500000-Year Records of Carbonate and Organic Carbon from the Southern South China Sea and Implication for East Asian Summer Monsoon Evolution
-
摘要: 为了解南海南部第四纪冰期旋回中表层生产力的变化与东亚夏季风的演化关系,通过对南海南部MD05-2897孔晚第四纪500ka以来碳酸钙和有机碳含量及堆积速率高分辨率的研究发现,碳酸钙含量及堆积速率表现出明显的冰期-间冰期旋回变化,而有机碳的含量及堆积速率则主要呈现频率更高的周期性变化.碳酸钙和有机碳含量及堆积速率都在间冰期时增加,冰期时降低,反映了间冰期时夏季风的增强导致上升流的加强和营养物质的增加,促使表层生产力提高.碳酸钙和有机碳含量及堆积速率具有100ka偏心率周期、40ka斜率周期、20ka岁差和10ka半岁差周期等最为丰富的频谱,显示出低纬海区对轨道周期响应的特色.碳酸钙和有机碳的堆积速率与北半球低纬夏季日射量吻合较好,说明岁差相关的北半球低纬夏季太阳辐射量的变化可能是东亚夏季风强度变化的主要控制因素,而与全球冰量相关的气候变化可能是次要因素.Abstract: In order to understand the relation between surface productivity changes and the evolution of the East Asian summer monsoon during the Quaternary glacial cycles in southern South China Sea, high-resolution study on content and accumulation rate of calcium carbonate and organic carbon of Core MD05-2897 were done to draw the conclusions as follows: the content and accumulation rate of calcium carbonate showed significant glacial-interglacial cycle change while organic carbon mainly showed a higher frequency of the periodic changes. Both of the content and the accumulation rate of calcium carbonate and organic carbon increased in the interglacial periods and decreased in the glacial periods, which reflects the enhancement of the summer monsoon in the interglacial periods caused the strengthening of the upwelling currents and the increase of nutrients, the surface productivity increased consequently. The most abundant spectrum periods of 100ka eccentricity, 40ka obliquity, 20ka precession and 10ka semi-precession indicate the characteristics of the low latitude sea areas responding to the orbital periods. The accumulation rate of calcium carbonate and organic carbon were in good agreement with summer insolation of low latitude in the Northern Hemisphere related to precession which may be the main controlling factor of East Asia summer monsoon changes, and climate changes related to the global ice volume is possibly the secondary controlling factor.
-
图 3 南海南部MD05-2897孔500ka以来浮游有孔虫氧同位素、碳酸钙和有机碳含量、有机碳堆积速率、碳酸钙堆积速率与北半球低纬夏季日射量的对比,夏季日射量为15°N7月的平均日辐射量(根据Laskar(1990)方案并运用Analyserie(Paillard et al., 1996)软件生成)
Fig. 3. Comparison between planktonic foraminifera δ18O, carbonate and organic carbon content, organic carbon MAR, carbonate MAR and the summer insolation of low latitude in the northern hemisphere over the past 500ka at core MD05-2897. The summer insolation refers to an average insolation during July at 15°N following the Laskar solution (Laskar, 1990), using the Analyserie software (Paillard et al., 1996)
-
[1] An, Z.S., Kutzbach, J.E., Prell, W.L., et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya Tibetan plateau since Late Miocene times. Nature, 411(6833): 62-66. doi: 10.1038/35075035 [2] Chen, M.T., Huang, C.Y., Wei, K.Y., 1997.25, 000-year Late Quaternary records of carbonate preservation in the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 129(1-2): 155-169. doi: 10.1016/S0031-0182(96)00063-6 [3] Chen, M.T., Shiau, L.J., Yu, P.S., et al., 2003.500000-year records of carbonate, organic carbon, and foraminifera sea-surface temperature from the southeastern South China Sea (near Palawan Island). Palaeogeography, Palaeoclimatology, Palaeoecology, 197(1-2): 113-131. doi: 10.1016/S0031-0182(03)00389-4 [4] Clemens, S., Prell, W.L., Murray, D., et al., 1991. Forcing mechanisms of the Indian Ocean monsoon. Nature, 353(6346): 720-725. doi: 10.1038/353720a0 [5] Davies, T.A., Kidd, R.B., Ramsay, A.T., 1995. A time-slice approach to the history of Cenozoic sedimentation in the Indian Ocean. Sedimentary Geology, 96(1-2): 157-179. doi: 10.1016/0037-0738(94)00131-D [6] Ding, Z.L., Liu, T.S., Rutter, N.W., et al., 1995. Ice-volume forcing of East Asian Winter monsoon variations in the past 800, 000 years. Quaternary Research, 44(2): 149-159. doi: 10.1006/qres.1995.1059 [7] Ding, Z.L., Yu, Z.W., 1995. Forcing mechanisms of paleomonsoons over east