The Attribution of Altyn Marginal Faults
-
摘要: 系统研究阿尔金山南缘断裂、西北缘断裂、北缘红柳沟-拉配泉断裂的构造属性, 对重新认识中国大陆西部构造格架具有非常重要的意义.在卫星遥感图像宏观解译和野外调查基础上, 充分参考了近年来的区域地质调查和前人研究成果, 分析了阿尔金山各边界断裂特征, 结果表明南缘断裂形成于元古宙, 早古生代中晚期是一条具有右行走滑性质的巨型陆内转换断层, 中新生代分段差异复活; 西北缘断裂系形成较晚, 中新生代以来发生强烈的左行走滑, 应属于亚洲共轭滑移系的组成部分; 红柳沟-拉配泉断裂属于塔里木地块中央构造带系统, 是一条蛇绿构造混杂带, 早古生代属于陆缘或陆间裂谷.它们三者分属于不同的断裂系统, 具有不同的形成演化史, 其活动形式和构造意义各有不同, 但又相互联系、相互制约.Abstract: The South Altyn marginal fault, northwest Altyn border fault and Hongliugou-Lapeiquan fault in the northern edge of Altyn belong to different fault systems. The south marginal fault was formed in Proterozoic. In mid-late Paleozoic, it was a great intracontinental transform fault of right-lateral slip, and in Mesozoic and Neozoic it was revived in different parts. The northwest fault was formed later. Intense left-lateral slip occurred in Mesozoic-Neozoic and it belongs to the Asian slump fault system. Hongliugou-Lapeiquan fault zone belongs to the central tectonic system of Tarim block. It is an ophiolite complex belt and in early Palaeozoic it was the rift of continental or intercontinental margin. The three faults are different in the evolution history, movement form and tectonic significance, but they are interrelated and affect each other strongly. It is very important to study their tectonic attributions systematically for understanding the west tectonic framework of our country.
-
Key words:
- Altyn /
- fault structure /
- fault evolvement /
- transform fault /
- conjugate slump fault system.
-
图 2 阿尔金山及邻区主干断裂与环形构造分布简图
注: 阿尔金西北缘-北山剪切断裂系: 阿尔金西北缘断裂(F1)、米兰-红柳园断裂(F2)、且末-黑尖山断裂(F3)、罗布庄-星星峡断裂(F4); 阿尔金南缘断裂(F5) 与柯岗断裂(F6)、康西瓦断裂(F7)、走廊南山断裂(F8) 复合; 阿尔金北缘断裂带(F9).角图(据崔军文等(2002)修改) : A.阿尔金山; Q.祁连山; L.龙门山; H.喜马拉雅山; T.天山; KK.喀喇昆仑山; WK.西昆仑山; EK.东昆仑山; WQ.西秦岭; (T) 塔里木地块; (A) 阿拉善地块; (Y) 扬子地块; (I) 印度地块; (P) 帕米尔高原; (IR) 伊朗高原; (HM) 喜马拉雅前陆; (QT) 青藏腹地; (AQ) 阿尔金-祁连后陆; ①阿尔金西北缘-北山剪切断裂系; ②阿尔金南缘断裂
Fig. 2. The distribution of the main faults and annulations in Altyn and vicinal region
图 3 阿尔金山地质构造简图(据陈正乐等, 2002, 稍有修改)
1.新生界; 2.中生界; 3.古生界; 4.奥陶系; 5.中、新元古界; 6.古元古界; 7.太古宇; 8.花岗岩; 9.逆冲断层; 10.走滑断层; 11.采样位置. (1) ~ (3) 资料来源: (1) 陈正乐等(2002); (2) 万景林等, 2001; (3) Edward and Nicolas (1999, 2001)
Fig. 3. The geological structure map of Altyn
-
[1] "Altun Active Fault Zone" Team, State Seismlogical Bureau, 1992. Altun active fault zone. Seismlogical Publishing House, Beijing (in Chinese). [2] Boynton, W. V., 1984. Cosmochemistry of the rare earth elements: Metcorite studies, DeV. Geochem., (2): 63-114. [3] Cai, X. L., Wei, X. G., Liu, Y. C., 1992. Tectonic style of strike-slip fault in Aerjin mountains. Journal of Chengdu College of Geology, 19 (1): 8-17 (in Chinese with English abstract). [4] Che, Z. C., Liu, L., Liu, H. F., et al., 1998. The constituents of the Altun fault systemand genetic characteristics of