Late Quaternary High Resolution Monsoon Records in Planktonic Stable Isotopes from Northern South China Sea
-
摘要: 对南海北部MD05-2904孔45 m的连续沉积物中提取的浮游有孔虫Globigerinoides ruber(白色)进行稳定同位素分析, 得到晚MIS 8以来(时间跨度257 ka, 平均时间分辨率228 a)的高分辨率沉积记录, δ18O和δ13C的频谱分析显示了强烈的岁差(23.4 ka、19.8 ka)、半岁差(11.7 ka、9.9 ka)周期.MD05-2904孔MIS 24时间段的氧同位素记录了格陵兰冰心中发现的Dansgaard/Oeschger和Heinrich事件.与葫芦洞石笋记录及南海邻区浮游有孔虫氧同位素记录的对比显示了受季风控制的区域因素, 如降雨、河流输入导致的盐度变化等对表层海水组成的影响.氧同位素在MIS 3、MIS 6的早期以及MIS 7.4偏轻; 而在MIS 5.5偏重, 这种现象解释为降雨量和蒸发量共同作用的结果.而末次冰盛期高达6570 cm/ka的沉积速率反映了低海平面时孔位离岸距离缩短带来丰富的沉积物源.Abstract: Oxygen and carbon stable isotope records (with an average time resolution of 228 a) were obtained from Core MD05-2904 (19°27.32', 116°15.15', water depth 2 066 m), using the mixed-layer dwelling planktonic foraminifer Globigerinoides ruber (white). The 45 m core spans from end of MIS 8 to the Holocene, representing the sediment record of the last 257 a. Strong precession periods (23.4 ka and 19.8 ka) were found from spectral analysis of both δ18O and δ13C records, following with semi-precession cycles (11.7 ka and 9.9 ka). The high resolution δ18O record of MD05-2904 reveals nearly all the Dansgaard/Oeschger and Heinrich events during MIS 2-4, as defined in the Greenland ice core record. A better correlation between MD05-2904 planktonic δ18O, the Hulu stalagmite δ18O record and previously published planktonic δ18O records from the SCS suggests that the planktonic δ18O record is influenced by monsoon-dominated regional factors, such as rainfall and river discharge related salinity changes. Lighter δ18O values in early MIS 3, early MIS 6 and MIS 7.4, and heavier values in MIS 5.5 are due to changes in precipitation and evaporation affected by monsoon. Sedimentation rates increased to 65-70 cm/ka in LGM, indicating more sediments when the site location was closer to the river mouth during glacial at lower sea level.
-
图 3 (a) δ18O年代标尺:实线=MD05-2904,虚线=LR04,(b)实线=MD05-2904的δ13C记录,虚线=N21°的夏季太阳辐射量,(c)和(d)分别为MD05-2904 δ18O和δ13C的频谱分析
图a中数字代表氧同位素分期;图b中箭头代表 8个AMS14C测年结果
Fig. 3. (a) Solid line is the age model for the line δ18O record of MD05-2904, dashed line is the δ18O stack of LR04, (b) solid line is the δ13C record of MD05-2904, the dashed line is the summer insolation at N21°, (c) and (d) are the spectrum analysis results of G. ruber δ18O and δ13C of MD05-2904
图 5 (a) 相对海平面变化(Waelbroeck et al., 2002),(b)通过Uk37得出的MD05-2904孔的SST记录(数据来源于贺娟等,2008),(c)MD05-2904剩余氧同位素δ18Oresidual记录,(d)MD05-2904 δ18OG.ruber,(e)ODP 1146 δ18OG.ruber(Clemens and Prell, 2003),(f)三宝洞δ18O记录(Wang et al., 2008)
a、b、c中虚线为曲线变化趋势;d、e、f中虚线指示间冰期时的氧同位素值;黑色箭头代表本次研究中δ18O的区域性偏移;c图中剩余氧同位素δ18Oresidual的计算步骤:先计算得到δ18Owater,δ18Owater(SMOW)=0.27+(SST(℃)-16.5+4.8×δ18Ocalcite(PDB))/4.8(Bemis et al., 1998);δ18Owater扣掉冰盖效应(Waelbroeck et al., 2002)后即为δ18Oresidual
Fig. 5. (a) Relative sea level (Waelbroeck et al., 2002), (b) SST records derived from Uk37 at MD05-2904 (data from He et al., 2008), (c) residual δ18O record from the δ18OG.ruber of MD05-2904, (d) δ18OG.ruber record in this study, (e) δ18OG.ruber record in ODP 1146 (Clemens and Prell, 2003), (f) δ18O record of Sanbao-Hulu caves (Wang et al., 2008)
表 1 MD05-2904孔AMS14C测年结果及站位年龄模式选取的控制点
Table 1. AMS14C results and the total control points of MD05-2904
