SHRIMP Zircon U-Pb Dating, Geochemistry and Genesis of Early Cretaceous Basic Dykes from the Dabie Orogen
-
摘要: 研究大别山早白垩世大规模伸展开始时间及地幔属性.采用SHRIMP锆石U-Pb定年法, 测得北淮阳金寨银沙畈辉长脉岩年龄为125.8±2.7 Ma, 西大别大悟东新乡闪斜煌斑脉岩年龄为129.6±2.5 Ma; 大别山不同区块早白垩世基性脉岩的地球化学特征类似: SiO2介于46.13%~54.42%, Mg#在42~72之间, 大多属碱性系列; LREE富集, HREE亏损, 大离子亲石元素(LILE)富集, 高场强元素(HFSE)Nb、Zr、Ti亏损; ISr在0.705 5~0.709 4之间, 低εNd(t)(-12.04~-18.84)值, Nd模式年龄(TDM)为1.60~2.62 Ga.大别山早白垩世的地壳伸展、大规模岩浆活动开始于130 Ma, 属于整个中国东部晚中生代岩石圈伸展减薄事件的一部分.基性脉岩来源于富集岩石圈地幔, 主要为扬子俯冲陆壳同华北岩石圈地幔混合产物, 有部分软流圈地幔物质的加入.Abstract: This paper aims to constrain the starting time of Early Cretaceous large-scale extensional and mantle properties in Dabie orogen. The SHRIMP zircon U-Pb dating results reveal the Yinshafan gabbro dyke from Jinzhai, North Huaiyang region is 125.8±2.7 Ma, the Dongxinxiang lamprophyre dyke from Dawu, West Dabie is 129.6±2.5 Ma. The Early Cretaceous basic dykes from different regions of the Dabie Orogen show similar geochemical features: These samples have SiO2 ranging from 46.13% to 54.42%, Mg# between 42 and 72, mainly belonging to alkaline series, enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE), evident depletion in high field strength elements (HFSE, e.g., Nb, Zr and Ti), ISr=0.705 5-0.709 4 and highly negative εNd (t) values of about -12.04 to -18.84, TDM=1.60-2.62 Ga. Early Cretaceous crustal extension and large-scale magma eruption in the Dabie orogenic belt began in 130 Ma, and belonged to part of eastern China Late Mesozoic lithospheric thinning extension event. The basic dykes were derived from enriched lithospheric mantle, which originated from North China Craton (NCC) lithospheric mantle contaminated by the deeply subducted Yangtze crust, and maybe have been added in some mantle asthenosphere.
-
Key words:
- Dabie mountains /
- basic dykes /
- zircon U-Pb dating /
- Early Cretaceous /
- enriched lithospheric mantle /
- geochemistry
-
图 3 大别山基性脉岩SiO2-Alk图解(Middlemost,1994)
■煌斑脉岩;▲辉长-辉绿脉岩
Fig. 3. SiO2-Alk diagram for basic dykes from the Dabie orogen
图 4 大别山基性脉岩REE球粒陨石标准配分图(a)及原始地幔标准化蛛网图(b)
球粒陨石标准和原始地幔标准据Sun and McDonough(1989);太行数据张勇等(2003),脉岩年龄(120 Ma);胶北数据刘燊等(2005),脉岩年龄(129.1 Ma,121 Ma);湖南数据引自Wang et al.(2003),基性岩年龄(124.5 Ma,127.6 Ma)
Fig. 4. Chondrite-normalized REE patterns (a) and primitive mantle normalized spidergrams (b) of the basic dykes from the Dabie orogen
图 6 大别基性脉岩的87Sr/86Sr(t)-εNd(t)(t=130 Ma)同位素图解
华北下地壳和扬子中上地壳同位素变化范围引自Jahn et al.(1999);扬子下地壳(崆岭群TTG)同位素变化范围引自Gao et al.(1999);亏损地幔和年轻地壳引自Sun and McDonough(1989);太行-鲁北基性脉岩(岩)数据邵济安和张履桥(2002)、Ying et al.(2006);华南基性脉岩数据谢桂青等(2001)、王岳军等(2007)、Zhao et al.(2007a);鲁中基性岩引自Ying et al.(2006);苏鲁-胶北基性脉岩数据刘燊等(2005);北淮阳南大别基性脉岩数据引自Wang et al.(2005)
Fig. 6. Initial 87Sr/86Sr (t) versus εNd (t) (t=130 Ma) diagram for basic dykes from the Dabie orogen
图 7 大别山基性脉岩La/Nb-Ba/Nb(a)和Ti/Yb-Nb/Th(b)相关(李献华等,2002)
■煌斑脉岩;▲辉长-辉绿脉岩;a图中:原始地幔据Sun and McDonough(1989);大陆地壳据Taylor and McLennan(1985)和Condie(1993);碎屑沉积物据Condie(1993);MORB、OIB和Dupal OIB据Le Roux(1986);岛弧火山岩据Jahn and Zhang(1984);崆岭杂岩、扬子中地壳和扬子下地壳据Gao et al.(1998, 1999);b图中:夏威夷OIB数据引自Feigenson et al.(1996)和Hofmann and Jochum(1996);中、下地壳数据引自Rudnick and Fountain(1995);大陆岩石圈地幔引自McDonough(1990);上地壳据Taylor and McLennan(1985);大别山基性脉岩引自Wang et al.(2005)
