• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    浙江煤山P/T之交碳同位素对有机碳埋藏的指示意义

    黄俊华 罗根明 白晓 汤新燕

    黄俊华, 罗根明, 白晓, 汤新燕, 2007. 浙江煤山P/T之交碳同位素对有机碳埋藏的指示意义. 地球科学, 32(6): 767-773.
    引用本文: 黄俊华, 罗根明, 白晓, 汤新燕, 2007. 浙江煤山P/T之交碳同位素对有机碳埋藏的指示意义. 地球科学, 32(6): 767-773.
    HUANG Jun-hua, LUO Gen-ming, BAI Xiao, TANG Xin-yan, 2007. The Organic Fraction of the Total Carbon Burial Flux Deduced from Carbon Isotopes across the Permo-Triassic Boundary at Meishan, Zhejiang Province. Earth Science, 32(6): 767-773.
    Citation: HUANG Jun-hua, LUO Gen-ming, BAI Xiao, TANG Xin-yan, 2007. The Organic Fraction of the Total Carbon Burial Flux Deduced from Carbon Isotopes across the Permo-Triassic Boundary at Meishan, Zhejiang Province. Earth Science, 32(6): 767-773.

    浙江煤山P/T之交碳同位素对有机碳埋藏的指示意义

    基金项目: 

    中国石油化工股份有限公司海相油气勘探前瞻性项目 G0800-06-ZS-319

    详细信息
      作者简介:

      黄俊华(1964-), 男, 高工, 主要从事同位素地球化学、第四纪与环境研究.E-mail: jhhuang@cug.edu.cn

    • 中图分类号: P736

    The Organic Fraction of the Total Carbon Burial Flux Deduced from Carbon Isotopes across the Permo-Triassic Boundary at Meishan, Zhejiang Province

    • 摘要: 根据碳酸盐碳同位素和有机(干酪根) 碳同位素记录, 结合碳循环模式, 计算得到了浙江煤山全球二叠系-三叠系界线层型剖面第23-40层的有机碳埋藏分数forg.在第23-24层和第27-29层下部出现forg的两个高峰值, 与绿硫细菌反映的两个缺氧环境条件相对应.在第25-26层和第32-34层出现两个forg低谷值, 与2-甲基藿烷指示的两次蓝细菌繁盛(第26层和第29层上部到第34层) 基本吻合.这些结果反映了forg与埋藏时的氧化还原条件密切相关.forg与总有机碳含量TOC的关系比较复杂, 一些TOC较高的层位(如第26层) forg却较低, 而一些TOC较低的层位(如第27层) forg却较高, 反映了原始生产力对TOC的重要贡献.根据原始生产力和forg得到的原始有机埋藏量, 可以校正现今测得的残余TOC.本次研究结果说明, 同步有机-无机碳同位素分析, 在建立一定碳循环模型的基础上, 计算有机碳埋藏分数, 可有效指示有机质埋藏状态, 进而为建立生物-环境-有机碳埋藏的耦合关系模型提供基础.

       

    • 图  1  煤山B剖面δ13Corgδ13Ccarbforg及TOC随时间变化曲线(年代据Bowring et al., 1998)

      CB.蓝细菌繁盛; GSB.绿硫细菌繁盛

      Fig.  1.  The variation trends of δ13Corg, δ13Ccarb and TOC at Meishan Section B

      图  2  煤山B剖面δ13Corg随剖面深度变化曲线

      Fig.  2.  The δ13Corg variation with depth at Meishan Section B

      图  3  Kump and Arthur (1999)提出的碳同位素循环模式

      Fig.  3.  The carbon cycle model proposed by Kump and Arthur (1999)

      表  1  煤山B剖面样品δ13Corgδ13Ccarb分析结果

      Table  1.   The δ13Corg and the δ13Ccarb data of the samples analyzed at Meishan section B