深度(cm) 年龄(a BP) 调谐目标曲线 备注 AMS14C年龄 日历年 15~18 1 421±30 1 315±20 AMS 14C测年结果采用Faribanks et al.(2005)校正程序转化为日历年, 每个控制点的年龄和深度取自测样深度和年龄的中值 171~174 6 582 + 36 7 472 + 32 299~302 9 756±60 11 189±48 479~482 13 033+43 15 181 + 108 646~649 14 811±80 17 724±215 762~765 16 275±80 19 397±98 986~989 21 308±101 25 534±172 1 082~1 085 22 158±132 26 649±187 1 387 45 525 MD95-2042 H5 1 559 55 624 MD95-2042 1 711 65 188 MD95-2042 1791 68 770 MD95-2042 1 943 81 389 MD95-2042 MIS5.1 2031 86 820 Hulu+Sanbao δ18O MIS5.2 2 287 107 500 Hulu+Sanbao δ18O MIS5.3 2 339 116 200 Hulu+Sanbao δ18O MIS5.4 2471 128 940 LR04 Stack MIS6.0 2 683 140 000 LR04 Stack MIS6.2 3 043 156 000 LR04 Stack MIS6.4 3 479 175 000 LR04 Stack MIS6.5 4 135 240 000 LR04 Stack MIS7.5 4 323 252 000 LR04 Stack 4 498 257 000 LR04 Stack -
[1] Adkins, J.F., Boyle, E.A., Keigwin, L., et al., 1997. Variability of the North Atlantic thermohaline circulation during the last interglacial period. Nature, 390: 154-156. doi: 10.1038/36540 [2] Bassinot, F.C., Beaufort, L., Vincent, E., et al., 1994. Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: a 1 500 kyr record of carbonate dissolution. Paleoceanography, 9(4): 579-600. doi: 10.1029/94PA00860 [3] Beaufort, L., de., Garidel-Thoron, T., Linsley, B., et al., 2003. Biomass burning and oceanic primary production estimates in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics. Marine Geology. 201(1-3): 53-65. doi: 10.1016/S0025-3227(03)00208-1 [4] Bemis, B.E., Spero, H.J., Bijma, J., et al., 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography, 13(2): 150-160. doi: 10.1029/98PA00070 [5] Bond, G., Broecker, W., Johnsen, S., et al., 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365(6442): 143-147. doi: 10.1038/365143a0 [6] Bond, G., Heinrich, H., Broecker, W., et al., 1992. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature, 360(6041): 245-249. doi: 10.1038/360245a0 [7] Bond, G.C., 1995. Climate and the conveyor. Nature, 377(6548): 383-384. doi: 10.1038/377383a0 [8] Boulay, S., Colin, C., Trentesaux, A., et al., 2005. Sediment sources and East Asian monsoon intensity over the last 450 ky: mineralogical and geochemical investigations on South China Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3-4): 260-277. doi: 10.1016/j.palaeo.2005.06.005 [9] Bühring, C., Sarnthein, M., Erlenkeuser, H., 2004. Toward a high-resolution stable isotope stratigraphy of the last 1.1 m. y. : Site 1144, South China Sea. Proc. ODP, Sci. Results, 184: 1-29. [10] Chen, M.H., Zhang, L.L., Zhang, L.L., et al., 2008a. Distributions of radiolarian diversity and abundance in surface sediments of the South China Sea and their environmental implications. Earth Science—Journal of China University of Geosciences, 33(4): 431-442 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.058 [11] Chen, M.H., Zhang, L.L., Zhang, L.L., et al., 2008b. Radiolarian assemblages in surface sediments of the South China Sea and their marine environmental correlations. Earth Science—Journal of China University of Geosciences, 33(6): 775-782 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.093 [12] Clemens, S.C., Prell, W.L., 2003. Oxygen and carbon isotopes from site 1146, northern South China Sea. Proc. ODP, Sci. Results, 184: 1-8. doi: 10.297310dp.proc.sr.184.214.2003 [13] Clement, A.C., Seager, R., Cane, M.A., 1999. Orbital controls on the El Niño/Southern Oscillation and tropical climate. Paleoceanography, 14(4): 441-456. doi: 10.1029/1999PA900013 [14] Clift, P.D., 2006. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth and Planetary Science Letters, 241(3-4): 571-580. doi: 10.1016/j.epsl.2005.11.028 [15] Fairbanks, R.G., Mortlock, R.A., Chiu, T.C., et al., 2005. Radiocarbon calibration curve spanning 0 to 50 000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews, 24(16-17): 1781-1796. doi: 10.1016/j.quascirev.2005.04.007 [16] Grootes, P.M., Stuiver, M., 1997. Oxygen 18/16 variability in Greenland snow and ice with 10-3 to 105-year time resolution. Journal of Geophysical Research, 102(C12): 26455-26470. doi: 10.1029/97JC00880 [17] He, J., 2008. Biomarker records of environment change in the northern South China Sea (MD05-2904 core) since 260 kyr (Dissertation). Tongji University, Shanghai (in Chinese). [18] He, J., Zhao, M.X., Li, L., et al., 2008. Biomarker records of environment change and SST records in the northern South China Sea (MD05-2904 core) since 260 kyr. Chinese Science Bulletin, 53(11): 1324-1331 (in Chinese). doi: 10.1360/csb2008-53-11-1324 [19] Jian, Z.M., Wang, P.X., Zhao, Q.H., et al., 2001. Late Pliocene enhanced East Asian winter monsoon evidence of isotope and foraminifers from the northern South China Sea. Quaternary Sciences, 21(5): 461-469 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200105010.htm [20] Laj, C., Wang, P.X., Balut, Y., et al., 2005. MD147-Marco Polo IMAGES Ⅻ Cruise Report. Institut Paul-Emile Victor (IPEV, France). [21] Li, Q.Y., Zhao, Q.H., Zhong, G.F., et al., 2008. Deep water ventilation and stratification in the Neogene South China Sea. Earth Science—Journal of China University of Geosciences, 33(1): 1-11 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.001 [22] Lisiecki, L.E., Raymo, M.E., 2005. A Plio-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003. doi: 10.1029/2004PA001071 [23] Liu, Z., Trentesaux, A., Clemens, S.C., et al., 2003. Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Marine Geology, 201(1-3): 133-146. doi: 10.1016/S0025-3227(03)00213-5 [24] Lüdmann, T., Wong, H.K., Wang, P.X., 2001. Plio-Quaternary sedimentation processes and neotectonic of the northern continental margin of the South China Sea. Marine Geology, 172(3-4): 331-358. doi: 10.1016/S0025-3227(00)00129-8 [25] Martinson, D.G., Pisias, N.G., Hays, J.D., 1987. Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0 to 300 000 year chronostratigraphy. Quaternary Research, 27(1): 1-29. doi: 10.1016/0033-5894(87)90046-9 [26] Oppo, D.W., Linsley, B.K., Rosenthal, Y., et al., 2003. Orbital and suborbital climate variability in the Sulu Sea, western tropical Pacific. Geochemistry, Geophysics, Geosystems, 4(1): 1-20. doi: 10.1029/2001GC000260 [27] Oppo, D.W., Sun, Y., 2005. Amplitude and timing of sea-surface temperature change in the northern South China Sea: dynamic link to the East Asian monsoon. Geology, 33(10): 785-788. doi: 10.1130/G21867.1 [28] Schulz, M., Mudelsee, M., 2002. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computer & Geosciences, 28(3): 421-426. doi: 10.1016/S0098-3004(01)00044-9 [29] Shackleton, N.J., Hall, M.A., Vincent, E., 2000. Phase relationships between millennial-scale events 64 000-24 000 years ago. Paleoceanography, 15(6): 565-569. doi: 10.1029/2000PA000513 [30] Shaw, P.T., 1996. Winter upwelling off Luzon in the northeastern South China Sea. Journal of Geophysical Research, 101(c7): 16435-16448. doi: 10.1029/96JC01064 [31] Steinke, S., Chiu, H.Y., Yu, P.S., et al., 2006. On the influence of sea level and monsoon climate on the southern South China Sea freshwater budget over the last 22 000 years. Quaternary Science Reviews, 25(13-14): 1475-1488. doi: 10.1016/j.quascirev.2005.12.008 [32] Thompson, P.R., Bé, A.W.H., Duplessy, J.C., et al., 1979. Disappearance of pink-pigmented Globigerinoides ruber at 120 000 yr BP in the Indian and Pacific Oceans. Nature, 280: 554-558. doi: 10.1038/280554a0 [33] Waelbroeck, C., Labeyrie, L., Michel, E., et al., 2002. Sea-level and deep water temperature changes derived from benthonic foraminifera isotopic records. Quaternary Science Reviews, 21(1-3): 295-305. doi: 10.1016/S0277-3791(01)00101-9 [34] Wang, L.J., Sarnthein, M., Pflaumann. U., et al., 1999a. East Asian monsoon climate during the late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology, 156(1-4): 245-284. doi: 10.1016/S0025-3227(98)00182-0 [35] Wang, L.J., Sarnthein, M., Erlenkeuser, H., et al., 1999b. Holocene variations in Asian monsoon moisture: a bidecadal sediment record from the South China Sea. Geophysical Research Letters, 26(18): 2889-2892. doi: 10.1029/1999GL900443 [36] Wang, L.J., Sarnthein, M., Grootes, P.M., et al., 1999c. Millennial reoccurrence of century-scale abrupt events of East Asian monsoon: a possible heat conveyor for the global deglaciation. Paleoceanography, 14(6): 725-731. doi: 10.1029/1999PA900028 [37] Wang, P.X., Prell, W.L., Blum, P., et al., 2000. Proceeding of the ocean drilling program, initial reports. South China Sea, Vol 184. Texas A & M University, College Station, TX, USA. [38] Wang, P.X., Wang, L.J., Bian, Y.H., et al., 1995. The South China Sea since 150 ka. Tongji University Press, Shanghai (in Chinese). [39] Wang, Y., Cheng, H., Edwards, R.L., et al., 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224 000 years. Nature, 451: 1090-1093. doi: 10.1038/nature06692 [40] Wyrtki, K., 1961. Physical oceanography of the Southeast Asia waters. Geophysical Research Letters: 1-195. doi: 10.1029/96JC01064 [41] 陈木宏, 张兰兰, 张丽丽, 等, 2008a南海表层沉积物中放射虫多样性与丰度的分布与环境. 地球科学——中国地质大学学报, 33(4): 431-442. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200804002.htm [42] 陈木宏, 张兰兰, 张丽丽, 等, 2008b. 南海表层沉积物中放射虫的组合特征与海洋环境. 地球科学——中国地质大学学报, 33(6): 775-782. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200806005.htm [43] 贺娟, 2008. 南海北部(MD05-2904柱样)26万年生物标记物记录的古环境变迁(博士学位论文). 上海: 同济大学. [44] 贺娟, 赵美训, 李丽, 等, 2008. 南海北部MD05-2904沉积柱状样26万年以来表层海水温度及陆源生物标记物记录. 科学通报, 53(11): 1324-1331. doi: 10.3321/j.issn:0023-074X.2008.11.014 [45] 李前裕, 赵泉鸿, 钟广法, 等, 2008. 新近纪南海深层水的增氧与分层. 地球科学——中国地质大学学报, 33(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200801003.htm [46] 汪品先, 王律江, 卞云华, 等, 1995. 十五万年来的南海. 上海: 同济大学出版社. [47] 翦知緡, 汪品先, 赵泉鸿, 等, 2001. 南海北部上新世晚期东亚冬季风增强的同位素和有孔虫证据. 第四纪研究, 21(5): 461-469. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200105010.htm