related Meso-Cenozoic petroleum-bearing basin. Regional Geology of China, 17 (4): 377-384 (in Chinese with English abstract). [5] Che, Z. C., Liu, L., Sun, Y., 1995. U-Pb, Sm-Nd, Rb-Sr, 40Ar/39Ar and 18O/16O isotopic studies for early evolution of the structural belt in Altun area. Acta Geosicientia Sinica, (3): 334-337 (in Chinese with English abstract). [6] Chen, N. S., Wang, X. Y., Zhang, H. F., et al., 2007. Geochemistry and Nd-Sr-Pb isotopic compositions of granitoids from Qaidam and Oulongbuluke micro-blocks, NW China: Constraints on basement nature and tectonic affinity. Earth Science—Journal of China University of Geosciences, 32 (1): 7-21 (in Chinese with English abstract). [7] Chen, X. H., Yin, A., George, E. G., et al., 2002. Extension in northern Tibetan plataeu: 40Ar/39Ar analyses and MDD modeling. Acta Geosicientia Sinica, 23 (4): 305-310 (in Chinese with English abstract). [8] Chen, Z. L., Wan, J. L., Wang, X. F., et al., 2002. Rapid strike-slip of the Altyn Tagh fault at 8 Ma and its geological implication. Acta Geosicientia Sinica, 23 (4): 295-300 (in Chinese with English abstract). [9] Cui, J. W., Zhang, X. W., Li, P. W., 2002. The Altun fault: Its geometry, nature and mode of growth. Acta Geosicientia Sinica, 23 (6): 509-516 (in Chinese with English abstract). [10] Edward, R. S., Nicolas, A., 1999. A possible middle Paleozoic suture in the Altyn Tagh, NW China. Tectonics, 18 (1): 64-74. doi: 10.1029/1998TC900023 [11] Edward, R. S., Nicolas, A., Marc, J., et al., 2001. Jurassic to Cenozoic exhumation history of the Altyn Tagh range, NW China constrained by 40Ar/39Ar and apatite fission track thermochronology. In: Paleozoic and Mesozoic tectonics of Central Asia-From continent Assembly to Intracontinental Deformation. In: Hendrix, M. S., Davis, G. A., eds., Geological Society of America Memoir, 194, 293-316. [12] Feng, X. Y., 1982. Altun fault zone. In: State Seismlogical Bureau, ed., The active faults in China. Seismlogical Publishing House, Beijing (in Chinese). [13] Ge, X. H., Liu, Y. J., Ren, S. M., et al., 2001. Re-understanding on some academic problems of the Altun fault. Chinese Journal of Geology, 36 (3): 319-325 (in Chinese with English abstract). [14] Guo, Z. J., Zhang, Z. C., Wang, J. J., 1998. The Sm-Nd isochronage and tectonic significance of ophiolite belt along the northern margin of the Altun mountains. Chinese Science Bulletin, 43 (18): 1981-1984 (in Chinese). doi: 10.1360/csb1998-43-18-1981 [15] Jiang, P., Fan, X. L., 2005. Analysis of middle-lower Jurassic petroleum system in Dunhuang basin. Earth Science—Journal of China University of Geosciences, 30 (2): 211-214 (in Chinese with English abstract). [16] Li, H. B., Yang, J. S., Xu, Z. Q., et al., 2001. The geologic and age evidence of strike slip movement of Altun fault