Zircon U-Pb Ages and Geochemistry of Volcanic Rock from Linzizong Group in Zhunuo Area in Middle Gangdise Belt, Tibet Plateau
-
摘要: 林子宗火山岩是发育在青藏高原南部冈底斯带的古近纪火山岩, 被认为代表了新特提斯洋俯冲消减结束过渡到印度—亚洲大陆碰撞过程的产物, 其确切的时代对于限制印度—亚洲大陆的碰撞时限具有重要意义.对冈底斯带中部朱诺地区的林子宗火山岩进行了系统的LA-ICP-MS锆石U-Pb年代学、元素和Sr-Nd同位素地球化学研究, 获得的林子宗火山岩的典中组、年波组和帕那组LA-ICP-MS锆石U-Pb年龄分别为64.8±1.6 Ma、59.7±1.8 Ma和48.9±0.8 Ma.元素和同位素地球化学结果表明, 朱诺地区各组特征与区域上特征相似, 其中典中组和年波组火山岩属于钙碱性和高钾钙碱性系列, 具有岛弧火山岩特点; 帕那组出现大量的钾玄岩, 属于同碰撞火山岩.证明前人提出的雅鲁藏布江地区洋盆闭合和印度—亚洲大陆碰撞开始时间为50 Ma左右的观点.Abstract: The Paleogene volcanic rock in Linzizong Group is developed in the Gangdise belt, southern Tibet plateau and it is deemed to represent the result of Neo-Tethys from its subduction to the India-Asia collision. Its precise age is significant to constrain the time of the India-Asia collision. Herein a systematic study, including zircon U-Pb ages, major and trace elements and Sr-Nd isotopic geochemistry, has been done to volcanic rock from Linzizong Group in Zhunuo area in middle Gangdise belt. We obtain Linzizong Group volcanic rock LA-ICP-MS zircon U-Pb data showing the following ages: the Dianzhong Formation, 64.8±1.6 Ma, the Nianbo Formation, 59.7±1.8 Ma, the Pana Formation, 48.9±0.8 Ma. The data of elementary and isotopic geochemistry suggest that the characteristics of these formations in Zhunuo area are similar to regional characteristics. Among them, Dianzhong and Nianbo formations are calc-alkalic and high-K calc-alkalic rocks with characteristics of arc-island volcanic rocks. Pana Formation contains shoshonite and is syn-collision volcanic rock. It is proved that suture of the Yarlung Zangbo oceanic basin and the beginning of collision between India and Asia were about 50 Ma.
-
Key words:
- zircon U-Pb age /
- geochemistry /
- Linzizong Group volcanic rock /
- middle Gangdise belt
-
图 1 朱诺地区地质简图(a)及研究区构造位置图(b)(原图贾建称等,2005)
C1y.永珠组;J3K1S.桑日群;K1t.塔克那组;Q.第四系
Fig. 1. Simplied geological map of Zhunuo area (a) and the location of the study area
图 4 研究区林子宗群火山岩地球化学图解(a据Le Bas et al., 1986; b据Rickwood, 1989; c, d据Sun and McDonough, 1989)
Fig. 4. Classification of Linzizong Group volcanic rocks in the study area
图 5 林子宗群火山岩(87Sr/86Sr)i-εNd(t)图
空心图例引自Mo et al., 2008;实心图例为本次研究数据
Fig. 5. (87Sr/86Sr)i-εNd(t) plot of Linzizong Group volcanic rocks
图 6 研究区林子宗群火山岩(La/Sm)N-(Ba/La)N和(Yb+Ta)-Rb图解(a据Othman et al., 1989; b据Pearce et al., 1984)
Fig. 6. (La/Sm)N-(Ba/La)N and (Yb+Ta)-Rb diagrams for Linzizong Group volcanic rocks in the study area
表 1 研究区林子群宗火山岩样品概况
Table 1. Petrography of studied samples from Linzizong Group in Zhunuo area, southern Tibet
样品号 岩石名称 组 采样位置 岩性描述 D0988/1 流纹岩 帕那组 29°44′03″N
87°57′36″E斑晶由石英(8%)、斜长石(10%)和黑云母(2%)组成,粒径0.5~1.5 mm;基质包括石英(22%)、正长石(3%)、绢云母(5%)和长英颗粒(50%),粒径0.05~0.4 mm D1039/1 晶屑玻屑凝灰岩 帕那组 29°48′45″N
