Major and Trace Element Characters of the Sediments and Paleoclimatic Evolvement during about 23.1-5.0 Ma in Xunhua Basin, Qinghai
-
摘要: 位于青藏高原东北缘循化盆地南缘的循化县积石镇羊圈贡拜-西沟上庄剖面, 出露地层从老到新依次为他拉组、咸水河组和临夏组, 总厚1 047 m.在野外地层剖面详细实测与沉积相研究基础上, 系统采集地球化学样品进行常量和微量元素的测试和分析, 结果表明: 该剖面沉积物主要化学成分为SiO2、Al2O3、CaO和TFeO(Fe2O3+FeO), 4者平均含量之和在80%以上.剖面沉积物中元素平均含量与上部陆壳(UCC)元素平均含量比揭示了研究区在23.1~5.0 Ma期间总体较为干旱寒冷的气候环境特征.根据化学蚀变指数(chemical index of alteration, CIA)、Rb/Sr、Ti/Sr、CaO/Sr比值的变化划分为4个气候演变阶段: (Ⅰ)23.1~17.0 Ma为冷干的气候阶段, 分为Ⅰ1(23.1~21.8 Ma)回暖的半干旱气候期和Ⅰ2(21.8~17.0 Ma)变冷变干的气候期; (Ⅱ)17.0~13.0 Ma为暖湿的气候阶段; (Ⅲ)13.0~8.5 Ma为凉湿的气候阶段; (Ⅳ)8.5~5.0 Ma为冷干的气候阶段, 分为Ⅳ1(8.5~7.0 Ma)波动的气候转型期和Ⅳ2(7.0~5.0 Ma)转冷旱化的气候期.循化剖面常量、微量元素分布记录的循化盆地及周边地区的气候演化受青藏高原构造隆升和全球气候变化的共同影响.Abstract: The measured Yangjuangongbai-Xigoushangzhuang Section, Xunhua Section, lies in the southern margin of the Xunhua basin, which is composed of three lithostratigraphic units named Tala Formation, Xianshuihe Formation and Linxia Formation from Oligocene to Pliocene with the thickness of 1 047 m. According to the detail research of the section and sedimentary facies, major and trace elements were analyzed to reveal paleoclimatic information from the deposits during 23.1-5.0 Ma. SiO2, Al2O3, CaO and TFeO (Fe2O3+FeO) are the main chemical components with a sum of 80% at the average level. The element ratios between the deposits and the upper continental crust (UCC) indicate that the paleoclimate of the studied area is characterized as cold and dry during 23.1-5.0 Ma. According to variations of CIA (chemical index of alteration), Rb/Sr, TiO2/Sr and CaO/Sr, the paleoclimate can be divided into four stages. Stage Ⅰ: 23.1-17.0 Ma, it was characterized by cold-dry paleoclimate, including two substages: substage Ⅰ1 (23.1-21.8 Ma) was half-dry and turned warm since Mi1; substage Ⅰ2 (21.8-17.0 Ma) became cold and dry. Stage Ⅱ: 17.0-13.0 Ma, it was warm and wet. Stage Ⅲ: 13.0-8.5 Ma, it was cooler than stage Ⅱ but also wet. Stage Ⅳ: 8.5-5.0 Ma, it changed cold and dry again with two substages: substage Ⅳ1 (8.5-7.0 Ma) was fluctuant changeover and substage Ⅳ2 (7.0-5.0 Ma) became cold and dry. We conclude that both uplift of the Qinghai-Tibet plateau and global climatic changes had effect on the paleoclimatic evolvement during about 23.1-5.0 Ma in the Xunhua basin.