Fig. 7. Relations of Ba-Nb vs. La-Nb (a) and Ti-Yb vs. Nb-Th (b) for basic dykes from the Dabie orogen
图 8 大别早白垩世基性脉岩大地构造环境判别图
■煌斑脉岩;▲辉长-辉绿脉岩;a图据Pearce(1982);b图据Meschede(1986);WPA.板内碱性玄武岩;WPT.板内拉斑玄武岩;VAB.火山弧玄武岩;P-MORB(P型富集MORB)和N-MORB(N型亏损MORB)
Fig. 8. Tectonic discriminates diagrams for basic dykes from the Dabie orogen
表 1 大别山基性脉岩锆石SHRIMP U-Pb定年结果
Table 1. Zircon SHRIMP U-Pb data of basic dykes from the Dabie orogen
点号 206Pbc(%) U(μg·g-1) Th(μg·g-1) 232Th/238U 206Pb*(μg·g-1) 207Pb*/206Pb* ±% 207Pb*/235U ±% 206Pb*/238U ±% 206Pb/238U(Ma) ±1σ γ 金寨银沙畈辉长脉岩04-158-1 1.1 0.29 284 806 2.93 4.91 0.044 5 7.0 0.122 0 7.8 0.019 91 3.3 127.1 4.1 0.424 2.1 0.49 177 371 2.17 2.98 0.045 2 8.8 0.121 0 10.0 0.019 40 4.8 123.9 5.9 0.478 3.1 0.27 384 1 293 3.48 6.47 0.050 7 3.1 0.137 1 4.5 0.019 60 3.2 125.2 4.0 0.715 4.1 0.76 186 330 1.83 3.18 0.054 6 4.5 0.150 1 5.7 0.019 94 3.5 127.3 4.4 0.609 5.1 1.13 246 499 2.10 4.24 0.024 3 38.0 0.064 0 38.0 0.019 24 3.4 122.9 4.1 0.089 6.1 0.22 803 3 322 4.28 13.80 0.045 3 4.9 0.123 6 5.8 0.019 82 3.1 126.5 3.9 0.541 7.1 0.19 338 1 045 3.20 5.80 0.044 7 8.8 0.122 0 9.3 0.019 85 3.2 126.7 4.0 0.345 8.1 373 1 295 3.58 6.32 0.043 3 11.0 0.117 0 11.0 0.019 65 3.2 125.5 4.0 0.283 9.1 833 2 418 3.00 14.20 0.042 8 4.7 0.116 5 5.7 0.019 74 3.1 126.0 3.9 0.551 湖北大悟东新乡闪斜煌斑脉岩04-163-2 1.1 1.44 109 155 1.46 1.94 0.057 6 14.0 0.161 0 15.0 0.020 31 4.8 129.6 6.2 0.326 2.1 4.81 140 147 1.09 2.22 0.038 0 33.0 0.093 0 33.0 0.017 62 3.5 112.6 4.0 0.108 3.1 0.84 322 538 1.73 5.69 0.050 7 12.0 0.143 0 13.0 0.020 39 2.8 130.1 3.6 0.221 4.1 2.29 117 174 1.54 2.07 0.043 0 25.0 0.119 0 25.0 0.020 08 3.2 128.2 4.1 0.129 5.1 0.65 212 309 1.50 3.64 0.050 9 11.0 0.139 0 11.0 0.019 81 2.8 126.4 3.5 0.253 6.1 1.52 241 495 2.12 4.14 0.040 3 13.0 0.109 0 14.0 0.019 69 2.7 125.7 3.4 0.200 7.1 2.28 272 223 0.85 4.79 0.051 1 18.0 0.141 0 18.0 0.020 03 3.0 127.8 3.8 0.164 8.1 0.00 120 192 1.65 2.08 0.061 6 4.9 0.171 6 5.7 0.020 20 2.9 128.9 3.7 0.505 9.1 0.80 758 1 051 1.43 14.20 0.049 0 4.2 0.145 7 4.9 0.021 59 2.6 137.7 3.5 0.526 10.1 0.44 273 406 1.53 4.87 0.050 3 3.8 0.143 2 4.7 0.020 65 2.7 131.8 3.6 0.583 注:206Pbc代表普通铅;206Pb*放射成因铅;γ代表误差相关系数;采用实测的204Pb进行普通铅校正. 表 2 大别山基性脉岩主量(%)及微量元素(10-6)分析结果
Table 2. Major and trace elemental data of basic dykes from the Dabie orogen
样品 04-163-2 04-163-3 04-169-2 04TT-67-1 04BM-90 DB03M-2-2 03T-6 03Q-14-2 04-153-4 04-158-1 04-160-2 SiO2 51.39 46.91 49.46 51.30 50.05 50.02 46.28 52.64 48.59 44.89 50.16 TiO2 1.55 1.84 1.85 1.56 1.67 0.78 1.06 1.04 1.58 2.67 1.84 Al2O3 14.52 14.02 14.81 15.64 15.72 10.84 14.44 14.28 16.25 14.36 14.60 Fe2O3 2.94 3.09 3.94 2.67 3.16 2.74 1.29 2.80 4.22 7.35 3.56 FeO 5.60 5.55 5.40 5.30 6.10 6.32 7.25 5.45 6.45 6.85 5.90 TFeO 8.25 8.33 8.95 7.70 8.94 8.79 8.41 7.97 10.25 13.46 9.10 MnO 0.12 0.04 0.14 0.14 0.16 0.17 0.13 0.16 0.15 0.14 0.14 MgO 6.25 6.41 5.58 6.19 5.85 12.55 10.03 6.02 4.09 5.58 6.03 CaO 6.67 8.50 7.45 6.67 6.90 8.54 5.86 6.86 4.63 9.64 6.72 Na2O 2.99 3.54 2.89 3.68 3.67 1.74 2.05 2.29 2.15 2.34 3.69 K2O 3.65 3.05 2.64 3.43 2.08 1.67 1.69 4.68 5.11 2.01 