belt in Indo-Chinese Epoch. Chinese Science Bulletin, 46 (16): 1333-1338 (in Chinese). doi: 10.1360/csb2001-46-16-1333 [17] Liu, G., Li, S. J., Zhao, F. Y., et al., 2006. A remote sensing analysis of Altun-Kangxiwa shear-thrust system and Pamir nappe structure. Acta Geoscientia Sinica, 27 (1): 31-34 (in Chinese with English abstract). [18] Liu, Y. J., Ge, X. H., Genser, J., et al., 2003. The 40Ar/39Ar evidence of tectonic movement in Altun Tagh. Chinese Science Bulletin, 48 (12): 1335-1341 (in Chinese). doi: 10.1360/csb2003-48-12-1335 [19] Liu, Y. J., Ge, X. H., Ye, H. W., et al., 2001. Franz strike-slip model for Altyn Tagh fault developed since late Mesozoic. Acta Geoscientia Sinica, 22 (1): 23-28 (in Chinese with English abstract). [20] Pan, G. T., Jiao, S. P., Xu, Y. R., et al., 1984. The Neozoic tectonic and orogenic characteristic in Altun mountains. In: The Tibet plateau geologic treatise committee of ministry of geology and mineral resources, China, ed., Treatises on Tibet plateau geology. Geology Publishing House, Beijing, 113-119 (in Chinese). [21] Ren, J. S., Xiao, L. W., 2004. Lifting the myterious veil of the Qinghai-Tibet plateau by 1∶250 000 geological mapping. Geological Bulletin of China, 23 (1): 1-11 (in Chinese with English abstract). [22] Story, B. C., Alabaster, T., Macdonald, D. L. M., et al., 1992. Upper Rooterozic rift-related rocks in the Pensacola mountains, autorctica: Precursors to super contin. Ent Breakup Tectonics, 11 (6): 1379-1403. [23] Tang, L. J., Jin, Z. J., Dai, J. S., et al., 2002. Regional fault systems of Qaidam basin and adjacent orogenic belts. Earth Science—Journal of China University of Geosciences, 27 (6): 676-682 (in Chinese with English abstract). [24] Tapponnier, P., Mattauer, M., Proust, F., et al., 1981. Mesozoic ophiolites, suture and large-scale movement in Afghanistan. Earth Plant. Sci. Lett., 52: 355-371. doi: 10.1016/0012-821X(81)90189-8 [25] Tian, Z. Y., Chai, G. L., Lin, L., 1990. The formation and evolution of Tarim basin. Xinjiang Petroleum Geology, 11 (4): 259-275 (in Chinese with English abstract). [26] Wan, J. L., Wang, Y., Li, Q., et al., 2001. FT evidence of northern Altyn uplift in late Cenozoic. Bulletin of Mineralogy Petrology and Geochemistry, 20 (4): 222-224 (in Chinese with English abstract). [27] Wang, H. Z., Wang, Z. Q., Zhu, H., et al., 1980. The tectonic structure and paleogeography of late Protozoic in China. Chinese Journal of Geology, (2): 103-111 (in Chinese with English abstract). [28] Xu, Z. Q., Yang, J. S., Zhang, J. X. et al., 1999. Comparison between the tectonic units on the two sides of the Altun sinistralstrike-slip fault and the mechanism of lithospheric shearing. Geoscientia Sinica, 73 (3): 193-205 (in Chinese with English abstract). [29] Xu, Z. Q., Zeng, L. S., Yang, J. S., et