-
Key words:
- Qinghai-Tibet plateau /
- Xunhua basin /
- Neogene /
- major and trace elements /
- paleoclimatic evolvement
-
图 1 青海循化研究区地质简图及剖面位置(据张楗钰等,2010)
1.第四系;2.上新统积石组;3.中-上新统临夏组;4.中新统咸水河组;5.渐新统-中新统他拉组;6.下白垩统河口群;7.中-上三叠统古浪堤组;8.元古宇化隆岩群;9.角度不整合;10.断层;11.实测剖面
Fig. 1. Simplified geological map of the Xunhua Section, Qinghai
-
[1] Bain, D.C., Langan, S.J., 1995. Weathering rates in catchments calculated by different methods and their relationship to acidic inputs. Water, Air and Soil Pollution, 85: 1051-1056. doi: 10.1007/BF00477120 [2] Billups, K., Channell, J.E.T., Zachos, J., 2002. Late Oligocene to Early Miocene geochronology and paleoceanography from the Subantarctic South Atlantic. Paleoceanography, 17(1): 4-10. doi: 10.1029/2000PA000568 [3] Chen, J., Wang, Y.J., Chen, Y., et al., 2001. Rb and Sr geochemical characterization of the Chinese loess and its implications for palaeomonsoon climate. Acta Geologica Sinica, 75(2): 259-266 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dzxb-e200002025 [4] Chen, K.Z., 1987. Late Pleistocene saline evolvement in Qaidam basin. In: China-Australia Cooperation in Chinese Academy of Quaternary Research, ed., Chinese and Austria conference corpus of Quaternary period. Science Press, Beijing, 83-91 (in Chinese). [5] Deng, H.W., Qian, K., 1993. Analyses of sedimentary geochemisty and environment. Gansu Science and Technology Publishing House, Lanzhou (in Chinese). [6] Feng, L.J., Chu, X.L., Zhang, Q.R., et al., 2003. CIA (chemical index of alteration) and its applications in the Neoproterozoic clastic rocks. Earth Science Frontiers, 10(4): 539-544 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200304027.htm [7] Ji, J.L., Zhang, K.X., Qiang, T., et al., 2010. Magnetostratigraphy of the Neogene strata in the Xunhua basin, Qinghai Province. Earth Science—Journal of China University of Geosciences, 35(5): 803-810 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.093 [8] Kuang, S.P., Xu, Z., Zhang, S.S., et al., 2002. Applying geochemistry to research into Meso-Cenozoic climate: discussion on Jurassic climatic change in Sichuan basin, China. Journal of Qingdao Institute of Chemical Technology, 23(1): 4-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QDHG200201001.htm [9] Li, J.L., 1989. Introduction of geochemistry. Lanzhou University Publishing House, Lanzhou, 88-92 (in Chinese). [10] Li, M.H., Kang, S.C., 2007. Responses of lake sediments to paleoenvironmental and paleoclimatic changes in Tibetan plateau. Journal of Salt Lake Research, 15(1): 63-72 (in Chinese with English abstract). [11] Liu, L., Hu, C.Y., 1991. The matter source indication of main component in clastic sandstone. Lithofacies Paleogeography, 6: 48-53 (in Chinese). [12] Liu, S.F., Zhang, G.W., Heller, P.L., 2007. The development and the indicating function from Xunhua-Guide Cenozoic basin. Science in China (Ser. D), 37(Suppl. I): 235-248 (in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=1000887585 [13] Liu, Y.J., Cao, L.M., Li, Z.L., et al., 1984. Elements geochemisty. Science Press, Beijing (in Chinese). [14] Lu, X.C., 2007. Elemental geochemieal characters and palaeoclimatic changes of lacustrine sediments of 14-4.4 Ma in Linxia basin (Dissertation). Lanzhou University, Lanzhou (in Chinese). [15] Ma, Y.Z., Li, J.J., Fang, X.M., 1998. Palynoflora in red layer and climate evolution recorded in Linxia about 30.6-5.0 Ma. Chinese Science Bulletin, 43(3): 301-304 (in Chinese). doi: 10.1360/csb1998-43-3-301 [16] Ma, Z.D., Han, Y.W., 2003. Geochemistry. Geological Publishing House, Beijing, 46-47 (in Chinese). [17] McLennan, S.M., 