87°25′15″E晶屑15%、粒径0.3~1.5 mm,见石英(6%)、正长石(4%)和隧石(5%)等;基质约85%.其中含有弱重结晶微细玻屑(30%)、未结晶玻璃质和微细粒状铁质(55%) D1195/1 流纹质玻屑晶屑凝灰岩 帕那组 29°39′02″N
87°24′40″E斜长石晶屑8%、石英晶屑12%,粒径0.1~1.2 mm;流纹岩和安山岩岩屑 < 3%,粒径1~1.7 mm;隐晶状长英质集合体60%~68%、粒径0.01~0.2 mm;粒状方解石和斜状黑云母 < 5%.锆石为无色透明颗粒,少数为棕红色颗粒 D1250/1-1 流纹质晶屑玻屑凝灰岩 帕那组 29°48′59″N
87°25′15″E斜长石晶屑10%、粒径0.2~2 mm,石英晶屑10%、黑云母晶屑3%、脱玻化粘土化玻屑80%~85% D1240/1 晶屑岩屑凝灰岩 年波组 29°49′07″N
87°28′57″E晶屑为石英(2%)和长石(3%),粒径0.15~1.5 mm;岩屑为流纹岩岩屑(5%)和安山岩岩屑(5%),粒径0.2~1 mm;基质包括微晶隧石(75%)、伊利石和绢云母(10%) D1251/12-1 流纹质玻屑熔结凝灰岩 年波组 29°49′14″N
87°25′19″E斜长石晶屑和正长石晶屑 < 2%,粒径0.5~1.2 mm;玻屑粒径 < 0.15 mm,见隐晶纤维状长英矿物(85%)和云雾状铁质玻屑(10%)、微粒状碳酸盐和石英(< 3%) D1253/38-1 英安质岩屑晶屑凝灰岩 年波组 29°50′05″N
87°25′44″E流纹岩2%~3%、安山岩岩屑10%,粒径1~1.7mm;斜长石晶屑8%和石英晶屑10%,粒径0.1~1.2 mm;隐晶状长英质集合体60%~65%,粒径0.01~0.2 mm;粒状方解石和斜状黑云母 < 5%;锆石为无色透明颗粒 D1253/39-1 流纹质含岩屑晶屑凝灰岩 典中组 29°50′05″N
87°25′44″E晶屑含石英(6%)、正长石(2%)和斜长石(2%),粒径0.15~1.5 mm;岩屑为流纹岩和安山岩(5%),粒径0.2~1 mm;基质为隧石(75%)、伊利石和绢云母(10%).锆石为无色透明颗粒,少数为棕红色颗粒 D1032/1 流纹质含岩屑晶屑玻屑凝灰岩 典中组 29°48′41″N
87°27′19″E岩屑10%、粒径为0.5~7 mm;石英晶屑35%、粒径为0.05~4 mm;黑云母晶屑粒径为0.2~0.5 mm;基质(50%)主要由隐晶长英矿物集合体组成 L02/1G 中酸性晶屑岩屑凝灰岩 典中组 29°41′16″N
87°39′10″E晶屑粒径0.2~2.5 mm,含石英(5%)和斜长石(5%);岩屑粒径2~5 mm,含细砂岩屑(5%)、凝灰岩屑(5%)和流纹岩屑(10%);基质60%,由微粒硅质组成 L01/1G 蚀变微晶安山岩 典中组 29°41′22″N
87°39′06″E斑晶15%、粒径0.3~1.5 mm,有斜长石(3%)、绿泥石(3%)和绿帘石(9%);基质85%、粒径0.05~0.3 mm,包括斜长石(40%)、绢云母(5%)和钾长石(40%) 表 2 研究区林子宗群火山岩锆石分析结果
Table 2. LA-ICP-MS zircon U-Pb data of Linzizong Group volcanic rocks in the study area
样品号及分析点号 含量(10-6) Th/U 同位素比值 t(Ma) Pb Th U 207Pb/206Pb±1σ 207Pb/235U±1σ 206Pb/238U±1σ 206Pb/238U±1σ D1253/39-1 (典中组) 01 8 275 290 0.95 0.046 05±0.003 23 0.056 29±0.003 88 0.008 87±0.000 12 56.9±0.7 02 24 2 129 1 612 1.32 0.046 95±0.001 24 0.066 20±0.001 71 0.010 23±0.000 12 65.6±0.8 03 5 443 375 1.18 0.045 54±0.002 47 0.060 88±0.003 24 0.009 70±0.000 14 62.2±0.9 04 3 257 170 1.51 0.049 55±0.005 23 0.064 58±0.006 73 0.009 45±0.000 19 61.0 ±1.0 05 8 511 556 0.92 0.063 57±0.003 32 0.082 78±0.004 22 0.009 45±0.000 15 60.6±1.0 06 3 269 222 1.21 0.047 52±0.003 81 0.064 53±0.005 11 0.009 85±0.000 16 63.0 ±1.0 07 6 529 412 1.28 0.048 30±0.002 82 0.067 11±0.003 86 0.010 08±0.000 25 64.7±1.0 08 8 345 505 0.68 0.050 13±0.002 55 0.078 87±0.003 92 0.011 41±0.000 27 73.0±1.0 09 18 1 204 1 313 0.92 0.049 34±0.001 59 0.069 09±0.002 18 0.010 15±0.000 12 65.1±0.8 10 5 345 367 0.94 0.047 79±0.003 50 0.068 25±0.004 92 0.010 36±0.000 18 66.0±1.0 11 4 171 282 0.61 0.050 93±0.003 58 0.075 55±0.005 23 0.010 76±0.000 17 69.0±1.0 12 10 1 053 452 2.33 0.091 76±0.003 21 0.134 30±0.004 55 0.010 61±0.000 15 68.0±1.0 13 4 274 248 1.10 0.049 30±0.003 68 0.072 63±0.005 33 0.010 68±0.000 18 68.0 ±1.0 14 8 979 405 2.42 0.055 84±0.002 78 0.077 67±0.003 78 0.010 09±0.000 15 64.7±1.0 15 2 150 84 1.79 