, 2008. 东秦岭金堆城大型斑岩钼矿床LA-ICP-MS锆石U-Pb定年及成矿动力学背景. 地质学报, 82(2): 204-220. doi: 10.3321/j.issn:0001-5717.2008.02.007