Characteristics of Oxygen and Hydrogen Isotope Distribution of Surface Runoff in the Lhasa River Basin
-
摘要: 为了探析径流过程中稳定同位素变化特征及其控制因子, 利用2008年拉萨河流域地表径流中δ18O和δD的监测数据以及相关气象和水文资料, 初步研究了流域δ18O和δD的空间分布特征.研究发现: (1)拉萨河流域以大气降水为主要补给来源, 且干流体现了较明显的蒸发效应; (2)河水偏正的d过量参数特征指示了冰雪融水的补给特征; (3)季风降水期间, 拉萨河流域由高程效应和水平距离所造成的δ18O递减率约为0.16‰·(100 m)-1; (4)大循环尺度下, 流域内河水呈现了明显的大陆效应.研究表明高海拔地区地表径流氧氘同位素分布特征能够有效示踪流域水文循环过程, 并提供古高度变化研究的稳定同位素证据.Abstract: The variation characteristics of oxygen and hydrogen isotopes in surface runoff of the Lhasa River basin was studied based on the observations of δ18O and δD in river water and related meteorological and hydrological data in 2008. The results indicate that: (1) precipitation is the main recharge source and that the Lhasa River has experienced strong evaporation; (2) positive d values indicate the snow melting water recharge; (3) during the Tibetan plateau summer monsoon period, the lapse rate of δ18O in river water is approximately 0.16‰·(100 m)-1 due to the "altitude effect"; (4) in large-scale circulation, the basin water presents a significant continental effect. This study demonstrates that it is possible to trace the hydrological cycle with oxygen isotope and deuterium distribution in land runoff in the high altitude areas and to provide the stable isotopic evidence of the ancient latitude variation.
-
表 1 拉萨河流域水体氢氧同位素组成
Table 1. δD and δ18O values of water samples collected from the Lhasa River basin
取样位置 编号 纬度 经度 高程(m) δ18OVSMOW(‰) δDVSMOW(‰) d值(‰) 雅鲁藏布江 01 29°19′53″ 90°41′39″ 3 597 -17.76 -132.2 9.9 雅鲁藏布江 02 29°18′37″ 90°45′35″ 3 583 -17.69 -134.6 6.9 拉萨河干流 03 29°23′48″ 90°52′58″ 3 600 -17.58 -131.2 9.4 拉萨河干流 04 29°26′40″ 90°55′46″ 3 605 -17.49 -130.8 9.1 拉萨河干流 05 29°29′59″ 90°56′20″ 3 612 -17.59 -131.1 9.6 拉萨河干流 06 29°33′55″ 90°59′34″ 3 625 -17.98 -134.2 9.6 拉萨河干流 07 29°33′55″ 90°59′39″ 3 634 -17.38 -128.4 10.7 拉萨河干流 08 29°38′34″ 91°06′50″ 3 655 -17.32 -129.0 9.6 拉萨河干流 09 29°38′23″ 91°09′39″ 3 655 -17.23 -127.9 9.9 拉萨河干流 10 29°40′03″ 91°18′04″ 3 685 -17.25 -129.0 9.1 拉萨河干流 11 29°40′22″ 91°23′16″ 3 696 -17.26 -127.2 10.9 拉萨河干流 12 29°48′58″ 91°33′36″ 3 753 -17.47 -128.6 11.2 拉萨河干流 13 29°47′57″ 91°35′59″ 3 760 -17.41 -129.1 10.2 拉萨河干流 14 29°48′48″ 91°40′08″ 3 785 -17.42 -129.2 10.2 拉萨河干流 22 29°52′07″ 91°45′27″ 3 815 -18.01 -132.0 12.0 拉萨河干流 23 29°54′27″ 91°48′42″ 3 831 -17.83 -131.1 11.5 拉萨河干流 24 29°56′22″ 91°51′52″ 3 843 -17.89 -132.6 10.5 拉萨河干流 25 29°58′41″ 91°52′51″ 3 882 -17.80 -131.5 10.9 拉萨河干流 31 30°01′32″ 90°51′16″ 3 885 -17.63 -132.1 9.0 拉萨河干流 32 30°02′37″ 91°49′11″ 3 892 -17.59 -132.7 8.1 拉萨河干流 33 30°04′14″ 91°46′32″ 3 904 -17.77 -133.2 9.0 拉萨河干流 34 30°04′44″ 91°43′55″ 3 914 -17.43 -131.1 8.3 拉萨河干流 35 30°04′24″ 91°37′48″ 3 947 -17.44 -127.9 11.6 拉萨河干流 36 30°04′38″ 91°34′21″ 3 962 -17.37 -130.5 8.5 拉萨河干流 37 30°06′08″ 91°29′25″ 4 001 -17.24 -129.7 8.2 拉萨河干流 38 30°08′37″ 91°24′52″ 4 013 -17.21 -129.6 8.1 拉萨河干流 39 30°11′35″ 91°20′45″ 4 045 -16.95 -127.9 7.7 拉萨河干流 40 30°13′59″ 91°21′59″ 4 056 -16.86 -127.3 7.6 热振藏布 41 30°16′01″ 91°23′21″ 4 069 -16.67 -123.2 10.2 热振藏布 42 30°17′53″ 91°27′46″ 4 100 -16.82 -123.0 11.6 热振藏布 43 30°18′28″ 91°31′07″ 4 125 -16.64 -119.8 13.3 热振藏布 45 30°12′07″ 91°20′08″ 4 049 -17.18 -126.4 11.1 拉曲 46 30°15′26″ 91°16′27″ 4 076 -17.47 -127.7 12.0 拉曲 47 30°15′50″ 91°12′49″ 4 097 -17.36 -126.9 12.0 学绒藏布 26 30°00′06″ 91°56′14″ 3 899 -18.66 -137.8 11.5 学绒藏布 27 30°00′53″ 92°01′07″ 3 988 -18.59 -137.8 10.9 学绒藏布 28 30°01′37″ 92°04′08″ 4 047 -18.6 -140.2 8.6 学绒藏布 29 30°02′50″ 92°07′45″ 4 099 -18.69 -137.5 12.0 学绒藏布 30 30°05′23″ 92°10′31″ 4 179 -18.65 -134.8 14.5 墨竹曲 15 29°46′38″ 91°52′28″ 3 919 -18.12 -135.8 9.1 墨竹曲 16 29°45′23″ 91°56′10″ 3 981 -18.25 -136.2 9.8 墨竹曲 17 29°42′57″ 92°02′25″ 4 093 -18.33 -136.7 9.9 墨竹曲 18 29°42′38″ 92°09′59″ 4 256 -18.44 -137.7 9.8 墨竹曲 19 29°42′35″ 92°14′52″ 4 372 -18.32 -137.6 9.0 墨竹曲 20 29°41′23″ 92°16′14″ 4 398 -19.19 -143.4 10.1 墨竹曲 21 29°50′04″ 91°44′37″ 3 814 -18.24 -135.2 10.7 堆龙曲 50 29°40′15″ 90°54′53″ 3 692 -18.03 -133.4 10.9 堆龙曲 51 29°45′22″ 90°47′11″ 3 807 -18.31 -134.0 12.5 堆龙曲 52 29°55′11″ 90°42′54″ 3 935 -18.18 -135.0 10.5 堆龙曲 53 30°04′58″ 90°33′31″ 4 264 -18.41 -133.0 14.3 表 2 阿尼玛卿山雪水及西藏羊八井河水氢氧同位素组成
Table 2. δD and δ18O values of the melt-water samples collected from the Animaqing Mountain and the river water samples from Yangbajing
样品编号 高程(m) δ18O(‰) δD(‰) d值(‰) 山-1a 4 700 -13.41 -87.0 20.3 山-2a 5 700 -8.68 -49.0 20.4 山-3a 6 050 -10.67 -65.2 20.2 W-24b / -19.98 -141.0 18.8 W-78b / -19.28 -135.5 18.7 注:a.雪水样,1983年,王勇峰取自阿尼玛卿山;b.河水样,选自卫克勤等(1983). -
[1] Cameron, E.M., Hall, G.E.M., Veizer, J., et al., 1995. Isotopic and elemental hydrogeochemistry of a major river system: Fraser River, British Columbia, Canada. Chemical Geology, 122(1-4): 149-169. doi: 10.1016/0009-2541(95)00007-9 [2] Clark, I.D., Fritz, P., 1997. Environmental isotopes in hydrology. Lewis, Boca Raton, Florida. [3] Craig, H., 1961. Istopic variations in meteoric waters. Science, 133: 1702-1703. doi: 10.1126/science.133.3465.1702 [4] Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus, 16: 436-468. doi: 10.1111/j.2153-3490.1964.tb00181 [5] Gat, J.R., Carmi, I., 1970. Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. Journal of Geophysical Research, 75: 3039-3048. doi: 10.1029/JC075i015p03039 [6] Gao, J., Tian, L.D., Liu, Y.Q., et al., 2009. Oxygen isotope variation in the water cycle of the Yamdrok-tso Lake basin in southern Tibetan plateau. Chinese Sci. Bull., 54: 2758-2765. [7] Joussaume, S., Sadourny, R., Jouzel, J., 1984. A general circulation model of water isotope cycles in the atmosphere. Nature, 311: 24-29. doi: 10.1038/311024a0 [8] Liu, Z.F., Tian, L.D., Yao, T.D., et al., 2008. The temporal and spatial variations of δ18O in river water of the Yarlung Zangbo