0.043 55±0.008 27 0.061 92±0.011 68 0.010 31±0.000 16 66.0±2.0 D1253/38-1 (年波组) 01 4 298 245 1.22 0.048 97±0.002 50 0.067 65±0.003 38 0.010 02±0.000 14 64.3±0.9 02 40 3 200 2 974 1.08 0.053 98±0.001 31 0.067 85±0.001 60 0.009 12±0.000 10 58.5±0.6 03 8 998 562 1.78 0.047 71±0.001 97 0.059 03±0.002 38 0.008 97±0.000 12 57.6±0.8 04 16 1 206 1 161 1.04 0.048 39±0.002 89 0.064 62±0.003 76 0.009 68±0.000 13 62.1±0.8 05 173 12 630 7 953 1.59 0.089 93±0.013 71 0.088 61±0.013 39 0.007 15±0.000 14 45.9±0.9 06 4 138 141 0.98 0.058 91±0.011 80 0.076 65±0.015 25 0.009 44±0.000 22 60.1±1.0 07 5 415 243 1.71 0.078 65±0.007 68 0.101 86±0.009 75 0.009 79±0.000 18 60.1±1.0 08 3 275 184 1.49 0.046 05±0.004 30 0.057 12±0.005 26 0.009 00±0.000 14 57.7±0.9 09 6 523 344 1.52 0.046 34±0.003 54 0.061 85±0.004 64 0.009 68±0.000 13 62.1±0.8 D1195/1 (帕那组) 01 2 122 132 0.92 0.056 67±0.005 09 0.060 49±0.005 34 0.007 74±0.000 13 49.7 ±0.8 02 18 1 113 1 732 0.64 0.075 60±0.004 54 0.048 16±0.001 74 0.007 55±0.000 09 48.5±0.6 03 13 896 1 441 0.62 0.050 11±0.003 14 0.050 50±0.001 06 0.007 51±0.000 08 48.2±0.5 04 15 866 1 401 0.62 0.052 12±0.001 29 0.048 50±0.001 62 0.007 64±0.000 09 49.0±0.6 05 3 343 239 1.44 0.048 65±0.002 10 0.047 46±0.003 53 0.007 40±0.000 10 47.5±0.6 06 3 295 226 1.31 0.050 90±0.002 91 0.052 23±0.005 47 0.007 46±0.000 11 47.9±0.7 07 5 307 279 1.10 0.078 76±0.018 03 0.046 02±0.002 27 0.007 25±0.000 10 46.6±0.6 08 9 786 803 0.98 0.046 25±0.001 75 0.049 04±0.002 27 0.007 47±0.000 08 48.0±0.5 09 11 649 1 109 0.59 0.048 77±0.001 05 0.054 61±0.001 21 0.007 91±0.000 09 50.8±0.6 10 26 1 668 1 946 0.86 0.046 05±0.001 62 0.079 28±0.004 65 0.007 61±0.000 10 48.8±0.6 11 27 1 432 1 700 0.84 0.046 55±0.003 52 0.051 14±0.003 14 0.007 40±0.000 09 47.5±0.6 12 11 716 1 073 0.67 0.050 75±0.005 37 0.058 19±0.001 40 0.008 10±0.000 09 52.0±0.6 13 3 209 251 0.83 0.056 67±0.005 09 0.052 41±0.002 22 0.007 81±0.000 10 50.2±0.6 14 21 1 043 1 487 0.70 0.075 60±0.004 54 0.055 25±0.003 08 0.007 87±0.000 10 50.5±0.7 15 5 148 155 0.95 0.050 11±0.003 14 0.084 83±0.019 29 0.007 81±0.000 21 50.0±1.0 表 3 研究区林子宗群火山岩样品主量元素(%)、微量元素(μg/g)含量和Sr-Nd同位素组成
Table 3. Major, trace element and Sr-Nd isotope compositions of samples from Linzizong group volcanic rocks in the study area
组名样号 典中组 年波组 帕那组 D1032/1 D1253/39-1 L01/1G L02/1G D1253/38-1 D1240/1 D1251/12-1 D1250/1-1 D0988/1 D1039/1 D1195/1 SiO2 76.92 76.73 61.31 72.52 76.17 72.09 74.36 69.58 71.72 75.95 77.63 TiO2 0.16 0.14 1.05 0.31 0.13 0.23 0.11 0.37 0.26 0.15 0.11 Al2O3 12.70 11.67 15.89 14.06 12.35 13.15 12.72 14.69 13.76 12.27 11.81 MnO 0.02 0.04 0.16 0.12 0.02 0.07 0.02 0.04 0.06 0.03 0.07 MgO 0.31 0.25 0.64 0.35 0.19 0.67 0.08 0.63 0.29 0.21 0.13 CaO 0.32 1.04 4.23 2.47 0.29 1.21 0.43 0.57 1.07 0.89 