Clay Mineralogy and Its Paleoclimatic Indicator of the Miocene Sediments of Xunhua Basin
-
摘要: 为揭示循化盆地沉积物对古气候及青藏高原隆升过程的指示作用, 采用X射线衍射(XRD)、扫描电子显微镜(SEM)方法对循化盆地中新世沉积物中粘土矿物组成、微观形貌进行了深入研究.结果表明, 沉积物中粘土矿物以伊利石、蒙脱石为主, 绿泥石、高岭石和坡缕石含量较低; 粘土矿物相对含量及伊利石结晶度变化特征指示, 在23.1~21.2 Ma期间, 古气候以温暖潮湿为主; 21.2~14.3 Ma期间古气候以冷干为主, 出现短暂的相对暖湿时段; 14.3~10.6 Ma期间, 古气候以相对暖湿为主; 10.6~9.3 Ma时期, 气候以冷干为主; 9.3~5.2 Ma期间, 气候虽有冷干与暖湿波动, 但总体上以暖湿为主.在21.2 Ma和5.8 Ma时期发生的明显强降温事件, 可能与青藏高原的阶段性隆升有关.Abstract: To reconstruct the paleoclimate in the Miocene, clay mineralogy of the Xunhua sediments was investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods. Our results show that clay minerals of the Miocene sediments are mainly illite and smectite, with minor chlorite, kaolinite, and palygorskite. The apparent changes in their relative contents and illite crystallinity suggest that warm and humid paleoclimate conditions prevailed over the period of 23.1—21.2 Ma, then the mainly cold and dry climate succeeded in the period of 21.2—14.3 Ma, with short intervals of warm and humid climate conditions. The mainly warm and humid climate dominated in the period of 14.3-10.6 Ma, and it changed into a mainly cold and dry climate in the period of 10.6—9.3 Ma. The paleoclimate of the episode of 9.3—5.2 Ma was warm and humid, and it fluctuated frequently between cold/dry and warm/humid. The rapid changes in clay indices in the curves at 21.2 Ma and 5.8 Ma probably suggest the uplift in Xunhua of Qinghai-Tibet plateau.
-
Key words:
- clay mineral /
- crystallinity /
- Miocene /
- Xunhua basin /
- uplift
-
图 1 研究区地质简图及剖面位置图(据张楗钰等,2010)
1.第四系;2.上新统积石组;3.中—上新统临夏组;4.中新统咸水河组;5.渐新统—中新统他拉组;6.下白垩统河口群;7.中—上三叠统古浪堤组;8.元古宇化隆岩群;9.角度不整合;10.断层;11.实测剖面
Fig. 1. Geological map of studied area and the location of the measured section
-
[1] Adatte, T., Keller, G., 1998. Increased volcanism, sea-level and climatic fluctuation through the K/T boundary: mineralogical and geochemical evidences Oil and Natural Gas Corporation Limited International Seminar on Recent Advances in the Study of Cretaceous Sections Chennai. Regional Geoscience Laboratory, Chennai, India. [2] Biscaye, P.E., 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76(7): 803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2 [3] Cai, X.F., Liu, D.M., Wei, Q., R., et al., 2008. Characteristics of north of Tibet plateau uplift at Paleocene-Miocene-the evidence from Ke Kexili basin. Acta Geologica Sinica, 82(2): 194-203 (in Chinese with English abstract). [4] Chamley, H., 1989. Clay sedimentology. Springer-Verlag, Berlin. [5] Chen, T., Wang, H., Zhang, Z.Q., et al., 2003. Clay minerals as indicators of paleoclimate. Acta Petrologica et Mineralogica, 22(4): 416-420 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-mineralogica_thesis/0201254453427.html [6] Chen, T., Wang, H.J., Zhang, Z.Q., et al., 2005. An approach to paleoclimate—reconstruction by clay minerals. Acta Scicentiarum Naturalum Universitis Pekinesis, 41(2): 309-316 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ200502019.htm [7] Ducloux, J., Meunier, A., Velde, B., 1976. Smectite, chlorite and a regular interlayered chlorite-vermiculite in soils developed on a small serpentinite body, Massif Central, France. Clay Minerals, 11(2): 121-135. doi: 10.1180/claymin.1976.011.2.04 [8] Fang, X.M., Garzion, C., Van der Voo, R., 2003. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia basin, China. Earth and Planetary Science Letters, 210: 545-560. doi: 10.1016/S0012-821X(03)00142-0 [9] Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159-163. doi: 10.1038/416159a [10] Hong, H.L., 2010. A review on paleoclimate interpretation of clay minerals. Geological Science and Technology Information, 29(1): 1-8 (in Chinese with English abstract). [11] Hong, H.L., Li, Z.H., Xue, H.J., et al., 2007. Oligocene clay mineralogy of the Linxia basin: evidence of paleoclimatic evolution subsequent to the initial-stage uplift of the Tibetan plateau. Clays and Clay Minerals, 55(5): 491-503. doi: 10.1346/CCMN.2007.0550504 [12] Hong, H.L., Yu, N., Xue, H.J., et al., 2007. Clay mineralogy and its palaeoclimatic indicator of the Late Pleistocene in Linxia basin. Geoscience, 21(2): 406-414 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200702027.htm [13] Hong, H.L., Zhang, K, X., Li, Z.H., 2009. Climatic and tectonic uplift evolution since ~7 Ma in Gyirong basin, southwestern Tibet plateau: clay mineral evidence. International Journal of Earth Sciences, 1-11. [14] Hong, H.L., Zhang, N., Li, Z.H., et al., 2008. Clay mineralogy across the P-T boundary of the Xiakou Section, China: evidence of clay provenance and environment. Clay and Clay Minerals, 56(2): 131-143. doi: 10.1346/CCMN.2008.0560201 [15] Huang, S.J., 1990. Identification and diagenetic significance of interstratified illitemontmorillonite series. Sedimentary Geology and Tethyan Geology, 5: 23-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD199005003.htm [16] Ingles, M., Salvany, J.M., Muñoz, A., 1998. Relationship of mineralogy to depositional environments in the non-marine Tertiary mudstones of the southwestern Ebro basin (Spain). Sedimentary Geology, 116(3-4): 159-176. doi: 10.1016/S0037-0738(97)00112-7 [17] Ji, J.L., Zhang, K.X., Qiang, T., et al., 2010. Magnetostratigraphy of the Neogene strata in the Xunhua basin, Qinghai Province. Earth Science—Journal of China University of Geosciences, 35(5): 803-810 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.093 [18] Kahle, M., Kleber, M., Jahn, R., 2002. Review of XRD-based quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors. Geoderma, 109(3-4): 191-205. doi: 10.1016/S0016-7061(02)00175-1 [19] Khadkikar, A.S., Chamyal, L.S., Ramesh, R., 2000. The character and genesis of calcrete in Late Quaternary alluvial deposits, Gujarat, western India, and its bearing on the interpretation of ancient climates. Palaeogeography, Palaeoclimatology, Palaeoecology, 162(3-4): 239-261. doi: 10.1016/S0031-0182(00)00130-9 [20] Kübler, B., 1964. Les argiles, indicateurs de métamorphisme. Revue de l'Institut Francais du Pétrole, 19(10): 1093-1112. http://www.researchgate.net/publication/284602489_Les_argiles_indicateurs_de_mtamorphisme [21] Li, J.J., Feng, Z.D., Tang, L.Y., 1988. Late Quaternary monsoon patters on the loess plateau of China. Earth Surface Processes and Landforms, 13: 125-135. doi: 10.1002/esp.3290130204 [22] Liu, S.F., Zhang, G.W., Heller, P.L., 2007. Cenozoic basins development and its indication of plateau growth in the Xunhua-Guide district. Science in China (Ser. D), 50(Suppl. Ⅱ): 277-291. http://www.cqvip.com/QK/60111X/2007z2/1000887585.html [23] Liu, Z.F., Christophe, C., Alain, T., et al., 2004. Erosional history of the eastern Tibetan plateau since 