1993. Weathering and global denudation. The Journal of Geology, 101: 295-303. doi: 10.1086/648222 [18] Miller, E.K., Blum, J.D., Friedland, A.J., 1993. Determination of soil exchangeable-cation loss and weathering rates using Sr isotopes. Nature, 362: 438-441. doi: 10.1038/362438a0 [19] Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717. doi: 10.1038/299715a0 [20] Song, C.H., Lu, X.C., Xing, Q., et al., 2007. Late Cenozoic element characters and palaeoclimatic change of the lacustrine sediments in Linxia basin, China. Acta Sedimentologica Sinica, 25(3): 409-416 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CJXB200703011.htm [21] Wang, P.X., Zhao, Q.H., Jian, Z.M., et al., 2003. Thirty million year deepsea records in South China Sea. Chinese Science Bulletin, 48(23): 2524-2535. doi: 10.1007/BF03037016 [22] Wang, Y.F., 1993. Lacustrine carbonate chemical sedimentation and climatic-environmental evolution—a case study of Qinghai Lake and Daihai Lake. Oceanologia et Limnologia Sinica, 24 (1): 31-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ199301004.htm [23] Yang, J.H., Wang, Y., Zhang, Z.K., et al., 2007. Geochemical characteristics of trace elements in Baoying borehole sediments and their implications for depositional environments. Quaternary Sciences, 27(5): 735-749 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200705017.htm [24] Yin, K., Hong, H.L., Li, R.B., et al., 2010. Characteristics of clay mineralogy of Late Oligocene sediments in Xunhua basin, Qinghai Province and their implications for palaeoclimate. Geoscience, 24(1): 187-194 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geoscience_thesis/0201254375761.html [25] Yu, Q.W., Li, C.A., 2001. Regional geological character and field mapping in the northeast margin of Qinghai-Tibet plateau in Cenozoic. China University of Geosciences Press, Wuhan, 1-123 (in Chinese). [26] Zachos, J.C., Dickens, G.R., Zeebe, R.E., 2008. An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451(17): 279-283. http://www.bioone.org/servlet/linkout?suffix=bibr71&dbid=8&doi=10.1080%2F02724634.2012.635736&key=18202643 [27] Zachos, J.C., Pagani, M., Sloan, L., et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686-693. doi: 10.1126/science.1059412 [28] Zhang, J.Y., Zhang, K.X., Ji, J.L., et al., 2010. Oligocene—Pliocene sedimentary facies analysis and sedimentary evolution of Xunhua basin in northeastern margin of Qinghai-Tibet plateau. Earth Science—Journal of China University of Geosciences, 35(5): 774-788 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.091 [29] Zhang, K.X., Wang, G.C., Cao, K., et al., 2008. Cenozoic sedimentary records and geochronological constraints of differential uplift of the Qinghai-Tibet plateau. Science in China (Ser. D), 51(11): 1658-1672. doi: 10.1007/s11430-008-0132-2 [30] Zhang, K.X., Wang, G.C., Chen, F.N., et al., 2007. Coupling between the uplift of Qinghai-Tibet plateau and distribution of basins of Paleogene—Neogene. Earth Science—Journal of China University of Geosciences, 32(5): 583-597 (in Chinese with English Abstract). [31] Zhang, K.X., Wang, G.C., Ji, J.L., et al., 2010. Stratigraphic realm and sedimentary sequence of Paleogene-Neogene of Qinghai-Tibet plateau and sedimentary response to the uplift of the plateau. Science in China (Earth Sciences), 53(9): 1271-1294. doi: 10.1007/s11430-010-4048-2 [32] Zhao, Z.H., 1997. The trace elements geochemistry theory. Science Press, Beijing (in Chinese). [33] Zheng, H.B., Huang, X.T., Liu, R., et al., 2005. The evolution of the Asian monsoon since Late Miocene: evidence