0.20 Fe2O3 0.57 1.37 5.58 1.47 1.27 0.57 1.48 3.13 1.93 0.66 0.78 FeO 0.92 0.37 2.75 0.68 0.43 1.73 0.42 0.22 0.25 0.33 0.18 Na2O 3.54 2.43 4.47 3.14 3.22 3.31 3.51 2.62 3.02 3.27 3.46 K2O 2.68 3.74 2.04 3.35 4.26 3.60 5.46 6.11 5.57 5.54 4.80 P2O5 0.04 0.03 0.36 0.07 0.03 0.06 0.02 0.08 0.07 0.03 0.03 H2O+ 1.49 1.37 1.23 1.10 1.30 1.56 1.11 1.64 1.14 0.32 0.54 CO2 0.14 0.64 0.10 0.12 0.10 0.73 0.14 0.08 0.69 0.20 0.12 Total 99.81 99.82 99.81 99.76 99.76 99.79 99.86 99.76 99.83 99.85 99.86 Na+K 6.22 7.48 7.69 6.51 6.49 6.91 8.97 8.73 8.59 8.81 8.26 K/Na 0.76 1.54 0.46 1.07 1.32 1.09 1.56 2.33 1.84 1.69 1.39 A/CNK 1.36 1.17 0.92 1.06 1.18 1.14 1.02 1.23 1.06 0.94 1.05 La 29.60 30.49 26.66 35.35 61.98 48.49 56.34 50.02 30.25 Ce 58.77 61.90 52.03 63.73 113.1 88.05 99.54 82.47 60.16 Pr 7.70 7.59 6.57 7.85 13.86 11.07 11.37 9.13 7.52 Nd 28.35 27.83 24.52 29.52 48.34 39.00 37.89 29.02 24.84 Sm 6.04 5.72 5.34 5.62 9.43 7.45 6.67 4.56 4.87 Eu 0.78 0.76 0.67 0.97 0.38 1.46 0.87 0.60 0.34 Gd 5.08 5.21 5.12 5.09 7.83 6.34 5.19 3.36 4.15 Tb 0.84 0.88 0.86 0.84 1.27 0.99 0.84 0.54 0.71 Dy 4.80 4.95 5.02 4.93 7.22 5.46 4.65 2.96 4.24 Ho 0.91 0.98 0.97 0.99 1.39 1.06 0.94 0.60 0.85 Er 2.44 2.77 2.77 2.86 3.91 3.05 2.63 1.75 2.55 Tm 0.36 0.44 0.43 0.46 0.59 0.48 0.41 0.30 0.42 Yb 2.06 2.76 2.86 2.92 3.66 3.11 2.50 1.92 2.79 Lu 0.28 0.39 0.38 0.43 0.52 0.46 0.36 0.29 0.42 Y 21.02 24.41 24.67 25.10 34.93 26.91 23.33 15.37 22.81 ΣREE 169.0 177.1 158.9 186.7 308.4 243.4 253.5 202.9 166.9 Eu/Eu* 0.42 0.42 0.39 0.54 0.13 0.63 0.44 0.45 0.23 LREE/HREE 3.47 3.14 2.69 3.28 4.03 4.09 5.21 6.49 3.29 (La/Yb)N 10.31 7.92 6.69 8.68 12.15 11.18 16.17 18.69 7.78 Sc 8.4 7.0 6.1 7.4 5.0 7.0 3.8 3.0 3.2 V 16.4 15.9 13.8 29.6 13.7 32.6 18.4 10.1 5.3 Cr 2.2 3.6 5.5 8.0 2.9 3.0 3.0 2.2 2.4 Co 1.8 2.6 2.7 3.2 1.5 4.4 3.4 2.2 0.76 Rb 132 163 162 176 184 137 226 182 183 Sr 145 82.7 80.7 150 65.8 147 149 72.9 55.2 Zr 131 116 130 156 255 284 202 102 189 Nb 8.9 7.6 8.6 8.1 16.8 13.0 16.1 11.0 18.0 Ba 591 620 740 724 107 1035 561 370 173 Hf 4.1 3.1 4.7 4.9 7.1 6.7 6.1 3.1 4.7 Ta 0.72 0.68 0.75 0.74 1.4 1.1 1.5 1.0 1.5 Pb 22.0 19.1 105 18.3 34.8 33.3 24.7 29.2 41.2 Th 16.3 14.6 12.2 13.5 18.7 22.1 28.7 20.8 18.4 U 1.7 1.6 1.8 1.0 3.7 2.7 3.1 2.7 3.5 Rb/Sr 0.91 1.99 2.01 1.17 2.80 0.93 1.52 2.50 3.32 ISr 0.709 33 0.704 87 0.705 43 INd 0.512 14 0.512 34 0.512 51 εNd(t) -8.14 -4.39 -1.19 -