      表  2  一些层位的有机碳埋藏分数forg、原始生产力P和总有机碳含量TOC

      Table  2.   The fraction of the organic carbon burial (forg), the primary production (P) and the TOC content in some beds in Meishan section B

    • [1] Bowring, S. A., Erwin, D. H., Jin, Y. G., et al., 1998. U/Pb zircon geochronology and tempo of the end-Permianmass extinction. Science, 280 (5366): 1039-1045. doi: 10.1126/science.280.5366.1039
      [2] Cao, C. Q., Wang, W., Jin, Y. G., 2002. Carbon isotope ex-cursions across the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China. Chinese Sci-ence Bulletin, 47 (13): 1125-1129. doi: 10.1360/02tb9252
      [3] Dai, J. X., Li, J., Luo, X., et al., 2005. Alkane carbon isotop-ic composition and gas sourcein giant gas field of Ordos basin. Acta Petrolei Sinica, 26 (1): 18-26 (in Chinesewith English abstract).
      [4] Gao, B., Fan, M., Liu, W. H., et al., 2005. Carbon isotopic features and genetic type of natural gas in Tahe oilfield. Oil & Gas Geology, 26 (5): 618-622 (in Chinese withEnglish abstract).
      [5] Grice, K., Gao, C., Love, G. D., et al., 2005. Photic zone eu-xinia during the Permian-Triassic superanoxic event. Science, 307: 706-709. doi: 10.1126/science.1104323
      [6] Guo, Q. J., Liu, C. Q., Strauss, H., et al., 2004. Isotopic in-vestigation of Late Neoproterozoic and Early Cambrian carbon cycle on the northern Yangtze platform, South China. Acta Geoscientica Sinica, 25 (2): 151-156 (inChinese with English abstract).
      [7] Haas, J., Demény, A., Hips, K., et al., 2007. Biotic and en-vironmental changes in the Permian-Triassic boundary interval recorded on a western Tethyan ramp in the Bükk Mts., Hungary. Global and Planetary Change, 55 (1-3): 136-154. doi: 10.1016/j.gloplacha.2006.06.010
      [8] Hayes, J. M., Strauss, H., Kauf man, A. J., 1999. The abun-dance of 13C in marine organic matter and isotopic frac-tionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology, 161 (1-3): 103-125. doi: 10.1016/S0009-2541(99)00083-2
      [9] Huang, X. Y., Jiao, D., Lu, L. Q., et al., 2007. The fluctua-ting environment associated with the episodic biotic cri-sis during the Permian-Triassic transition: Evidence from microbial biomarkers in Changxing, Zhejiang Prov-ice. Science in China (Series D), 50: 1052-1059. doi: 10.1007/s11430-007-0024-x
      [10] Krull, E. S., Lehrmann, D. J., Druke, D., et al., 2004. Stable carbon isotope stratigraphy across the Permian-Triassicboundary in shallow marine carbonate platforms, Nan-panjiang basin, South China. Palaeogeography, Palaeo-climatology, Palaeoecology, 204 (3-4): 297-315. doi: 10.1016/S0031-0182(03)00732-6
      [11] Kump, L. R., 1991. Interpreting carbon-isotope excursions: Strangelove oceans. Geology, 19 (4): 299-302. doi: 10.1130/0091-7613(1991)019<0299:ICIESO>2.3.CO;2
      [12] Kump, L. R., Arthur, M. A., 1999. Interpreting carbon-iso-tope excursions: Carbonates and organic matter. Chemi-cal Geology, 161 (1-3): 181-198. doi: 10.1016/S0009-2541(99)00086-8
      [13] Kump, L. P., Garrels, R. M., 1986. Modeling at mospheric O2 in the global sedimentary redor cycle. Am. J. Sci. , 286: 337-360. doi: 10.2475/ajs.286.5.337