from the continental and oceanic sediments. Bulletin of Mineralogy, Petrology and Geochemistry, 24(2): 103-109 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH200502002.htm [34] Zhong, W., Fang, X.M., Li, J.J., et al., 1998a. The geochemical record of paleoclimate during about 7.00-0.73 Ma in Linxia basin, Gansu Province. Journal of Arid Land Resources and Environment, 12(1): 36-43 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHZH801.005.htm [35] Zhong, W., Li, J.J., Fang, X.M., et al., 1998b. Features of paleoclimatic changes since about 30 MaBP by means of the factor analysis method to deal with oxides of Cenozoic sediment in Linxia basin. Journal of Xinjiang University (Natural Science Edition), 15(4): 74-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XJDZ804.015.htm [36] 陈骏, 汪永进, 陈旸, 等, 2001. 中国黄土地层Rb和Sr地球化学特征及其古季风气候意义. 地质学报, 75(2): 259-266. doi: 10.3321/j.issn:0001-5717.2001.02.016 [37] 陈克造, 1987. 柴达木盆地晚更新世盐湖演化. 见: 中国科学院中澳第四纪合作研究组编, 中-澳第四纪学术讨论会文集. 北京: 科学出版社, 83-91. [38] 邓宏文, 钱凯, 1993. 沉积地球化学与环境分析. 兰州: 甘肃科学技术出版社. [39] 冯连君, 储雪蕾, 张启锐, 等, 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘, 10(4): 539-544. doi: 10.3321/j.issn:1005-2321.2003.04.019 [40] 季军良, 张克信, 强泰, 等, 2010. 青海循化盆地新近纪磁性地层学及其对青藏高原东北缘隆升的年代学制约. 地球科学——中国地质大学学报, 35(5): 803-810. [41] 匡少平, 徐仲, 张书圣, 等, 2002. 运用地球化学方法研究中、新生代环境气候演替——兼论四川盆地侏罗纪气候变化. 青岛化工学院学报, 23(1): 4-9. doi: 10.3969/j.issn.1672-6987.2002.01.002 [42] 李嘉林, 1989. 地球化学导论. 兰州: 兰州大学出版社, 88-92. doi: 10.3321/j.issn:0455-2059.1989.04.001 [43] 李明慧, 康世昌, 2007. 青藏高原湖泊沉积物对古气候环境变化的响应. 盐湖研究, 15(1): 63-72. doi: 10.3969/j.issn.1008-858X.2007.01.012 [44] 刘立, 胡春燕, 1991. 砂岩中主要碎屑成分的物源区意义. 岩相古地理, 6: 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD199106006.htm [45] 刘少峰, 张国伟, Heller, P.L., 2007. 循化-贵德地区新生代盆地发育及其对高原增生的指示. 中国科学(D辑), 37(增刊Ⅰ): 235-248. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1025.htm [46] 刘英俊, 曹励明, 李兆麟, 等, 1984. 元素地球化学. 北京: 科学出版社. [47] 鲁新川, 2007. 临夏盆地14.0~4.4 Ma湖相沉积物元素地球化学特征与气候变化(硕士论文). 兰州: 兰州大学. [48] 马玉贞, 李吉均, 方小敏, 1998. 临夏地区30.6~5.0 Ma红层孢粉植物群与气候演化记录. 科学通报, 43(3): 301-304. doi: 10.3321/j.issn:0023-074X.1998.03.019 [49] 马振东, 韩吟文, 2003. 地球化学. 北京: 地质出版社, 46-47. [50] 宋春晖, 鲁新川, 邢强, 等, 2007. 临夏盆地晚新生代沉积物元素特征与古气候变迁. 沉积学报, 25(3): 409-416. doi: 10.3969/j.issn.1000-0550.2007.03.012 [51] 汪品先, 赵泉鸿, 翦知泯, 等, 2003. 南海三千万年的深海记录. 科学通报, 48(21): 2206-2215. doi: 10.3321/j.issn:0023-074X.2003.21.003 [52] 王云飞, 1993. 青海湖、岱海的湖泊碳酸盐化学沉积与气候环境变化. 海洋与湖沼, 24(1): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ199301004.htm [53] 杨競红, 王颖, 张振克, 等, 2007. 宝应钻孔沉积物的微量元素地球化学特征及沉积环境探讨. 第四纪研究, 27(5): 735-749. doi: 10.3321/j.issn:1001-7410.2007.05.015 [54] 殷科, 洪汉烈, 李荣彪, 等, 2010. 青海循化盆地晚渐新世沉积物中坡缕石的特征及其古气候指示意义. 现代地质, 24(1): 187-194. doi: 10.3969/j.issn.1000-8527.2010.01.022 [55] 于庆文, 李长安, 2001. 青藏高原东北缘新生代隆升-沉积-气候演化及其耦合. 武汉: 中国地质大学出版社, 1-123. [56] 张楗钰, 张克信, 季军良, 等, 2010. 青藏高原东北缘循化盆地渐新世-上新世沉积相分析与沉积演化. 地球科学——中国地质大学学报, 35(5): 774-788. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005006.htm [57] 张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪-新近纪隆升与沉积盆地分布耦合. 地球科学——中国地质大学学报, 32(5): 583-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705002.htm [58] 赵振华, 1997. 微量元素地球化学原理. 北京: 科学出版社. [59] 郑洪波, 黄湘通, 刘锐, 等, 2005. 晚中新世以来亚洲季风阶段性演化的海陆记录. 矿物岩石地球化学通报, 24(2): 103-109. doi: 10.3969/j.issn.1007-2802.2005.02.002 [60] 钟巍, 方小敏, 李吉均, 等, 1998a. 近7.00~0.73 MaBP期间甘肃临夏盆地古气候演变的沉积物地球化学记录. 干旱区资源与环境, 12(1): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH801.005.htm [61] 钟巍, 李吉均, 方小敏, 等, 1998b. 运用因子分析法提取青藏高原东北边缘临夏盆地近30 MaBP以来沉积物氧化物含量的古气候信息. 新疆大学学报(自然科学版), 15(4): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDZ804.015.htm