Two-Dimensional Numerical Simulation of Mud Invasion
-
摘要: 石油钻井中由于井底压力略大于地层压力, 使得钻井泥浆侵入到原始地层中, 改变地层的电阻率, 影响了电阻率测井的准确性.以油水两相流的渗流方程、对流扩散方程和阿尔奇公式为理论模型, 采用有限差分方法对泥浆侵入过程进行二维数值离散, 针对麻黄山西探区储层实际情况输入模型中有关参数, 分别对侵入时间24 h和48 h, 解得给定侵入时刻储层的压力、含水饱和度、地层水矿化度和电阻率在垂向和径向的分布, 计算结果与实际情况相符, 可用其对实际电阻率测井值进行校正.通过一个低侵算例验证, 结果与理论分析相符合, 因此该方法可以用于垂向上非均匀储层的泥浆侵入计算.Abstract: Due to the pressure difference between borehole and reservoirs, drilling mud invades the original reserviors while drilling for petroleum, changing the formation resistivity, which has a negative effect on resistivity logging. Based on the theoretical model of two-phase flow equation, convection-diffusion equation and Archie formula, finite difference method is adopted to discretize mud invasion models in the way of two dimensions. Parameters of the reservoir in Mahuangshan area, Ordos basin, north-central China, with the mud invasion time of 24, 48 hours respectively are input for the model, and the vertical and radial distributions of pressure, water saturation, salinity and formation resistivity in the designated time are worked out. The computing results are consistent with fact instance, and can be used for correcting resistivity logging values for mud invasion reservoirs. A case of low invasion is computed and the results prove to conform to the theoretical analysis. This method can be used in mud invasion of vertical inhomogeneous medium.
-
Key words:
- two-phase flow /
- water-base mud /
- finite difference method /
- well logging
-
图 3 一维含水饱和度、压力、矿化度和电阻率分布(Navarro, 2007)
Fig. 3. Pressure, water saturation, salinity and resistivity distribution in 1 dimension
-
[1] Donaldson, E.C., Chernoglazov, V., 1987. Characterization of drilling mud fluid invasion. Journal of Petroleum Science and Engineering, 1(1): 3-13. doi: 10.1016/0920-4150(87)90010-6 [2] Dresser Atlas Inc., 1982. Well logging and interpretation techniques. Dresser Industries, USA. [3] Dubost, F.X., Zheng, S.Y., Corbett, P.W.M., 2004. Analysis and numerical modelling of wireline pressure tests in thin-bedded turbidites. Journal of Petroleum Science and Engineering, 45(3-4): 247-261. doi: 10.1016/i.petrol.2004.07.001 [4] Goode, P.A., Thambynayagam, R.K.M., 1996. Influence of an invaded zone on a multiprobe formation tester. SPE Formation Evaluation, 11(1): 31-40. doi: 10.2118/23030-PA [5] Han, D.K., Chen, Q.L., Yan, C.Z., 1993. Basic theory of oil reservoir numerical simulation. Petroleum Industry Press, Beijing, 147-179 (in Chinese). [6] Kuchuk, F.J., Onur, M., 2003. Estimating permeability distribution from 3D interval pressure transient tests. Journal of Petroleum Science and Engineering, 39(1-2): 5-27. doi: 10.1016/s0920-4105(03)00037-8 [7] Lake, L.W., 1989. Enhanced oil recovery. Prentice-Hall Inc., New Jersey, USA. [8] Liu, Z.H., Hu, Q., Zhang, J.H., 1996. Response characteristics of time-lapse dual laterolog and their variations. Oil Geophysical Prospecting, 31(4): 535-540 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ199604008.htm [9] Ma, M.X., Ju, B.S., 2004. A novel mathematical model to calculate distribution of mud invasion formation resistivity. Well Logging Technology, 28(6): 503-507 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJJS200406009.htm [10] Navarro, D., 2007. Effects of invasion transient on resistivity time-lapsed logging. In: Department of electrical and computer engineering 3rd annual ECE graduate research conference, 74-75. [11] Schlumberger, C., Schlumberger, M., Leonardon, E.G., 1934. Electrical coring: a method of determining bottom-hole data by electrical measurements. Trans., AIME., 110: 237-272. doi: 10.2118/934237-G [12] Sun, J.M., Zhang, H.T., Ma, J.H., et al., 2003. On a new method for calculating in-situ water saturation with time-lapse log. Well Logging Technology, 27(3): 217-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJJS200303011.htm [13] Tan, T.D., 1979. Resistirity time-lapse logging. Well Logging Technology, 3(6): 1-8 (in Chinese). [14] Wu, J.H., Torres-Verdín, C., Proett, M., et al., 2002. Inversion of multi-phase petrophysical properties using pumpout sampling data acquired with a wireline formation tester. Paper SPE 77345 presented at the Annual Technical Conference and Exhibition, San Antonio, Texas, 29 September—2 October. [15] Zhang, J.H., Hu, Q., Liu, Z.H., 1994. A theoretical model for mud-filtrate invasion in reservoir formations during drilling. Acta Petrolei Sinica, 15(4): 73-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB404.009.htm [16] Zhang, L.H., 2005. Basic theory of oil reservoir numerical simulation. Petroleum Industry Press, Beijing, 100-101 (in Chinese). [17] 韩大匡, 陈钦雷, 闫存章, 1993. 油藏数值模拟基础. 北京: 石油工业出版社, 147-179. [18] 刘振华, 胡启, 张建华, 1996. 时间推移双侧向测井响应特征及其变化规律. 石油地球物理勘探, 31(4): 535-540. doi: 10.3321/j.issn:1000-7210.1996.04.010 [19] 马明学, 鞠斌山, 2004. 一种新的计算泥浆侵入储层电阻率分布的数学模型. 测井技术, 28(6): 503-507. doi: 10.3969/j.issn.1004-1338.2004.06.009 [20] 孙建孟, 张海涛, 马建海, 等, 2003. 用时间推移测井计算原始含水饱和度新方法研究. 测井技术, 27(3): 217-220. doi: 10.3969/j.issn.1004-1338.2003.03.010 [21] 谭廷栋, 1979. 电阻率时间推移测井. 测井技术, 3(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS197906000.htm [22] 张建华, 胡启, 刘振华, 1994. 钻井泥浆滤液侵入储集层的理论计算模型. 石油学报, 15(4): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB404.009.htm [23] 张烈辉, 2005. 油气藏数值模拟基本原理. 北京: 石油工业出版社, 100-101.