al., 2004. Role of large-scale strike-slip faults in the formation of petroleum-bearing compressional basin-mountain range system. Earth Science—Journal of China University of Geosciences, 29 (6): 631-643 (in Chinese with English abstract). [30] Yang, F., Ye, S. J., Cao, C. C., et al., 1994. Right lateral characteristics of the middle eastern segment of Altun fault in Cenozoic era. Scientia Geologica Sinica, 29 (4): 346-354 (in Chinese with English abstract). [31] Yu, H. F., Lu, S. N., Zhao, F. Q., et al., 1998. Lithostructural evidences of ancident Altyn Tagh and its significant. Progress in Precambrian Research, 21 (4): 10-15 (in Chinese with English abstract). [32] Yue, Y. J., Liou, J. G., 1999. Two-stage evolution model for the Altyn Tagh fault, China. Geology, 27 (3): 227-230. doi: 10.1130/0091-7613(1999)027<0227:TSEMFT>2.3.CO;2 [33] Zhang, J. X., Zhang, Z. M., Xu, Z. Q., et al., 1999a. The existence evidence of Caledonian mountain root in Altun fault belt-the age of Sm-Nd and U-Pb of eclogite in the West segment of Altun tectonic belt. Chinese Science Bulletin (Ser. D), 44 (10): 1109-1112 (in Chinese). [34] Zhang, J. X., Zhang, Z. M., Xu, Z. Q., et al., 1999b. The discover of Kongzi rock system in west segment of Altun and its elementary research of petroleum and isotopic age. Chinese Science Bulletin (Ser. D), 29 (4): 298-355 (in Chinese). [35] Zhang, W. Y., Ye, H., Zhong, J. Q., 1978. The Block and Plate. Science of China (Ser. D), (2): 195-221 (in Chinese). [36] Zhang, Z. T., 1985. On the geological characters of the Altun fault. Chinese Academy of Geological Sciences, Bullet in Xi′an Institute Geology Mineral Research, (9): 20-32 (in Chinese with English abstract). [37] Zhou, Y., Pan, Y. S., 1998. Determination of the dextral slip of Mangya-Subei segment of Altun fault. Scientia Geologica Sinica, 33 (1): 9-15 (in Chinese with English abstract). [38] 蔡学林, 魏显贵, 刘援朝, 1992. 阿尔金山走滑断裂构造样式. 成都地质学院学报, 19 (1): 8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG199201001.htm [39] 车自成, 刘良, 刘洪福, 等, 1998. 阿尔金断裂系的组成及相关中新生代含油气盆地的成因特征. 中国区域地质, 17 (4): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD804.006.htm [40] 车自成, 刘良, 孙勇, 1995. 阿尔金铅、钕、锶、氩、氧同位素研究及其早期演化. 地球学报, (3): 334-337. [41] 陈能松, 王新宇, 张宏飞, 等, 2007. 柴-欧微地块花岗岩地球化学和Nd-Sr-Pb同位素组成: 基底性质和构造属性启示. 地球科学——中国地质大学学报, 32 (1): 7-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701001.htm [42] 陈宣华, 尹安, George, E. G., 等, 2002. 青藏高原北缘中生代伸展构造40Ar/39Ar测年和MDD模拟. 地球学报, 23 (4): 305-310. doi: 10.3321/j.issn:1006-3021.2002.04.004 [43] 陈正乐, 万景林, 王小凤, 等, 2002. 阿尔金断裂带8 Ma左右的快速走滑及其地质意义. 地球学报, 23 (4): 295-300. doi: 10.3321/j.issn:1006-3021.2002.04.002 [44] 崔军文, 张晓卫, 李朋武, 2002. 阿尔金断裂: 几何学、性质和生长方式. 地球学报, 23 (6): 509-516. doi: 10.3321/j.issn:1006-3021.2002.06.005 [45] 冯先岳, 1982. 阿尔金断裂带. 见: 中国地震学会地震地质专业委员会编, 中国活动断裂. 