190 kyr ago: clay mineralogical and geochemical investigations from the southwestern South China Sea. Marine Geology, 209(1-4): 1-18. doi: 10.1016/j.margeo.2004.06.004 [24] Ma, Y.Z., Li, J.J., Fang, X.M., 1998. Palynoflora and climatic evolution records from red-beds (30.6-5.0 Ma) in Linxia area. Chinese Science Bulletin, 43(3): 301-304 (in Chinese). doi: 10.1360/csb1998-43-3-301 [25] Manalt, F., Beck, C., Disnar, J.R., 2001. Evolution of clay mineral assemblages and organic matter in the late glacial—Holocene sedimentary infill of Lake Annecy (northwestern Alps): paleoenvironmental implications. Journal of Paleolimnology, 25(2): 179-192. doi: 10.1023/A:1008140114714 [26] Médard, T., 2000. Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth-Science Reviews, 49(1-4): 201-221. doi: 10.1016/S0012-8252(99)00054-9 [27] Merriman, R.J., 2002. Contrasting clay mineral assemblages in British Lower Palaeozoic slate belts: the influence of geotectonic setting. Clay Minerals, 37(2): 207-219. doi: 10.1180/0009855023720041 [28] Moore, D.M., Reynolds, R.C., 1997. X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York, USA. [29] Pares, J.M., Van der Voo, R., Downs, W.R., et al., 2003. Northeastward growth and uplift of the Tibetan plateau: magnetostratigraphic insights from the Guide basin. Journal of Geophysical Research, 108(B1)2017. doi: 10.1029/2001JB001349 [30] Perederij, V.I., 2001. Clay mineral composition and palaeoclimatic interpretation of the Pleistocene deposits of Ukraine. Quaternary International, 76-77: 113-121. doi: 10.1016/S1040-6182(00)00095-1 [31] Quigley, R.M., Martin, R.T., 1961. Chloritized weathering products of a New England Glacial Till. Clays and Clay Minerals, 10: 107-116. doi: 10.1346/CCMN.1961.0100110 [32] Shi, Y.F., Li, J.J., Li, B.Y., et al., 1998. Uplift of the Qinghai-Xizang (Tibetan) plateau and environmental change during Late Cenozoic. Guangdong Science and Technology Press, Guangzhou, 1-463 (in Chinese). [33] Singer, A., 1984. The paleoclimatic interpretation of clay minerals in sediment: a review. Earth-Science Reviews, 21(4): 251-293. doi: 10.1016/0012-8252(84)90055-2 [34] Song, C.H., Bai, J.F., Zhao, Y.D., et al., 2005. The color of lacustrine sediments recorded climatic changes from 13 to 4.5 Myr in Linxia basin. Acta Sedimentologica Sinica, 23(3): 507-513 (in Chinese with English abstract). http://www.researchgate.net/publication/292706052_The_color_of_lacustrine_sediments_recorded_climatic_changes_from_13_to_45_Myr_in_Linxia_basin [35] Tateo, F., Sabbadini, R., Morandi, N., 2000. Palygorskite and sepiolite occurrence in Pliocene lake deposits along the River Nile: evidence of an arid climate. Journal of African Earth Sciences, 31(3-4): 633-645. doi: 10.1016/S0899-5362(00)80011-1 [36] Velde, B., 1985. Clay minerals: a physico-chemical explanation of their occurrence (developments in sedimentology). Elsevier Science, Amsterdam, 40. [37] Wan, S.M., Li, A.C., Xu, K.H., et al., 2008. Characteristics of clay minerals in the northern South China Sea and its implications for evolution of East Asian Monsoon since Miocene. Earth Science—Journal of China University of Geosciences, 33(3): 289-300 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.039 [38] Wang, D.C., Zhang, J.J., Yang, X.Y., et al., 2009. Tectonic and environmental evolution of Gyirong basin, and its relationship to