      [14] Li, Y. C., Zhou, Z. Z., 2002. Massive dissociation of gas hy-drate during oceanic anoxia as a cause of mass extinc-tion at the end Permian. Geology Geochemistry, 30: 57-63 (in Chinese with English abstract).
      [15] Magaritz, M., Baer, R., Baud, A., et al., 1988. The carbon-iso-tope shift at the Permian/Triassic boundary in the southern Alps is gradual. Nature, 331 (6154): 337-339. doi: 10.1038/331337a0
      [16] Magaritz, M., Krishnamurthy, R. V., Holser, W. T., 1992. Parallel trends in organic and inorganic carbon isotopes across the Permian/Triassic boundary. American Jour-nal of Science, 292 (10): 727-739. doi: 10.2475/ajs.292.10.727
      [17] McCrea, J. M., 1950. The isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics, 18: 849-857. doi: 10.1063/1.1747785
      [18] Payne, J. L., Lehrmann, D. J., Wei, J. Y., et al., 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 305 (5683): 506-509. doi: 10.1126/science.1097023
      [19] Riccardi, A., Kump, L. R., Arthur, M. A., et al., 2007. Car-bon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeography, Palaeoclimatology, Palaeoecology, 248 (1-2): 73-81. doi: 10.1016/j.palaeo.2006.11.010
      [20] Shi, Y. Z., Hu, C. Y., Fang, N. Q., et al., 2004. Carbon iso-topic composition of organic matter in Co-rich ferro-manganese crust and its implication for paleoceanogra-phy. Earth Science—Journal of China University of Geosciences, 29 (2): 148-150 (in Chinese with Englishabstract).
      [21] Smith, R. M. H., MacLeod, K. G., 1994. Sedimentology and carbonisotope stratigraphy across the Permian-Triassic boundary in the Karoo basin, South Africa. Journal of African Earth Sciences, 27: 185-186.
      [22] Tenger, Liu, W. H., Xu, Y. C., et al., 2004. Organic carbonisotope record in marine sediment andits environmental significance—An example from Ordos basin, NW Chi-na. Petroleum Exploration and Development, 31 (5): 11-16 (in Chinese with English abstract).
      [23] Tenger, Liu, W. H., Xu, Y. C., et al., 2006. Comprehensive geochemical identification of highly evolved marine car-bonate rocks as hydrocarbon-source rocks as exempli-fied by the Ordos basin. Science in China (Series D), 49 (4): 384-396. doi: 10.1007/s11430-006-0384-7
      [24] Voigt, S., Andrew, S. G., Voigt, T., 2006. Sea-level change, car-bon cycling and palaeocli mate during the Late Cenomanian of northwest Europe: An integrated palaeoenvironmental analysis. Cretaceous Research, 27 (6): 836-858. doi: 10.1016/j.cretres.2006.04.005
      [25] Wang, C. J., Liu, Y. M., Liu, H. X., et al., 2005. Geochemi-cal significance of the relative enrichment of Pristaneand the negative excursion of δ13CPr across the Permian-Triassic Boundary at Meishan, China. Chinese Science Bulletin, 50 (19): 2213-2225. doi: 10.1007/BF03182673
      [26] Xie, S. C., Pancost, R. D., Huang, J. H., et al., 2007a. Adouble carbon isotope perturbation during the Permo/Triassic crisis. Geology, in press.