北京: 地震出版社. [46] 葛肖虹, 刘永江, 任收麦, 等, 2001. 对阿尔金断裂科学问题的再认识. 地质科学, 36 (3): 319-325. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103006.htm [47] 国家地震局阿尔金活动断裂带课题组, 1992. 阿尔金活动断裂带. 北京: 地震出版社. [48] 郭召杰, 张志成, 王建君, 等, 1998. 阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义. 科学通报, 43 (18): 1981-1984. doi: 10.3321/j.issn:0023-074X.1998.18.018 [49] 江平, 范小林, 2005. 敦煌盆地中、下侏罗统含油气系统分析. 地球科学——中国地质大学学报, 30 (2): 211-214. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX20050200D.htm [50] 李海兵, 杨经绥, 许志琴, 等, 2001. 阿尔金断裂带印支期走滑活动的地质及年代学证据. 科学通报, 46 (16): 1333-1338. doi: 10.3321/j.issn:0023-074X.2001.16.003 [51] 刘刚, 李述靖, 赵福岳, 等, 2006. 阿尔金-康西瓦剪切-推覆系统和帕米尔推覆构造的遥感解析. 地球学报, 27 (1): 31-34. doi: 10.3321/j.issn:1006-3021.2006.01.004 [52] 刘永江, 葛肖虹, Genser, J., 等, 2003. 阿尔金断裂带构造活动的40Ar/39Ar年龄证据. 科学通报, 48 (12): 1335-1341. doi: 10.3321/j.issn:0023-074X.2003.12.021 [53] 刘永江, 葛肖虹, 叶慧文, 等, 2001. 晚中生代以来阿尔金断裂的走滑模式. 地球学报, 22 (1): 23-28. doi: 10.3321/j.issn:1006-3021.2001.01.005 [54] 潘桂棠, 焦淑沛, 徐耀荣, 等, 1984. 阿尔金山新生代构造及造山性质. 见: 地质矿产部青藏高原地质文集编委会编, 青藏高原地质论文集(15). 北京: 地质出版社, 113-119. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198311001013.htm [55] 任纪舜, 肖黎薇, 2004.1∶25万地质填图进一步揭开了青藏高原大地构造的神秘面纱. 地质通报, 23 (1): 1-11. [56] 汤良杰, 金之钧, 戴俊生, 等, 2002. 柴达木盆地及相邻造山带区域断裂系统. 地球科学——中国地质大学学报, 27 (6): 676-682. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200206004.htm [57] 田在艺, 柴桂林, 林梁, 1990. 塔里木盆地的形成与演化. 新疆石油地质, 11 (4): 259-275. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD199004000.htm [58] 万景林, 王瑜, 李齐, 等, 2001. 阿尔金山北段晚新生代山体抬升的裂变径迹证据. 矿物岩石地球化学通报, 20 (4): 222-224. doi: 10.3969/j.issn.1007-2802.2001.04.004 [59] 王鸿祯, 王自强, 朱鸿, 等, 1980. 中国晚元古代构造及古地理. 地质科学, (2): 103-111. [60] 许志琴, 杨经绥, 张建新, 等, 1999. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制. 地质学报, 73 (3): 193-205. doi: 10.3321/j.issn:0001-5717.1999.03.001 [61] 许志琴, 曾令森, 杨经绥, 等, 2004. 走滑断裂、"挤压性盆-山构造"与油气资源关系的探讨. 地球科学——中国地质大学学报, 29 (6): 631-643. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200406000.htm [62] 杨藩, 叶素娟, 曹春潮, 等, 1994. 新生代阿尔金断层中、东段右行走滑特征. 地质科学, 29 (4): 346-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX404.003.htm [63] 于海峰, 陆松年, 赵风清, 等, 1998. 古阿尔金断裂的岩石构造依据及意义. 前寒武纪研究进展, 21 (4): 10-15. doi: 10.3969/j.issn.1672-4135.1998.04.002 [64] 张建新, 张泽明, 许志琴, 等, 1999a. 阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄—阿尔金构造带中加里东期山根存在的证据. 科学通报, 44 (10): 1109-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199910020.htm [65] 张建新, 张泽明, 许志琴, 等, 1999b. 阿尔金西段孔兹岩系的发现及岩石学、同位素年代学初步研究. 中国科学(D辑), 29 (4): 298-355. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199904001.htm [66] 张文佑, 叶鸿, 钟嘉遒, 1978. "断块"与"板块". 中国科学(D辑), (2): 195-221. [67] 张治洮, 1985. 阿尔金断裂带的地质特征. 中国地质科学院西安地质矿产研究所所刊, (9): 20-32. [68] 周勇, 潘裕生, 1998. 茫崖—肃北段阿尔金断裂右旋走滑运动的确定. 地质科学, 33 (1): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX801.001.htm