[1] Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Beck, R.A., Burbank, D.W., Sercombe, W.J., et al., 1995. Stratigraphic evidence for an early collision between Northwest India and Asia. Nature, 373(6509): 55-58. doi: 10.1038/373055a0 [3] Coulon, C., Maluski, H., Bollinger, C., et al., 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79(3-4): 281-302. doi: 10.1016/0012-821X(86)90186-X [4] Crofu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53: 469-500. doi: 10.2113/0530469 [5] Deng, J.F., Zhao, H.L., Mo, X.X., et al., 1996. Continental root-plume tectonics of China—key to the continental dynamics. Geological Publishing House, Beijing (in Chinese). [6] Ding, L., 2003. Paleocene deep-water sediments and radiolarian faunas: implications for evolution of Yarlung-Zangbo foreland basin, southern Tibet. Science in China (Series D), 46(1): 84-96. doi: 10.1360/03yd9008 [7] Dong, G.C., Mo, X.X., Zhao, Z.D., et al., 2005. A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Lhünzhub basin, northern Lhasa. Tibet, China. Geological Bulletin of China, 24(6): 549-557(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-zqyd200506012.htm [8] Gradstein, F.M., Ogg, J.G., Smith, A.G., 2004. A geologic time scale 2004. Cambridge University Press, Cambridge, UK, 384. [9] Hacker, B.R., Ratshbacher, L., Webb, L., et al., 1998. U/Th zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China. Earth and Planetary Science Letters, 161(1-4): 215-230. doi: 10.1016/S0012-821X(98)00152-6 [10] Jia, J.C., Wen, C.S., Wang, G.S., et al., 2005. Geochemical characteristics and geodynamic significance of the Linzizong Group volcanic rocks in the Gangdise area. Geology in China, 32(3): 396-404 (in Chinese with English abstract). http://www.researchgate.net/publication/287706330_Geochemical_characteristics_and_geodynamic_significance_of_the_Linzizong_Group_volcanic_rocks_in_the_Gangdise_area [11] Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., et al., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750. doi: 10.1093/petrology/27.3.745 [12] Lee, H.Y., Chung, S.L., Wang, Y.B., et al., 2007. Age, petrogenesis and geological significance of the Linzizong volcanic successions in the Linzhou basin, southern Tibet: evidence from zircon U-Pb dates and Hf isotopes. Acta Petrologica Sinica, 23(2): 493-500 (in Chinese with English abstract). [13] Li, Z.H., Zheng, L.L., Li, J.M., et al., 2008. Petrological and geochemical characteristics of the Linzizong volcanic rocks in the central Gangdise area. Bulletin of Mineralogy, Petrology and Geochemistry, 27(1): 20-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200801003.htm [14] Liu, H.F., 1993. Division of Linzizong volcanic rock system and belong to time in Lhasa area. Tibet Geology, 2: 59-69 (in Chinese with English abstract). [15] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2008. Simultaneous determinations of U-Pb age and trace element compositions of zircon by LA-ICP-MS at small spot sizes. Geostandards and Geoanalytical Research, (in Press). [16] Ludwig, K.R., 2001. Users manual for Isoplot/Ex (rev. 