2.37 P2O5 0.80 1.35 0.76 0.89 1.02 0.42 0.51 0.51 0.90 1.49 0.76 H2O+ 2.18 2.06 2.57 2.00 2.76 3.26 5.07 1.90 3.56 2.25 2.64 CO2 0.85 3.06 2.15 0.04 0.45 0.65 4.08 1.06 1.70 0.09 1.25 Total 99.51 99.42 99.64 99.51 99.59 99.70 99.74 99.69 99.38 99.66 99.66 Mg# 57.5 57.8 52.6 58.9 53.8 71.8 68.0 57.4 41.6 42.5 54.1 δ 5.26 11.10 4.70 6.10 4.70 1.66 4.26 5.04 9.43 10.01 5.13 Sc 17.6 17.5 17.7 18.1 20.1 20.3 29.0 25.9 17.5 38.8 18.4 V 157 194 171 149 191 159 180 180 209 414 174 Cr 222 228 211 138 148 750 980 332 20.0 3.9 242 Co 33.7 32.9 34.0 26.7 30.9 49.5 49.2 29.4 27.3 51.1 34.9 Ni 145 158 114 102 95.3 542 385 60.1 14.9 6.9 130 Ga 18.3 18.9 18.9 17.8 18.5 15.7 17.3 17.3 20.8 23.1 18.8 Rb 101 69.9 57.9 137 64.6 55.4 93.4 115 137 50.9 54.8 Sr 1 106 1 320 964 1 275 1 028 644 590 593 769 800 866 Y 23.3 22.3 20.6 23.4 26.4 14.0 17.2 19.9 26.3 33 20.2 Zr 288 309 271 267 261 123 100 167 234 148 262 Nb 21.6 25.1 20.9 27.1 24.6 11.2 8.4 9.4 12.7 10.4 20.4 Cs 1.96 2.38 1.07 3.53 0.56 1.51 2.21 0.61 2.13 1.10 0.69 Ba 2 490 2 100 1 393 2 137 1 873 679 1 016 1 247 4 341 1 033 1 162 Hf 6.35 6.66 5.91 6.64 5.25 3.55 2.96 4.39 5.96 3.93 6.05 Ta 2.89 3.56 3.21 4.33 3.48 0.93 0.56 0.91 0.80 0.67 1.21 Pb 12.9 10.0 12.2 20.1 4.7 10.7 11.3 20.2 18.9 5.0 11.8 Th 10.56 7.15 5.31 8.24 5.43 4.53 2.15 6.09 11.83 3.35 4.75 U 1.75 1.21 0.82 1.37 0.95 0.80 0.45 1.48 1.87 0.47 0.72 La 99.5 104.0 61.9 77.8 79.7 35.8 19.1 42.8 90.2 48.4 59.6 Ce 185 219 124 156 153 79.4 48.0 84.6 166 106 121 Pr 21.0 26.2 15.0 18.2 18.0 10.4 6.9 10.1 20.0 12.8 14.2 Nd 75.6 96.3 57.2 68.3 66.6 40.8 29.3 40.1 75.0 58.6 53.8 Sm 11.6 13.9 9.3 10.9 10.7 6.8 5.9 7.2 12.0 11.5 8.9 Eu 3.00 3.67 2.59 2.93 2.94 1.99 1.82 2.16 3.71 3.25 2.49 Gd 9.0 10.0 7.6 8.5 8.6 5.1 4.7 6.3 9.9 10.4 7.3 Tb 1.02 1.08 0.90 1.04 1.06 0.61 0.62 0.79 1.25 1.30 0.85 Dy 5.10 5.12 4.54 5.28 5.43 3.02 3.19 4.18 5.88 7.14 4.36 Ho 0.91 0.89 0.82 0.97 1.02 0.56 0.62 0.79 1.09 1.33 0.78 Er 2.37 2.21 2.13 2.63 2.71 1.53 1.61 2.25 2.75 3.31 1.97 Tm 0.30 0.28 0.27 0.35 0.35 0.21 0.22 0.30 0.40 0.41 0.25 Yb 1.74 1.63 1.54 2.18 2.06 1.25 1.35 1.94 2.19 2.34 1.42 Lu 0.25 0.20 0.23 0.30 0.27 0.18 0.19 0.28 0.33 0.29 0.17 ∑REE 415.84 484.08 287.53 355.28 352.03 187.66 123.56 203.80 390.76 267.37 277.09 Nb/Ta 7.48 7.05 6.51 6.26 7.06 12.01 14.91 10.35 15.96 15.49 16.84 (La/Yb)N 40.91 45.76 28.81 25.61 27.81 20.48 10.17 15.82 29.54 14.82 30.01 Ba/Nb 115.40 83.59 66.63 78.94 76.26 60.67 121.61 132.27 341.33 99.56 56.89 La/Nb 4.61 4.14 2.96 2.87 3.24 3.19 2.29 4.54 7.09 4.67 2.92 Nb/U 12.34 20.79 25.44 19.82 25.93 13.94 18.56 6.36 6.82 21.94 28.26 Zr/Nb 13.34 12.31 12.97 9.87 10.63 11.03 11.93 17.69 18.38 14.23 12.84 Nb/Th 2.04 3.52 3.94 3.29 4.53 2.47 3.89 1.55 1.08 3.10 4.30 Ba/Nb La/Nb Nb/U Zr/Nb Nb/Th N-type MORB 4.8 1.2 25.0 35.2 1.0 数据据文献Rollinson(1993) Average continental crust 54.4 2.2 10.0 16.2 18.3 表 3 大别山基性脉岩Sr、Nd同位素分析结果
Table 3. The Sr, Nd composition of basic dykes from the Dabie orogen