      [27] Xie, S. C., Pancost, R. D., Huang, X. Y., et al., 2007b. Mo-lecular and isotopic evidence for episodic environmental change across the Permo/Triassic boundary at Meishanin South China. Global and Planetary Change, 55 (1-3): 56-65. doi: 10.1016/j.gloplacha.2006.06.016
      [28] Xie, S. C., Pancost, R., Yin, H. F., et al., 2005. Two epi-sodes of microbial change coupled with Permo/Triassicfaunal mass extinction. Nature, 434 (7032): 494-497. doi: 10.1038/nature03396
      [29] Xu, D. Y., Yan, Z., 1993. Carbon isotope and iridium eventmarkers near the Permian/Triassic boundary in the Meishan section, Zhejiang Province, China. Paleogeogra-phy, Paleoclimatology, Paleoecology, 104 (1-4): 171-175. doi: 10.1016/0031-0182(93)90128-6
      [30] Xu, R., Gong, Y. M., Tang, Z. D., 2006. Blooming ofbacteria and algae: Possible killer of Devonian Frasnian-Famennian mass extinction? Earth Science—Journal of China University of Geosciences, 31 (6): 787-797 (inChinese with English abstract).
      [31] Xu, Y. C., Shen, P., Liu, W. H., et al., 2001. Isotopic composi-tion characteristics and identification of immature and low-mature oils. Chinese Science Bulletin, 46 (22): 1923-1929. doi: 10.1007/BF02901173
      [32] Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Per-mian-Triassic boundary. Episodes, 24 (2): 102-114. doi: 10.18814/epiiugs/2001/v24i2/004
      [33] Zhang, F., Feng, Q. L., He, W. H., et al., 2006. Multidisci-plinary stratigraphy across the Permian-Triassic bound-ary in deep-water environment of the Dongpan section, South China. Norwegian Journal of Geology, 125-131.
      [34] Zhang, S. C., Wang, R. L., Jin, Z. J., et al., 2006. The rela-tionship between the Cambrian-Ordovician high-TOC source rock development and paleoenvironment varia-tions in the Tarim basin, Western China: Carbon and oxygen isotope evidence. Acta Geologica Sinica, 80 (3): 459-466 (in Chinese with English abstract).
      [35] 戴金星, 李剑, 罗霞, 等, 2005. 鄂尔多斯盆地大气田的烷烃气碳同位素组成特征及其气源对比. 石油学报, 26 (1): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200501003.htm
      [36] 高波, 范明, 刘文汇, 等, 2005. 塔河油田天然气的碳同位素特征及其成因类型. 石油与天然气地质, 26 (5): 618-622. doi: 10.3321/j.issn:0253-9985.2005.05.010
      [37] 郭庆军, 刘丛强, Strauss, H., 等, 2004. 晚震旦世至早寒武世扬子地台北缘碳同位素研究. 地球学报, 25 (2): 151-156. doi: 10.3321/j.issn:1006-3021.2004.02.010
      [38] 李玉成, 周忠泽, 2002. 华南二叠纪末缺氧海水中的有毒气体与生物绝灭事件. 地质地球化学, 30: 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200201009.htm
      [39] 史跃中, 胡超涌, 方念乔, 等, 2004. 富钴结壳中有机碳同位素组成特征及其古海洋意义. 地球科学——中国地质大学学报, 29 (2): 148-150. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200402004.htm
      [40] 腾格尔, 刘文汇, 徐永昌, 等, 2004. 海相沉积有机质的碳同位素记录及其环境意义——以鄂尔多斯盆地为例. 石油勘探与开发, 31 (5): 11-16. doi: 10.3321/j.issn:1000-0747.2004.05.003
      [41] 徐冉, 龚一鸣, 汤中道, 2006. 菌藻类繁盛: 晚泥盆世大灭绝的疑凶?地球科学——中国地质大学学报, 31 (6): 787-797. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200606006.htm
      [42] 张水昌, Wang, R. L., 金之钧, 等, 2006. 塔里木盆地寒武纪-奥陶纪优质烃源岩沉积与古环境变化的关系: 碳氧同位素新证据. 地质学报, 80 (3): 459-466. doi: 10.3321/j.issn:0001-5717.2006.03.020
    • 加载中
    图(3) / 表(2)
    计量
    • 文章访问数:  2847
    • HTML全文浏览量:  96
    • PDF下载量:  270
    • 被引次数: 0
    出版历程
    • 收稿日期:  2007-08-25
    • 刊出日期:  2007-11-25

    目录

      /

      返回文章
      返回