2.49): a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, La, 55p. [17] Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of the America Bulletin, 101: (5)635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [18] Miller, C., Schuster, R., Klotzli, U., et al., 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399-1424. doi: 10.1093/petroj/40.9.1399 [19] Mo, X.X., Deng, J.F., Dong, F.L., et al., 2001. Volcanic petrotectonic assemblages in Sanjiang orogenic belt, SW China and implication for tectonics. Geological Journal of China Universities, 7(2): 121-138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200102000.htm [20] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdise, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11(3): 281-290 (in Chinese with English abstract). [21] Mo, X.X., Niu, Y.L., Dong, G.C., et al., 2008. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1-4): 49-67. doi: 10.1016/j.chemgeo.2008.02.003 [22] Mo, X.X., Pan, G.T., 2006. From the Tethys to the formation of the Qinghai-Tibet plateau: constrained by tectonic-magmatic events. Earth Science Frontiers, 13(6): 43-51(in Chinese with English abstract). [23] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DXQY200303019&dbcode=CJFD&year=2003&dflag=pdfdown [24] Mo, X.X., Zhao, Z.D., Zhou, S., et al., 2007. On the timing of India-Asia continental collision. Geological Bulletin of China, 26(10): 1240-1244 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200710004.htm [25] Mo, X.X., Zhao, Z.D., Zhu, D.C., et al., 2009. On the lithosphere of Indo-Asia collision zone in southern Tibet: petrolotgical and geochemical constraints. Earth Science—Journal of China University of Geosciences, 34(1): 17-27 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.003 [26] Othman, D.B., White, W.M., Patchett, J., 1989. The geochemistry of marine sediment, island arc magma genesis and crust-mantle recycling. Earth and Plantary Science Letters, 94(1-2): 1-21. doi: 10.1016/0012-821X(89)90079-4 [27] Pan, G.T., Ding, J., Yao, D.S., et al., 2004. Geological map of Qinghai-Xizang (Tibetan) plateau and adjacent areas (1∶1500000). Chengdu Ariographic Publishing House, Chengdu (in Chinese). [28] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956 [29] Phillippe, P., Jose, A., 1984. India-Eurasia collision chronology has implications for crustal shortening and driving-mechanism of plates. Nature, 311(5987): 615-621. doi: 10.1038/311615a0 [30] Rickwood, P.C., 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5 [31] Rowley, D.B., Xue, F., Tucker, R.D., et al., 1997. Ages of ultra-high pressure metamorphic and source orthognisses from the eastern Dabie Shan: U/Th zircon geochronology. Earth and Planetary Science Letters, 151(3): 