样品号 Sm(10-6) Nd(10-6) Rb(10-6) Sr(10-6) 147Sm/144Nd 143Nd/144Nd 04-163-2 11.603 75.549 101.176 1 105.52 0.096 0.511 889 04-169-2 9.309 57.161 57.905 964.24 0.104 7 0.511 881 04TT-67-1 10.876 68.272 137.197 1 275.34 0.098 2 0.511 85 04BM-90 10.714 66.606 64.558 1 028.43 0.098 8 0.511 888 DB03M-2-2 6.779 40.844 55.414 644.296 0.098 1 0.511 937 03T-6 5.939 29.273 93.402 590.266 0.101 8 0.511 735 03Q-14-2 7.204 40.115 115.438 592.906 0.107 6 0.511 806 04-153-4 12.03 75.028 137.332 768.719 0.103 8 0.511 701 04-158-1 11.459 58.644 50.858 799.563 0.124 5 0.511 611 04-160-2 8.859 53.814 54.803 865.812 0.104 3 0.511 91 样品号 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i εNd(t) TDM(Ga) 04-163-2 0.272 3 0.707 39 0.706 89 -12.95 1.63 04-169-2 0.190 7 0.707 13 0.706 79 -13.24 1.77 04TT-67-1 0.350 5 0.707 49 0.706 86 -13.74 1.71 04BM-90 0.188 7 0.707 82 0.707 48 -13.01 1.67 DB03M-2-2 0.242 6 0.705 98 0.705 54 -12.04 1.60 03T-6 0.243 0.707 51 0.707 07 -16.05 1.92 03Q-14-2 0.539 4 0.707 92 0.706 95 -14.76 1.92 04-153-4 0.538 3 0.710 36 0.709 39 -16.74 2.00 04-158-1 0.191 0.707 956 0.707 61 -18.84 2.62 04-160-2 0.200 3 0.707 36 0.707 00 -12.67 1.72 注:εNd(t)计算参数:(147Sm/144Nd)CHUR=0.196 7,(143Nd/144Nd)CHUR=0.512 638,t=130 Ma. -
[1] Chen, F., Hegner, E., Todt, W., 2000. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: evidence for a Cambrian magmatic arc. International Journal of Earth Sciences, 88(4): 791-802. doi: 10.1007/s005310050306 [2] Chen, F., Siebel, W., Satir, M., et al., 2002. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. International Journal of Earth Sciences, 91(3): 469-481. doi: 10.1007/s00531-001-0239-6 [3] Chen, L., Ma, C.Q., She, Z.B., et al., 2006. The Liulin gabbro in the Beihuaiyang tectonic belt of the Dabie orogen: a witness of the Late Neoproterzoic rifting event. Earth Science—Journal of China University of Geosciences, 31(4): 578-584 (in Chinese with English abstract). http://www.researchgate.net/publication/283167567_Liulin_gabbro_in_the_Beihuaiyang_tectonic_belt_of_the_Dabie_orogen_A_witness_of_the_late_neoproterozoic_rifting_event [4] Condie, K., 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104(1-4): 1-37. doi: 10.1016/0009-2541(93)90140-E [5] Feigenson, M.D., Patino, L.C., Carr, M.J., 1996. Constraints on partial melting imposed by rare earth element variations in Manna Kea basalts. Journal of Geophysical Research, 101: 11815-11829. doi: 10.1029/95JB03847 [6] Gao, S., Ling, W.L., Qiu, Y.M., 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta, 63(13-14): 2071-2088. doi: 10.1016/S0016-7037(99)00153-2 [7] Gao, S., Luo, T.C., Zhang, B.R., 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959-1975. doi: 10.1016/S0016-7037(98)00121-5 [8] Guo, F., Fan, W.M., Wang, Y.J., et al., 2004. Origin of Early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt. Lithos, 78(3): 291-305. doi: 10.1016/j.lithos.2004.05.001 [9] Halls, H.C., Campal, N., Davis, D.W., et al., 2001. Magnetic studies and U-Pb geochronology of the Uruguayan dyke swarm, Rio de la Plata craton, Uruguay: paleomagnetic and economic implications. Journal of South American Earth Sciences, 14(4): 349-361. doi: 10.1016/S0895-9811(01)00031-1 [10] Halls, H.C., McArdle, N.J., Gratton, M.N., 2004. Microwave Paleointensities from dyke chilled margins: a way to obtain long-term variations in geodynamic intensity for the last three billion years. Physics of the Earth and Planetary Interiors, 147(2-3): 183-195. doi: 10.1016/j.pepi.2004.03.013 [11] Hofmann, A.W., Jochum, K.P., 1996. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project. Journal of Geophysical Research, 101: 11831-11839. doi: 10.1029/95JB03701 [12] Jahn, B.M., Wu, F.Y., Lo, C.H., 1999. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, Central China. Chemical Geology, 157(1-2): 119-146. doi: 10.1016/S0009-2541(98)00197-1 [13] Jahn, B.M., Zhang, Z.Q., 1984. Archean granulite gneisses from eastern Hebei Province, China: rare earth geochemistry and tectonic implications. Contributions to Mineralogy and Petrology, 85(3): 224-243. doi: 10.1007/BF00378102 [14] Le Roux, A.P., 1986. Geochemical correlation between southern African kimberlites and South Atlantic hotspots. Nature, 324: 243-245. doi: 10.1038/324243a0 [15] Li, S.G., Hong, J.A., Li, H.M., et al., 1999. U-Pb zircon ages of the pyroxenite-gabbro intrusions in Dabie mountains and their geological implications. Geological Journal of China Universities, 5(3): 351-355 (in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=3736062 [16] Li, S.G., Nie, Y.H., Hart, S.R., et al., 1998. Upper mantle-deep subducted continental crust interaction: Sr and Nd isotopic constraints on the syn-collisional mafic to ultramafic intrusions in the northern Dabieshan, China. Science in China (Series D), 28(1): 18-22 (in Chinese). http://www.researchgate.net/publication/312749864_The_interaction_between_subducted_continental_crust_and_upper_mantle_II_Sr_Nd_isotopic_geochemistry_of_syncollisional_mafic-ultramafic_rocks [17] Li, S.G., Yang, W., 2003. Decoupling of surface and subsurface sutures in the Dabie orogen and a continent-collisional lithospheric-wedging model: Sr-Nd-Pb isotopic evidences of Mesozoic igneous rocks in eastern China. Chinese Science Bulletin, 48(8): 831-838. doi: 10.1360/01wd0554 [18] Li, X.H., Hu, R.Z., Rao, B., 1997. Geochronology and geochemistry of Cretaceous mafic dikes from northern Guangdong, SE China. Geochimica, 26(2): 14-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX702.003.htm [19] Li, X.H., Zhou, H.W., Li, Z.X., et al., 2002. Petrogenesis of Neoproterozoic bimodal volcanics in western Sichuan and its tectonic implications: geochemical and Sm-Nd isotopic constraints. Chinese Journal of Geology, 37(3): 264-276 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZKX200203001&dbcode=CJFD&year=2002&dflag=pdfdown [20] Liu, S., Hu, R.Z., Zhao, J.H., et al., 2005. Geochemical characteristics and petrogenetic investigation of the Late Mesozoic lamprophyres of Jiaobei, Shandong Province. Acta Petrologica Sinica, 21(3): 947-958 (in Chinese with English abstract). http://www.oalib.com/paper/1471660 [21] Ma, C.Q., Ehlers, C., Xu, C.H., 2000. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane: constraints from geochemistry and Nd-Sr isotope systematics. Precambrian Research, 102(3): 279-301. doi: 10.1016/S0301-9268(00)00069-3 [22] Ma, C.Q., Li, Z.C., Ehlers, C., 1998. A post-collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, East-Central China. Lithos, 45(1-4): 431-456. doi: 10.1016/S0024-4937(98)00043-7 [23] Ma, C.Q., Ming, H.L., Yang, K.G., 2004. An Ordovician magmatic arc at the northern foot of Dabie mountains: evidence from geochronology and geochemistry of intrusive rocks. Acta Petrologica Sinica, 20(3): 393-402 (in Chinese with English abstract). http://www.oalib.com/paper/1472430 [24] Ma, C.Q., Zhang, C., She, Z.B., et al., 2007. The Dabie mountains and its southeast Yanshanian magmatic activity: magmatic arc migration and extensional collapse. In: 2007 National Symposium on Petrology and Geodynamics and Chemical Geodynamics. China University of Geosciences Press, Wuhan, 106-109 (in Chinese). [25] McDonough, W.F., 1990. Constraints on the composition of the continental lithospheric mantle. Earth and Planetary Science Letters, 101(1): 1-18. doi: 10.1016/0012-821X(90)90119-I [26] Meschede, M., 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218. doi: 10.1016/0009-2541(86)90004-5 [27] Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth Science Review, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9 [28] Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries, In: Thorpe, R.S., eds., Orogenic andesites and related rocks, Wiley and Sons. New York, 525-548. [29] Rollinson, H., 1993. Using Geochemical data: evalution, presentaion, interpretation. Longman Scientific and Technical. Press, New York, 144. [30] Rudnick, R.L., Fountain, D.M., 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33: 267-309. doi: 10.1029/95RG01302 [31] Shao, J.A., Zhang, L.Q., 2002. Mesozoic dyke swarms in the north of North China. Acta Petrologica Sinica, 18(3): 312-318 (in Chinese with English abstract). http://www.oalib.com/paper/1473200 [32] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002. Mount malcing and procedure of the SHRIMP dating. Geological Review, 48 (Suppl.): 26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm [33] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes. Geological Society, London, 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [34] Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution—an examination of the geochemilogical record preserved in sedimentary rocks. Blackwell. Press, Oxford, 1-2. [35] Wan, T.F., 2004. China tectonics outlines. Geological Publishing House, Beijing, 152-162 (in Chinese). [36] Wang, Q., Wyman, D.A., Xu, J.F., et al., 2007. Early Cretaceous adakitic granites in the northern Dabie complex, Central China: implication for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636. doi: 10.1016/j.gca.2007.03.008 [37] Wang, Y.J., Fan, W.M., Peng, T.P., et al., 2003. Geochemistry of Mesozoic mafic rocks around the Chenzhou-Linwu fault in South China: implication for the lithospheric boundary between the Yangtze and the Cathaysia blocks. International Geology Review, 45(3): 263-286. doi: 10.2747/0020-6814.45.3.263 [38] Wang, Y.J., Fan, W.M., Peng, T.P., et al., 2005. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie orogen, Central China: Evidence from 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotopic compositions of Early Cretaceous maficigneous rocks. Chemical Geology, 220(3-4): 165-189. doi: 10.1016/j.chemgeo.2005.02.020 [39] Wang, Y.J., Peng, T.P., Fan, W.M., et al., 2007. Early Proterozic mafic dikes in the North China craton and their tectonic implications. Bulletin of Mineralogy, Petrology and Geochemistry, 26(1): 1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200701000.htm [40] Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben, M.A., Shanks Ⅲ, W.C., Ridley, W.I., eds., Applications of microanalytical techniques to understanding mineralizing processes. Review in Economic Geology, 7: 1-35. [41] Wu, F.Y., Lin, J.Q., Simon, A.W., et al., 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119. doi: 10.1016/j.epsl.2005.02.019 [42] Xie, G.Q., Peng, J.T., Hu, R.Z., et al., 2001. Geochemical characteristics of lamprophyres in the Xikuangshan antimony ore deposits, Hunan Province. Acta Petrologica Sinica, 17(4): 629-636 (in Chinese with English abstract). http://www.researchgate.net/publication/289735631_Geochemical_characteristics_of_lamprophyres_in_the_Xikuangshan_antimony_ore_deposits_Hunan_province [43] Xu, H.J., Ma, C.Q., Ye, K., 2007. Early Cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry. Chemical Geology, 240(3-4): 238-259. doi: 10.1016/j.chemgeo.2007.02.018 [44] Xu, Y.G., Huang, X.L., Ma, J.L., et al., 2004. Crust-mantle interaction during the tectono-thermal reactivation of the North China craton: Constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contributions to Mineralogy and Petrology, 147(6): 750-767. doi: 10.1007/s00410-004-0594-y [45] Ying, J.F., Zhou, X.H., Zhang, H.F., 2006. The geochemical variations of Mid-Cretaceous lavas across western Shandong Province, China and their tectonic implications. International Journal of Earth Sciences, 95(1): 68-79. doi: 10.1007/s00531-005-0509-9 [46] Zhang, C.L., Zhou, D.W., Liu, Y.Y., 1999. Geochemistry of basic dykes in Wudangshan block and their tectonic significance. Geochimica, 28(2): 126-135 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX902.002.htm [47] Zhang, H.F., Sun, M., Zhou, X.H., 2002. Mesozoic lithosphere destruction beneath the North China craton: evidence from major, trace element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology, 144(2): 241-253. doi: 10.1007/s00410-002-0395-0 [48] Zhang, H.F., Zhou, X.H., Fan, W.M., et al., 2005. Nature, composition, enrichment processes and its mechanism of the Mesozoic lithospheric mantle beneath the southeastern North China craton. Acta Petrologica Sinica, 21(4): 1271-1280 (in Chinese with English abstract). http://www.oalib.com/paper/1471782 [49] Zhang, Q., Ma, W.P., Jin, W.J., et al., 1995. Geochemistry and tectonic significance of pos-tectonic gabbro from Wangmuguan of Xinxian county, Henan Province. Geochimica, 24(4): 341-350 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX504.003.htm [50] Zhang, Y., Chen, B., Shao, J.A., et al., 2003. Geochemistry and origin of Late Mesozoic lamprophyre dykes in Taihang mountains, North China. Acta Petrologica et Mineralogica, 22(1): 29-33 (in Chinese with English abstract). http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200212001005.htm [51] Zhao, J.H., Hu, R.Z., Zhou, M.F., et