River basin. Journal of Glaciology and Geocryology, 30(1): 20-27 (in Chinese with English abstract). [9] Ning, A.F., Yin, G., Liu, T.C., 2000. Characteristics of isotope distribution of atmospheric precipitation in the Lhasa River area. Journal of Mineralogy and Petrology, 20(3): 95-99 (in Chinese with English abstract). doi: 10.1029/JC084iC07p03773 [10] Tian, L.D., Yao, T.D., Pu, J.C., et al., 1997. Characteristics of δ18O in summer precipitation at Lhasa. Journal of Glaciology and Geocryology, 19(4): 295-301 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10006913076 [11] Torgersen, T., 1979. Isotopic composition of river runoff on the U.S. east coast: evaluation of stable isotope versus salinity plots for coastal water mass identification. Journal of Geophysical Research, 84(C7): 3773-3775. doi: 10.1029/JC084iC07p03773 [12] Wang, N.L., Zhang, S.B., He, J.Q., et al., 2009. Tracing the major source area of the mountainous runoff generation of the Heihe River in Northwest China using stable isotope technique. Chinese Sci. Bull., 54: 2751-2757. http://nsr.oxfordjournals.org/external-ref?access_num=10.1007/s11434-009-0505-8&link_type=DOI [13] Wei, K.Q., Lin, R.F., Wang, Z.X., 1983. Hydrogen and oxygen stable isotopic composition and tritium content of waters from Yangbajing geothermal area, Xizang, China. Geochimica, (04): 338-336 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX198304001.htm [14] Yang, X.X., Xu, B.Q., Yang, W., et al., 2009. Study of altitudinal lapse rates of δ18O in precipitation/river water with seasons on the southeast Tibetan plateau. Chinese Sci. Bull., 54: 2742-2750. [15] Yao, T.D., Zhou, H., Yang, X.X., 2009. Indian monsoon influences altitude effect of δ18O in precipitation/river water on the Tibetan plateau. Chinese Sci. Bull., 54: 2724-2731. [16] 高晶, 田立德, 刘勇勤, 等, 2009. 青藏高原南部羊卓雍错流域稳定同位素水文循环研究. 科学通报, 54: 2153-2159. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200915007.htm [17] 刘忠方, 田立德, 姚檀栋, 等, 2008. 雅鲁藏布江流域河水中氧稳定同位素的时空变化. 冰川冻土, 30(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200801004.htm [18] 宁爱凤, 尹观, 刘天仇, 2000. 拉萨河地区的大气降水同位素分布特征. 矿物岩石, 20(3): 95-99. doi: 10.3969/j.issn.1001-6872.2000.03.018 [19] 田立德, 姚檀栋, 蒲健辰, 等, 1997. 拉萨夏季降水中氧稳定同位素变化特征. 冰川冻土, 19(4): 295-301. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT704.001.htm [20] 王宁练, 张世彪, 贺建桥, 等, 2009. 祁连山中段黑河上游山区地表径流水资源主要形成区域的同位素示踪研究. 科学通报, 54: 2148-2152. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200915006.htm [21] 卫克勤, 林瑞芬, 王志祥, 1983. 西藏羊八井地热水的氢、氧稳定同位素组成及氚含量. 地球化学, (4): 338-336. doi: 10.3321/j.issn:0379-1726.1983.04.002 [22] 杨晓新, 徐柏青, 杨威, 等, 2009. 藏东南不同季节水体中氧同位素的高程递减变化研究. 科学通报, 54: 2140-2147. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200915005.htm [23] 姚檀栋, 周行, 杨晓新, 2009. 印度季风水汽对青藏高原降水和河水中δ18O高程递减率的影响. 科学通报, 54: 2124-2130. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200915003.htm