191-203. [32] Royden, L.H., Buchfiel, B.C., vander Hilst, R.D., 2008. The geological evolution of the Tibetan plateau. Science, 321(5892): 1054-1058. doi: 10.1126/science.1155371 [33] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [34] Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37(1): 45-71. doi: 10.1093/petrology/37.1.45 [35] Wu, Y.B., Zheng, Y.F., 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589 [36] Xia, B., Li, J.F., Zhang, Y.Q., et al., 2008. SHRIMP zircon U-Pb dating of granites in Maila, west of the Gangdise belt, southern Tibet and its geological implication. Geotectonica et Metallogenia, 32(2): 243-246 (in Chinese with English abstract). [37] Xiong, X., Wang, J.Y., Teng, J.W., 2007. Deep mechanical background for the Cenozoic volcanism in the Tibetan plateau. Earth Science—Journal of China University of Geosciences, 32(1): 1-6 (in Chinese with English abstract). [38] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x [39] Zhang, K.X., Wang, G.C., Cao, K., et al., 2008. Cenozoic sedimentary records and geochronological constraints of differential uplift of the Qinghai-Tibet plateau. Science in China (Series D), 51(11): 1658-1672. doi: 10.1007/s11430-008-0132-2 [40] Zhang, K.X., Wang, G.C., Chen, F.N., et al., 2007. Coupling between the uplift of Qinghai-Tibet plateau and distribution of basins of Paleogene-Neogene. Earth Science—Journal of China University of Geosciences, 32(5): 583-597 (in Chinese with English abstract). [41] Zhang, Y.Q., Ling, W.L., Li, F.L., 2008. Element and Sr-Nd isotopic mobility during weathering process of the Nanhuaian-Cambrian sedimentary strata in the eastern Three Gorges and its geochemical implication. Earth Science—Journal of China University of Geosciences, 33(3): 301-312 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.040 [42] Zhao, Z.D., Mo, X.X., Nomand, S., et al., 2006. Post-collisional ultrapotassic rocks in Lhasa block, Tibetan plateau: spatial and temporal distribution and its' implications. Acta Petralogica Sinica, 22(4): 787-794 (in Chinese with English abstract). [43] Zhao, Z.D., Mo, X.X., Zhang, S., et al., 2001. Post-collisional magamatism in Wuyu basin, central Tibet: evidence for recycling of subducted Tethyan oceanic crust. Science in China (Series D), 44 (Suppl. ): 27-34. [44] Zheng, Y.Y., Zhang, G.Y., Xu, R.K., et al., 2007. Rock-forming and ore-forming age of Gangdise porphyry copper deposit in Zhunuo, Tibet. Chinese Science Bulletin, 52(21): 2542-2548 (in Chinese). doi: 10.1360/csb2007-52-21-2542 [45] Zhou, S., Fang, N.Q., Dong, G.C., et al., 2001. Argon dating on the volcanic rocks of the Linzizong Group, Tibet. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 317-319 (in Chinese with English abstract). [46] Zhou, S., Mo, X.X., Dong, G.C., et al., 2004. 