al., 2007a. Elemental and Sr-Nd-Pb isotopic geochemistry of Mesozoic mafic intrusions in southern Fujian Province, SE China: implications for lithospheric mantle evolution. Geological Magazine, 144: 937-952. doi: 10.1017/S0016756807003834 [52] Zhao, Z.F., Zheng, Y.F., Wei, C.S., et al., 2005. Zircon U-Pb age, element and C-O isotope geochemistry of post collisional mafic-ultramafic rocks from the Dabie orogen in East-Central China. Lithos, 83(1-2): 1-28. doi: 10.1016/j.lithos.2004.12.014 [53] Zhao, Z.F., Zheng, Y.F., Wei, C.S., et al., 2007b. Post-collisional granitoids from the Dabie orogen in China: zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93(3-4): 248-272. doi: 10.1016/j.lithos.2006.03.067 [54] Zhou, W.G., 1996. Qinling-Dabie orogenic belt after the collision tectonic development and geochemical study of regional magmatism (Dissertation). China University of Geosciences, Wuhan, 64 (in Chinese). [55] 陈玲, 马昌前, 佘振兵, 等, 2006. 大别山北淮阳构造带柳林辉长岩: 新元古代晚期裂解事件的记录. 地球科学——中国地质大学学报, 31(4): 578-584. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200604017.htm [56] 李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004 [57] 李献华, 周汉文, 李正祥, 等, 2002. 川西新元古代双峰式火山岩成因的微量元素和Sm-Nd同位素制约及其大地构造意义. 地质科学, 37(3): 264-276. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200203001.htm [58] 李曙光, 洪吉安, 李惠民, 等, 1999. 大别山辉石岩-辉长岩体的锆石U-Pb年龄及其地质意义. 高校地质学报, 5(3): 351-355. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX199903015.htm [59] 李曙光, 聂永红, Hart, S.R., 等, 1998. 俯冲陆壳与上地幔的相互作用-Ⅱ. 大别山同碰撞镁铁-超镁铁岩的Sr, Nd同位素地球化学. 中国科学(D辑), 28(1): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199801003.htm [60] 刘燊, 胡瑞忠, 赵军红, 等, 2005. 胶北晚中生代煌斑岩的岩石地球化学特征及其成因研究. 岩石学报, 21(3): 947-958. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503033.htm [61] 马昌前, 明厚利, 杨坤光, 2004. 大别山北麓的奥陶纪岩浆弧: 侵入岩年代学和地球化学证据. 岩石学报, 20(3): 393-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403003.htm [62] 马昌前, 张超, 佘振兵, 等, 2007. 大别山及其东南燕山期岩浆活动: 岩浆弧迁移与伸展塌陷. 2007全国岩石学与地球动力学暨化学地球动力学研讨会论文集. 武汉: 中国地质大学, 106-109. [63] 邵济安, 张履桥, 2002. 华北北部中生代岩墙群. 岩石学报, 18(3): 312-318. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203004.htm [64] 宋彪, 张玉海, 万渝生, 等, 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增刊): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm [65] 万天丰, 2004. 中国大地构造学纲要. 北京: 地质出版社, 152-162. [66] 王岳军, 彭头平, 范蔚茗, 等, 2007. 华北陆块早元古代基性岩墙群及其构造意义. 矿物岩石地球化学通报, 26(1): 1-9. doi: 10.3969/j.issn.1007-2802.2007.01.001 [67] 谢桂青, 彭建堂, 胡瑞忠, 等, 2001. 湖南锡矿山锑矿矿区煌斑岩的地球化学特征. 岩石学报, 17(4): 629-636. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104012.htm [68] 张成立, 周鼎武, 刘颖宇, 1999. 武当山地块基性岩墙群地球化学研究及其大地构造意义. 地球化学, 28(2): 126-135. doi: 10.3321/j.issn:0379-1726.1999.02.003 [69] 张宏福, 周新华, 范蔚茗, 等, 2005. 华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理. 岩石学报, 21(4): 1271-1280. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504024.htm [70] 张旗, 马文璞, 金唯俊, 等, 1995. 一个造山后的辉长岩——河南新县王母观岩体的地球化学特征. 地球化学, 24(4): 341 - 350. doi: 10.3321/j.issn:0379-1726.1995.04.004 [71] 张勇, 陈斌, 邵济安, 等, 2003. 华北太行晚中生代煌斑岩地球化学特征及成因探讨. 岩石矿物学杂志, 22(1): 29-33. doi: 10.3969/j.issn.1000-6524.2003.01.004 [72] 周文戈, 1996. 秦岭-大别造山带碰撞后构造发展-区域岩浆作用地球化学研究(博士学位论文). 武汉: 中国地质大学, 64.