the uplift of Tibetan plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 45(1): 79-89 (in Chinese with English abstract). [39] Wang, H.J., Zhou, J., 1998. On the indices of illite crystallinity. Acta Petrologica Sinica, 14(3): 395-405 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB803.012.htm [40] Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686-693. doi: 10.1126/science.1059412 [41] Zhang, J.Y., Zhang, K.X., Ji, J.L., et al., 2010. Oligocene-Pliocene sedimentary facies analysis and sedimentary evolution of Xunhua basin in northeastern margin of Qinghai-Tibet plateau. Earth Science—Journal of China University of Geosciences, 35(5): 774-788 (in Chinese with English abstract) doi: 10.3799/dqkx.2010.091 [42] Zhang, K.X., Wang, G.C., Chen, F.N., et al., 2007. Coupling between the uplift of Qinghai-Tibet plateau and distribution of basins of Paleogene-Neogene. Earth Science—Journal of China University of Geosciences, 32(5): 583-597 (in Chinese with English abstract). [43] Zhong, W., Li, J.J., Fang, X.M., et al., 1998. Features of paleoclimatic changes since about 30 MaBP in Linxia basin—geochemical records in Cenozoic sediment. Geographical Research, 17(3): 258-284 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj199803006 [44] 蔡雄飞, 刘德民, 魏启荣, 等, 2008. 古新世—中新世以来青藏高原北缘隆升的特征——来自可可西里盆地的报告. 地质学报, 82(2): 194-203. doi: 10.3321/j.issn:0001-5717.2008.02.006 [45] 陈涛, 王河锦, 张祖青, 等, 2005. 浅谈利用黏土矿物重建古气候. 北京大学学报(自然科学版), 41(2): 309-316. doi: 10.3321/j.issn:0479-8023.2005.02.019 [46] 陈涛, 王欢, 张祖青, 等, 2003. 粘土矿物对古气候指示作用浅析. 岩石矿物学杂志, 22(4): 416-420. doi: 10.3969/j.issn.1000-6524.2003.04.022 [47] 洪汉烈, 2010. 黏土矿物古气候意义研究的现状与展望. 地质科技情报, 29(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201001000.htm [48] 洪汉烈, 于娜, 薛惠娟, 等, 2007. 临夏盆地晚更新世沉积物粘土矿物的特征及其古气候指示. 现代地质, 21(2): 406-414. doi: 10.3969/j.issn.1000-8527.2007.02.026 [49] 黄思静, 1990. 混层伊利石-蒙脱石的鉴定及其成岩意义. 岩相古地理, 5: 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD199005003.htm [50] 季军良, 张克信, 强泰, 等, 2010. 青海循化盆地新近纪磁性地层学及其对青藏高原东北缘隆升的年代学制约. 地球科学——中国地质大学学报, 35(5): 803-810. [51] 刘少峰, 张国伟, Heller, P.L., 2007. 循化—贵德地区新生代盆地发育及其对高原增生的指示. 中国科学(D辑), 37(增刊Ⅰ): 235-248. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1025.htm [52] 马玉贞, 李吉均, 方小敏, 1998. 临夏地区30.6~5.0 Ma红层孢粉植物群与气候演化记录. 科学通报, 43(3): 301-304. doi: 10.3321/j.issn:0023-074X.1998.03.019 [53] 施雅风, 李吉均, 李炳元, 等, 1998. 青藏高原晚新生代隆升与环境变化. 广州: 广东科技出版社, 1-463. [54] 宋春晖, 白晋锋, 赵彦德, 等, 2005. 临夏盆地13.0~4.4 Ma湖相沉积物颜色记录的气候变化探讨. 沉积学报, 23(3): 507-513. doi: 10.3969/j.issn.1000-0550.2005.03.018 [55] 万世明, 李安春, 胥可辉, 等, 2008. 南海北部中新世以来粘土矿物特征及东亚古季风记录. 地球科学——中国地质大学学报, 33(3): 289-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200803002.htm [56] 王德朝, 张进江, 杨雄英, 等, 2009. 吉隆盆地构造、环境演化与青藏高原隆升. 北京大学学报(自然科学版), 45(1): 79-89. doi: 10.3321/j.issn:0479-8023.2009.01.013 [57] 王河锦, 周健, 1998. 关于伊利石结晶度诸指数的评价. 岩石学报, 14(3): 395-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB803.012.htm [58] 张楗钰, 张克信, 季军良, 等, 2010. 青藏高原东北缘循化盆地渐新世-上新世沉积相分析与沉积演化. 地球科学——中国地质大学学报, 35(5): 774-788. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005006.htm [59] 张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪-新近纪隆升与沉积盆地分布耦合. 地球科学——中国地质大学学报, 32(5): 583-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705002.htm [60] 钟巍, 李吉均, 方小敏, 等, 1998. 青藏高原东北边缘临夏盆地近30 MaB.P. 以来古气候环境演变特征——沉积物地球化学元素记录. 地理研究, 17(3): 258-264. doi: 10.3321/j.issn:1000-0585.1998.03.006