40Ar-39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou basin, Tibet, China, and their geological implications. Chinese Science Bulletin, 49(20): 2095-2103 (in Chinese). doi: 10.1360/csb2004-49-20-2095 [47] 邓晋福, 赵海玲, 莫宣学, 等, 1996. 中国大陆根-柱构造——大陆动力学的钥匙. 北京: 地质出版社. [48] 董国臣, 莫宣学, 赵志丹, 等, 2005. 拉萨北部林周盆地林子宗火山岩层序新议. 地质通报, 24(6): 549-557. doi: 10.3969/j.issn.1671-2552.2005.06.012 [49] 贾建称, 温长顺, 王根厚, 等, 2005. 冈底斯地区林子宗群火山岩岩石地球化学特征及地球动力学意义. 中国地质, 32(3): 396-404. doi: 10.3969/j.issn.1000-3657.2005.03.007 [50] 李皓扬, 钟孙霖, 王彦斌, 等, 2007. 藏南林周盆地林子宗火山岩的时代、成因及其地质意义: 锆石U-Pb年龄和Hf同位素证据. 岩石学报, 23(2): 493-500. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702026.htm [51] 李再会, 郑来林, 李军敏, 等, 2008. 冈底斯中段林子宗火山岩岩石地球化学特征. 矿物岩石地球化学通报, 27(1): 20-27. doi: 10.3969/j.issn.1007-2802.2008.01.004 [52] 刘鸿飞, 1993. 拉萨地区林子宗火山岩系的划分和时代归属. 西藏地质, 2: 59-69. [53] 莫宣学, 邓晋福, 董方浏, 等, 2001. 西南三江造山带火山岩-构造组合及其意义. 高校地质学报, 7(2): 121-138. doi: 10.3969/j.issn.1006-7493.2001.02.001 [54] 莫宣学, 董国臣, 赵志丹, 等, 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001 [55] 莫宣学, 潘桂棠, 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007 [56] 莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 [57] 莫宣学, 赵志丹, 周肃, 等, 2007. 印度-亚洲大陆碰撞的时限. 地质通报, 26(10): 1240-1244. doi: 10.3969/j.issn.1671-2552.2007.10.002 [58] 莫宣学, 赵志丹, 朱弟成, 等, 2009. 西藏南部印度-亚洲碰撞带岩石圈: 岩石学-地球化学约束. 地球科学——中国地质大学学报, 34(1): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901004.htm [59] 潘桂棠, 丁俊, 姚冬生, 2004. 青藏高原及邻区地质图(1∶1500000)及说明书. 成都: 成都地图出版社. [60] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [61] 夏斌, 李建峰, 张玉泉, 等, 2008. 藏南冈底斯带西段麦拉花岗岩锆石SHRIMP定年及地质意义. 大地构造与成矿学, 32(2): 243-246. doi: 10.3969/j.issn.1001-1552.2008.02.014 [62] 熊熊, 王继业, 滕吉文, 2007. 青藏高原新生代火山活动的深部力学背景. 地球科学——中国地质大学学报, 32(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701000.htm [63] 张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪—新近纪隆升与沉积盆地分布耦合. 地球科学——中国地质大学学报, 32(5): 583-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705002.htm [64] 张永清, 凌文黎, 李方林, 2008. 峡东地区南华纪-寒武纪地层风化过程元素及Sr-Nd同位素演化特征及其地球化学意义. 地球科学——中国地质大学学报, 33(3): 301-312. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200803003.htm [65] 赵志丹, 莫宣学, Nomand, S., 等, 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义. 岩石学报, 22(4): 787-794. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604003.htm [66] 郑有业, 张刚阳, 许荣科, 等, 2007. 西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束. 科学通报, 52(21): 2542 -2548. doi: 10.3321/j.issn:0023-074x.2007.21.013 [67] 周肃, 方念乔, 董国臣, 等, 2001. 西藏林子宗群火山岩的氩-氩年代学研究. 矿物岩石学地球化学通报, 20: 317-319. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200104030.htm [68] 周肃, 莫宣学, 董国臣, 等, 2004. 西藏林周盆地林子宗火山岩40Ar/39Ar年代格架. 科学通报, 49(20): 2095 -2103. doi: 10.3321/j.issn:0023-074X.2004.20.014