asia. Quaternary Sciences, 1: 63-74 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=1712337 [8] Fang, D.Y., Jian, Z.M., Wang, P.X., 2000. Paleoproductivity records for the past 30ka in the southern Nansha area, the South China Sea. Chin. Sci. Bull., 45(13): 1227-1230. doi: 10.1007/BF02886085 [9] Guo, Z.T., Ruddiman, W.F., Han, Q.Z., et al., 2002. Onset of Asian desertification by 22myr ago inferred from loess deposits in China. Nature, 416(6877): 159-163. doi: 10.1038/416159a [10] Higginson, M, J., Maxwell, J.R., Altabet, M.A., 2003. Nitrogen isotope and chlorin paleoproductivity records from the northern South China Sea: remote versus local forcing of millennial and orbital-scale variability. Mar. Geol., 201(1-3): 223-250. doi: 10.1016/S0025-3227(03)00218-4 [11] Howard, W.R., Prell, W.L., 1994. Late Quaternary CaCO3 production and preservation in the South China Sea and Sulu seas. Paleoceanograpy, 9: 453-482. doi: 10.1029/93PA03524 [12] Huang, B.Q., Jian, Z.M., Lin, H.L., 2000. Late quaternary changes of paleoproductivity in the northeastern South China Sea. Marine Geology & Quaternary Geology, 20(2): 65-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200002013.htm [13] Huang, W., Wang, P.X., 2006. The statistics of sediment mass in the South China Sea: method and result. Advances in Earth Science, 21(5): 465-473 (in Chinese with English abstract). http://www.onacademic.com/detail/journal_1000034540330710_5737.html [14] Imbrie, J., Hays, J.D., Martinson, D.G., et al., 1984. The orbital theory of pleistocene climate: support from a revised cronology of the marine δ18O record. In: Berger, A., Imbrie, J., eds., Milankovitch and climate. Holland Reidel D., Holland, 269-307. [15] Jian, Z.M., Wang, L.J., Kienast, M., 1999. Late Quaternary surface paleoproductivity and variations of the East Asian monsoon in the South China Sea. Quaternary Sciences, 1: 32-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ199901003.htm [16] Jian, Z.M., Wang, P.X., Chen, M.P., et al., 2000. Foraminiferal responses to major Pleistocene paleoceanographic changes in the southern South China Sea. Paleoceanography, 15(2): 229-243. doi: 10.1029/1999PA000431 [17] Kuhnt, W., Hess, S., Jian, Z.M., 1999. Quantitative composition of benthic foraminifera assemblages as a proxy indicator for organic carbon flux rates in the South China Sea. Mar. Geol., 156(1-4): 123-157. doi: 10.1016/S0025-3227(98)00176-5 [18] Kukla, G., An, Z.S., Melice, J.L., et al., 1990. Magnetic susceptibility record of Chinese loess. Trans. R. Soc. Ed. Earth. Sci., 81(4): 263-288. doi: 10.1017/S0263593300020794 [19] Laj, C., Wang, P.X., Balut, Y., et al., 2005. MD147-Marco Polo IMAGESⅫ cruise report. Institut Paul-Emile Victor (IPEV), France. [20] Laskar, J., 1990. The chaotic notion of the solar system: a numerical estimate of the size of the chaotic zoins. Icarus, 88: 266-291. doi: 10.1016/0019-1035(90)90084-M [21] Li, J.R., Wang, R.J., Li, B.H., 2002. Variations of opal accumulation rates and paleoproductivity over the past 12Ma at ODP site 1143, southern South China Sea. Chinese Science Bulletin, 47(7): 596-598. doi: 10.1360/02tb9137 [22] Lin, H., Lai, C., Ting, H., et al., 1999. Late Pleistocene nutrients and sea surface productivity in the South China Sea: a record of teleconnections with northern hemisphere events. Mar. Geol., 156(1-4): 197-210. doi: 10.1016/S0025-3227(98)00179-0 [23] Liu, C.L., Cheng, X.R., Zhu, Y.H., et al., 2002a. Oxygen and carbon isotope records of calcareous nannofossils for the past 1Ma in the southern South China Sea. Chinese Science Bulletin, 47(10): 798-803. doi: 10.1360/02tb9180 [24] Liu, C.L., Wang, P, X., Tian, J., et al., 2008. Coccolith evidence for Quaternary nutricline variations in the southern South China Sea. Marine Micropaleontology, 691: 42-51. doi: 10.1016/j.marmicro.2007.11.008 [25] Liu, C.L., Zhang, S.Y., Jin, H.Y., et al., 2005. Coccolith evidence of upper ocean water variations for past 1.53Ma in western Pacific warm pool. Journal of Tongji University (Natural Science), 33(9): 1172-1176 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TJDZ200509006.htm [26] Liu, C.L., Zhu, Y.H., Cheng, X.R., 2001. Calcareous nannofossil evidence for variations in Quaternary surface water paleoproductivity in the southern South China Sea. Marine Geology & Quaternary Geology, 21(4): 61-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ200104014.htm [27] Liu, K.K., Chao, S.Y., Shaw, P.T., et al., 2002b. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Research, 49(8): 1387-1412. doi: 10.1016/S0967-0637(02)00035-3 [28] Liu, Z.F., Zhao, Y.L., Li, J.R., et al., 2007. Late Quaternary clay minerals of Middle Vietnam in the western South China Sea: implications for source analysis and East Asian monsoon evolution. Science in China (Ser. D), 50(11): 1674-1684. doi: 10.1007/s11430-007-0115-8 [29] Lyle, M., 1988. Climatically forced organic carbon burial in the equatorial Atlantic and Pacific oceans. Nature, 335(6190): 529-532. doi: 10.1038/335529a0 [30] Lemark, L., Steinke, S., Wang, C.H., et al., 2009. New evidence for a glacioeustatic influence on deep water circulation, bottom water ventilation and primary productivity. Dynamics of Atmospheres and Oceans, 47(1-3): 138-153. doi: 10.1016/j.dynatmoce.2008.08.004 [31] Paillard, D., Labeyrie, L., Yiou, P., 1996. Analyseries 1.0: a Macintosh software for the analysis of geographical time-series. Eos, 77: 379. doi: 10.1029/96EO00259 [32] Sarnthein, M., Pflaumann, U., Ross, R., et al., 1992. Transfer functions to reconstruct ocean palaeoproductivity: a comparison. In: Summerhayes, C.P., Prell, W.L., Emeis, K.C., eds., Upwelling systems: evolution since the Early Miocene. Geological Society Special Publication Geological Society, London, 411-427. [33] Tamburini, F., Adatte, T., Fllmi, K., et al., 2003. Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0-140000 years): mineralogy and geochemistry of ODP sites 1143 and 1144, South China Sea. Mar. Geol., 201(1-3): 147-168. doi: 10.1016/S0025-3227(03)00214-7 [34] Thunell, R.C., Miao, Q.M., Calvert, S.E., et al., 1992. Glacial-Holocene biogenic sedimentation patterns in the South China Sea: productivity variations and surface water pCO2. Paleoceanography, 7(2): 143-162. doi: 10.1029/92PA00278 [35] Tian, J., Wang, P.X., 2006. Tropical process and its periodicity in the deep sea records. Earth Science-Journal of China University of Geosciences, 31(6): 747-753 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200606001.htm [36] Tian, J., Wang, P.X., Cheng, X.R., 2004. Pleistocene precession forcing of the upper ocean structure variations of the southern South China Sea. Progress in Natural Science, 14(6): 683-688 (in Chinese with English abstract). http://www.nsfc.gov.cn/csc/20345/24371/pdf/2004/Pleistocene%20precession%20forcing%20of%20the%20upper%20ocean%20structure%20variations%20of%20the%20southern%20South%20China%20Sea.pdf [37] Tian, J., Wang, P.X., Cheng, X.R., et al., 2005. Forcing mechanism of the Pleistocene East Asian monsoon variations in a phase perspective. Science in China (Ser. D), 48(10): 1708-1717. doi: 10.1360/01YD0467 [38] Wang, B., Clemens, S.C., Liu, P., 2003b. Contrasting the Indian and East Asian monsoons: implications on geological timescales. Mar. Geol., 201(1-3): 5-21. doi: 10.1016/S0025-3227(03)00196-8 [39] Wang, L.J., Sarnthein, M., Pflaumann, U., et al., 1999. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Mar. Geol., 156(1-4): 245-284. doi: 10.1016/S0025-3227(98)00182-0 [40] Wang, P.X., 1999. Response of western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features. Mar. Geol., 156(1-4): 5-39. doi: 10.1016/S0025-3227(98)00172-8 [41] Wang, P.X., Jian, Z.M., Zhao, Q.H., et al., 2003a. Evolution of the South China Sea and monsoon history revealed in deep sea records. Chinese Science Bulletin, 48(23): 2549-2561. doi: 10.1360/03wd0156 [42] Wang, P.X., Wang, L.J., Bian, Y.H., et al., 1995a. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles. Mar. Geol., 127(1): 145-165. doi: 10.1016/0025-3227(95)00008-M [43] Wang, P.X., Zhao, Q.H., Cheng, X.R., et al., 1995b. South China Sea since 150000 years. Publishing House of Tongji University, Shanghai (in Chinese). [44] Wang, R., Abelmann, A., 2002. Radiolarian responses to paleoceanographic events of the southern South China Sea during the Pleistocene. Mar. Micropaleontol., 461: 25-44. doi: 10.1016/S0377-8398(02)00048-8 [45] Wang, R.J., Jian, Z.M., Xiao, W.S., et al., 2007. Quaternary biogenic opal records in the South China Sea: linkages to East Asian monsoon, global ice volume and orbital forcing. Science in China (Ser. D), 50(5): 710-724. doi: 10.1007/s11430-007-0041-9 [46] Wang, R.J., Li, J., 2003. Quaternary high-resolution opal record and its paleoproductivity implication at ODP site 1143, southern South China Sea. Chinese Science Bulletin, 48(4): 363-367. doi: 10.1360/03tb9077 [47] Wang, R.J., Lin, J., Zheng, L.F., 2000. Siliceous microplankton fluxes and seasonal variations in the Central South China Sea during 1993-1995: monsoon climate and El Nino responses. Chinese Science Bulletin, 45(23): 2168-2172. doi: 10.1007/BF02886323 [48] Webster, P.J., 1994. The role of hydrological processes in ocean-atmosphere interactions. Review of Geophysics, 32(4): 427-476. doi: 10.1029/94RG01873 [49] Wei, G.J., Huang, C.Y., Wang, C.C., et al., 2006. High-resolution benthic foraminifer δ13C records in the South China Sea during the last 150ka. Mar. Geol., 232: 227-235. doi: 10.1016/j.margeo.2006.08.005 [50] Wiesner, M.G., Zheng, L., Wong, H.K., 1996. Fluxes of particulate matter in the South China Sea. In: Ittekkot, V., Schafer, P., Honjo, S., et al., eds., Par-ticle flux in the Ocean. John Wiley and Sons, New York, 91-154. [51] Xiang, F., Wang, R.J., Li, J.R., et al., 2006. High resolution records of biogenic components and their paleoceanographic implications in the upwelling area of the South China Sea of eastern Vietnam over past 480ka. Marine Geology & Quaternary Geology, 26(6): 81-89 (in Chinese with English abstract). [52] Zhao, M.X., Huang, C.Y., Wang, C.C., et al., 2006. Amillennial-scale U37Ksea-surface temperature record fromthe South China Sea (8°N) over the last 150 kyr: monsoon and sea-level influence. Palaeogeogr. Palaeoclimatol. Palaeoecol., 236(1-2): 39-55. doi: 10.1016/j.palaeo.2005.11.033 [53] Zheng, H.B., Yang, W.G., He, J., et al., 2008. Marine isotope stage 3 (mis 3) of South China Sea. Quaternary Sciences, 28(1): 68-79 (in Chinese with English abstract). doi: 10.1029/2007RG000226/full [54] 丁仲礼, 余志伟, 1995. 第四纪时期东亚季风变化的动力机制. 第四纪研究, 1: 63-74. doi: 10.3321/j.issn:1001-7410.1995.01.007 [55] 黄宝琦, 翦知湣, 林慧玲, 2000. 南海东北部晚第四纪古生产力变化. 海洋地质与第四纪地质, 20(2): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200002013.htm [56] 黄维, 汪品先, 2006. 南海沉积物总量的统计: 方法与结果. 地球科学进展, 21(5): 465-473. doi: 10.3321/j.issn:1001-8166.2006.05.004 [57] 翦知湣, 王律江, Kienast, M., 1999. 南海晚第四纪表层古生产力与东亚季风变迁. 第四纪研究, 1: 32-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199901003.htm [58] 刘传联, 祝幼华, 成鑫荣, 2001. 南海南部第四纪表层海水古生产力变化的钙质超微化石证据. 海洋地质与第四纪地质, 21(4): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200104014.htm [59] 刘传联, 张拭颖, 金海燕, 等, 2005. 暖池区1.53Ma以来上层海水变化的颗石藻证据. 同济大学学报(自然科学版), 33(9): 1172-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200509006.htm [60] 田军, 汪品先, 成鑫荣, 2004. 更新世南海南部上层海水结构变化的岁差驱动. 自然科学进展, 14(6): 683-688. doi: 10.3321/j.issn:1002-008X.2004.06.014 [61] 田军, 汪品先, 2006. 深海记录中的热带过程及其周期性. 地球科学——中国地质大学学报, 31(6): 747-753. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200606001.htm [62] 汪品先, 赵泉鸿, 成鑫荣, 等, 1995b. 十五万年来的南海. 上海: 同济大学出版社. [63] 向霏, 王汝建, 李建如, 等, 2006. 越南岸外上升流区48万年来高分辨率的生源组分记录及其古海洋学意义. 海洋地质与第四纪地质, 26(6): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200606013.htm [64] 郑洪波, 杨文光, 贺娟, 等, 2008. 南海的氧同位素3期. 第四纪研究, 28(1): 68-79. doi: 10.3321/j.issn:1001-7410.2008.01.008