Modeling the Shore-Normal Profile Shape Evolution for an Accretional Tidal Flat on the Central Jiangsu Coast
-
摘要: 在泥质、砂质物质共存的淤长型潮滩, 其剖面的塑造受到潮流作用下堆积过程的控制.为探讨这种潮滩剖面的演变过程, 以江苏中部海岸为研究对象建立了大小潮周期性作用下的潮滩剖面演变模型, 模拟了潮滩均衡态剖面形态与初始坡度、潮差、沉积物供应量之间的关系及潮滩的持续淤长剖面.模拟结果表明: (1)淤长型潮滩剖面达到均衡态时的形态是上凸的, 且与初始形态无关; (2)在外源一定的条件下, 潮滩的宽度与潮差呈正相关; (3)外源物质供应越丰富, 潮滩宽度越大; (4)潮滩的冲淤状态由沉积物的供应量决定; (5)对大潮高潮位附近的无沉积带进行充填可实现对其长期持续淤长剖面的模拟; (6)有丰富沉积物来源的潮滩, 在调整至均衡态后仍持续向海淤长, 并在淤长过程中保持均衡态; (7)当在模型中输入有关江苏海岸的参数时, 模拟的潮滩宽度和坡度与江苏海岸的潮滩一致.Abstract: The evolution of the shore-normal profile shape of an accretional tidal flat is controlled by the transport of muddy and sandy sediments by tidal currents. To understand the evolution processes, a model is established to simulate the tidal flat profile changes in response to spring-neap tidal cycles, and it is applied to the accretional tidal flat on the central Jiangsu coast to investigate the interrelationships between the initial profile shape of the inter-tidal flat, tidal range, sediment supply, the equilibrium profile shape of the intertidal flat, and the long-term behavior of a prograding profile. The modeling output indicates that: (1) the shape of the accretional tidal flat tends to be convex when reaching its equilibrium state; (2) equilibrium of the intertidal flat morphology is independent of the initial profile shape; (3) if the sediment supply remains stable, then the width of the intertidal flat is positively correlated to tidal range; (4) the width of the intertidal flat increases with sediment supply and the accretion or erosion status of the intertidal flat is determined by sediment supply; (5) there is a need to design an algorithm to treat the area close to high water on springs to simulate long-term growth of the tidal flat; (6) the intertidal flat associated with abundant sediment supply will progradeg towards the sea, and at the same time its equilibrium shape will be maintained; and (7) the width and gradient of the intertidal flat from the model output are consistent with those of the Jiangsu coast, when inputting parameters derived locally for the model.
-
Key words:
- tidal flats /
- sediment transport /
- sedimentology /
- shore-normal profile shape /
- equilibrium /
- Jiangsu coast
-
图 1 研究区示意(王颖和朱大奎,1994)
Fig. 1. Sketch map of study area
表 1 动力学模型中的有关参数取值
Table 1. The parameters in the model
参数类型 参数名称 数值 潮汐参数 与M2相联系的涨潮历时Tmf(s) 19 656 与M2相联系的落潮历时Tme(s) 25 056 与M2相联系的潮位循环时间Tm(s) 44 712 与M2相联系的最大潮差Rm(m) 3.495 8 与S2相联系的涨潮历时Tsf(s) 18 900 与S2相联系的落潮历时Tse(s) 24 300 与S2相联系的潮位循环时间Ts(s) 43 200 与S2相联系的最大潮差Rs(m) 1.160 8 大小潮循环时间T(s) 1 277 486 潮滩沉积物粒度参数 沉积物密度ρs(kg/m3) 2 650 砂的粒径Ds(mm) 0.07 泥的粒径Dm(mm) 0.01 砂的临界起动流速Ucs(m/s) 0.30 泥的临界再悬浮流速Ucm(m/s) 0.25 泥的临界沉降切应力τm(N/m2) 0.19 泥的临界侵蚀切应力τe(N/m2) 0.19 悬沙沉降速率ωs(mm/s) 0.5 海水物理性质 海水密度ρ(kg/m3) 1 025 动力黏度系数μ(kg/m/s) 1.4×10-3 运动黏度系数υ(m2/s) 1.4×10-6 距离底床100 cm处的拖曳系数C100 3.0×10-3 卡门常数κ 0.4 底床物理性质 粗糙长度Z(m) 1.98×10-2 再悬浮常数E(kg/m2/s) 1.0×10-5 底床沉积物的空隙率ε 0.4 其他参数 空间步长(m) 200 时间步长(s) 120 地形更新时间(s) 1 277 486 -
[1] Amos, C.L., 1995. Siliciclastic tidal flats. In: Perillo, G.M.E., ed. . Geomorphology and sedimentology of estuaries. Elsevier Science BV, 273-306. [2] Chen, C.J., 1991. Development of depositional tidal flat in Jiangsu Province. Oceanologia et Limnologia Sinica, 22(4): 360-368 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ199104010.htm [3] Chen, J.X., Li, T.G., Nan, Q.Y., 2009. Variations of Terrigenous material discharges in the South Okinawa trough and its relation to the East Asian summer monsoon since the last millennium. Earth Science—Journal of China University of Geosciences, 34(5): 811-818 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.091 [4] Draut, A.E., Kineke, G.C., Huh, O.K., et al., 2005. Coastal mudflat accretion under energetic conditions, Louisiana chenier-plain coast, USA. Marine Geology, 214(1-3): 27-47. doi: 10.1016/j.margeo.2004.10.033 [5] Gao, S., 2009. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, eastern China. Continental Shelf Research, 29(16): 1927-1936. doi: 10.1016/j.csr.2008.12.010 [6] Gao, S., Zhu, D.K., 1988. The profile of Jiangsu's mud coast. Journal of Nanjing University (Natural Sciences), 24(1): 75-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ198801006.htm [7] Gu, Y.S., Qiu, H.O., Xie, S.C., et al., 2008. Lake sediment records for eutrophication history in response to human activity during recent century in the Liangzi lake, Hubei Province. Earth Science—Journal of China University of Geosciences, 33(5): 679-686 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.083 [8] Kamp, P.J.J., Naish, T., 1998. Forward modelling of the sequence stratigraphic architecture of shelf cyclothems: application to Late Pliocene sequences, Wanganui basin (New Zealand). Sedimentary Geology, 116(1-2): 57-80. doi: 10.1016/S0037-0738(97)00080-8 [9] Kineke, G.C., Sternberg, R.W., 1989. The effect of particle settling velocity on computed suspended sediment concentration profiles. Marine Geology, 90(3): 159-174. doi: 10.1016/0025-3227(89)90039-X [10] Kirby, R., 2000. Practical implications of tidal flat shape. Continental Shelf Research, 20(10-11): 1061-1077. doi: 10.1016/S0278-4343(00)00012-1 [11] Kirby, J.R., Kirby, R., 2008. Medium timescale stability of tidal mudflats in Bridgwater Bay, Bristol Channel, UK: influence of tides, waves and climate. Continental Shelf Research, 28(19): 2615-2629. doi: 10.1016/j.csr.2008.08.006 [12] Krone, R.B., 1962. Flume studies of the transport of sediment in estuarial shoaling processes. Hydraulics Engineering Laboratory and Sanitary Engineering Research Laboratory, University of Berkeley, California. [13] Lee, S.C., Mehta, A.J., 1997. Problems in characterizing dynamics of mud shore profiles. Journal of Hydraulic Engineering, 123(4): 351-361. doi: 10.1061/10.1061/(ASCE)0733-9429(1997)123:4(351) [14] Li, Z.H., Gao, S., Shen, H.T., et al., 2006. Characteristics of grain-size distributions of suspended sediment and its response to dynamics over the Dafeng tidalflat, Jiangsu coast in China. Acta Oceanologica Sinica, 28(4): 87-95 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SEAC200604010&dbcode=CJFD&year=2006&dflag=pdfdown [15] Miller, M.C., McCave, I.N., Komar, P.D., 2006. Threshold of sediment motion under unidirectional currents. Sedimentology, 24(4): 507-527. doi: 10.1111/j.1365-3091.1977.tb00136.x [16] Nielsen, P., 1992. Coastal bottom boundary layers and sediment transport. Advanced Series on Ocean Engineering, World Scientific Publishing, 4. [17] Paarlberg, A.J., Knaapen, M.A.F., de Vries, M.B., et al., 2005. Biological influences on morphology and bed composition of an intertidal flat. Estuarine, Coastal and Shelf Sciences, 64(4): 577-590. doi: 10.1016/j.ecss.2005.04.008 [18] Partheniades, E., 1965. Erosion and deposition of cohesive soils. Journal of the Hydraulics Division, ASCE, 91: 105-139. doi: 10.1061/JYCEAJ.0001165 [19] Pritchard, D., Hogg, A.J., Roberts, W., 2002. Morphological modelling of intertidal mudflats: the role of cross-shore tidal currents. Continental Shelf Research, 22(11-13): 1887-1895. doi: 10.1016/S0278-4343(02)00044-4 [20] Pritchard, D., Hogg, A.J., 2003. Cross-shore sediment transport and the equilibrium morphology of mudflats under tidal currents. Journal of Geophysical Research, 108(C10): 3313-3327. doi: 10.1029/2002JC001570 [21] Ren, M.E., ed., 1986. Comprehensive investigation of coastal zone and tidal flat resources, Jiangsu Province. China Ocean Press, Beijing (in Chinese). [22] Roberts, W., Le Hir, P., Whitehouse, R.J.S., 2000. Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats. Continental Shelf Research, 20(10-11): 1079-1097. doi: 10.1016/S0278-4343(00)00013-3 [23] Soulsby, R.L., Whitehouse, R.J.S., 1997. Threshold of sediment motion in coastal environments. Pacific Coasts and Ports'97, Proceedings Volume 1: 149-154. [24] van Ledden, M., 2002. A process-based sand-mud model. In: Winterwerp, J.C., Kranenburg, C., eds., Proceedings of Marine Science. Amsterdam, Elsevier, 5: 577-594 [25] van Straaten, L.M.J.U., 1961. Sedimentation in tidal flat areas. Journal of the Alberta Society of Petroleum Geologists, 9: 203-226. [26] Wang, Y., Zhu, D.K., 1994. Coastal geomorphology. High Education Press, Beijing, 180-181 (in Chinese). [27] Yang, B.C., Dalrymple, R.W., Chun, S.S., 2005. Sedimentation on a wave-dominated, open-coast tidal flat, south-western Korea: summer tidal flat-winter shoreface. Sedimentology, 52(2): 235-252. doi: 10.1111/j.1365-3091.2004.00692.x [28] Zhang, R.S., 1984. Land-forming history of the Huanghe River delta and coastal plain of North Jiangsu. Acta Geographica Sinica, 39(2): 173-184 (in Chinese with English abstract). http://www.researchgate.net/publication/322774918_Land-forming_history_of_the_Huanghe_River_delta_and_coastal_plain_of_north_Jiangsu [29] Zhang, R.S., 1986. Characteristics of tidal current and sedimentation of suspended load on tidal mud flat in Jiangsu Province. Oceanologia et Limnologia Sinica, 17(3): 235-245 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFZ198603007.htm [30] Zhang, Y., Swift, D.J.P., Yu, Z.Y., et al., 1998. Modeling of coastal profile evolution on the abandoned delta of the Huanghe River. Marine Geology, 145(1-2): 133-148. doi: 10.1016/S0025-3227(97)00110-2 [31] Zhang, Y., Yu, Z.Y., Jin, L., 1993. The erossion process model of mud flat by wave. The Ocean Engineering, 11(4): 74-83 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC199304010.htm [32] Zhang, Y.F., Li, C.A., Chen, L., et al., 2009. Magnetic fabric of Holocene palaeo-floods events in Jianghan plain. Earth Science—Journal of China University of Geosciences, 34(6): 985-992 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.112 [33] Zhu, D.K., Gao, S., 1985. A mathematical model for the geomorphic evolution and sedimentation of tidal flats. Marine Science Bulletin, 4(5): 15-21 (in Chinese with English abstract). http://www.researchgate.net/publication/282586586_Zhu_D-K_and_Gao_S_1985_A_mathematical_model_for_the_geomorphic_evolution_and_sedimentation_of_tidal_flats_in_Chinese_with_English_abstract_Marine_Science_Bulletin_v4_no5_p15_21 [34] Zhu, D.K., Xu, T.G., 1982. The cast development and exploit of middle Jiangsu. Journal of Nanjing University (Natural Sciences), 3: 799-818 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ198203023.htm [35] 陈才俊, 1991. 江苏淤长型淤泥质潮滩的剖面发育. 海洋与湖沼, 22(4): 360-368. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ199104010.htm [36] 陈金霞, 李铁刚, 南青云, 2009. 冲绳海槽千年来陆源物质输入历史与东亚季风变迁. 地球科学——中国地质大学学报, 34(5): 811-818. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200905015.htm [37] 高抒, 朱大奎, 1988. 江苏淤泥质海岸剖面的初步研究. 南京大学学报(自然科学版), 24(1): 75-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198801006.htm [38] 顾延生, 邱海鸥, 谢树成, 等, 2008. 湖北梁子湖近代沉积记录对人类活动的响应. 地球科学——中国地质大学学报, 33(5): 679-686. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200805014.htm [39] 李占海, 高抒, 沈焕庭, 等, 2006. 江苏大丰潮滩悬沙级配特征及其动力响应. 海洋学报, 28(4): 87-95. doi: 10.3321/j.issn:0253-4193.2006.04.011 [40] 任美锷, 主编, 1986. 江苏省海岸带与海涂资源综合调查报告. 北京: 海洋出版社. [41] 王颖, 朱大奎, 1994. 海岸地貌学. 北京: 高等教育出版社, 180-181. [42] 张忍顺, 1984. 苏北黄河三角洲及滨海平原的成陆过程. 地理学报, 39(2): 173-184. doi: 10.3321/j.issn:0375-5444.1984.02.005 [43] 张忍顺, 1986. 江苏省淤泥质潮滩的潮流特征及悬移质沉积过程. 海洋与湖沼, 17(3): 235-245. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ198603007.htm [44] 张勇, 虞志英, 金镠, 1993. 波浪作用下淤泥质海滩剖面侵蚀过程的计算模式——以江苏北部淤泥质海岸为例. 海洋工程, 11(4): 74-83. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC199304010.htm [45] 张玉芬, 李长安, 陈亮, 等, 2009. 基于磁组构特征的江汉平原全新世古洪水事件. 地球科学——中国地质大学学报, 34(6): 985-992. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200906014.htm [46] 朱大奎, 高抒, 1985. 潮滩地貌与沉积的数学模型. 海洋通报, 4(5): 15-21. [47] 朱大奎, 许廷官, 1982. 江苏中部海岸发育和开发利用问题. 南京大学学报(自然科学版), 3: 799-818. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198203023.htm