Molybdenum Isotope Signatures from Yangtze Craton Continental Margin and Its Indication to Organic Burial Rate
-
摘要: 通过对扬子克拉通古大陆边缘不同时期沉积岩的Mo同位素进行测定, 结合Mo微量元素组成, 对古大陆边缘Mo的自生作用规律进行了研究, 并根据Mo丰度对原始有机碳堆积速率进行了计算.结果表明, 其原始有机碳堆积速率在0.17~0.67mmol/m2/day之间.利用已建立的现代大陆边缘δ98Mo与有机碳埋藏速率模型, 对该区不同时期沉积岩的有机碳埋藏速率进行恢复.结果表明, 扬子克拉通显生宙不同时期沉积岩的有机碳埋藏速率有较大的变化范围(0.43~2.87mmol/m2/day), 并与原始有机碳堆积速率具有明显的相关性, 因此, δ98Mo有可能成为评价有效烃源岩的潜在指标.Abstract: The paper presents the molybdenum isotope data, along with the trace element content, to investigate the geochemical behavior of authigenic Mo during long-term burial in sediments in continental margin settings of Yangtze craton, as well as their indication to the burial of original organic carbon. The burial rate of original organic carbon was estimated on the basis of the amount of sedimentary sulphur (TS content), whilst the carbon loss by aerobic degradation was estimated according to calculated Mn contents. On these points, the original organic carbon flux was calculated, exhibiting a large range of variation (0.17-0.67 mmol/m2/day). The strong correlation between sedimentary Mo isotope values and organic carbon burial rates previously proposed on the basis of the investigations on modern ocean sediments, was also used here to estimate the organic carbon burial rate. The data gained through this model showed that organic carbon burial rates have large variations, ranging from 0.43-2.87 mmol/m2/day. Although the two sets of data gained through different geochemical records in the Yangtze craton show a deviation of one order of magnitude, they do display a strong correlation. It is thus tempting to speculate that the Mo isotope signature of sediments may serve as a tracer for the accumulation rate of original organic carbon in the continental margin sediments.
-
图 1 扬子克拉通北缘西乡-碑坝地区取样地点示意图(据高山, 1989修改)
Fig. 1. Map of the study area showing the approximate locations of the investigated sites from the north margin of Yangzte craton
表 1 扬子克拉通北缘碎屑沉积岩Mo同位素和微量元素数据
Table 1. Mo isotope and trace element compositions of clastic sediments from the north margin of Yangtze craton
表 2 原始有机碳堆积速率(Cflux) 和有机碳埋藏速率(Cburial) 的计算结果
Table 2. The results of the original organic carbon burial rate (Cflux) and organic carbon burial rate (Cburial) from δ98Mo calculating model (Siebert et al., 2006)
-
[1] Algeo, T. J., Lyons, T. W., 2006. Mo-total organic carbon covariationin modern anoxic marine environments: Im-plications for analysis of paleoredox and paleohydro-graphic conditions. Paleoceanography, 21, PA1016. doi: 10.1029/2004PA001112. [2] Anderson, R. F., Lehuray, A. P., Fleisher, M. Q., et al., 1989. Uranium deposition in Saanich Inlet sediments, Vancouver Island. Geochimicaet Cosmochimica Acta, 53 (9): 2205-2213. doi: 10.1016/0016-7037(89)90344-X [3] Anderson, R. F., Kumar, N., Mortlock, R. A., et al., 1998. Late-Quaternary changes in productivity of the southern ocean. Journal of Marine Systems, 17 (1-4): 497-514. doi: 10.1016/S0924-7963(98)00060-8 [4] Arnold, G. L., Anbar, A. D., Barling, J., et al., 2004. Molyb-denum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science, 304 (5667): 87-90. doi: 10.1126/science.1091785 [5] Barling, J., Arnold, G. L., Anbar, A. D., 2001. Natural mass-dependent variations in the isotopic composition of mo-lybdenum. Earth and Planetary Science Letters, 193 (3-4): 447-457. doi: 10.1016/S0012-821X(01)00514-3 [6] Beard, B. L., Johnson, C. M., Cox, L., et al., 1999. Iron iso-tope biosignatures. Science, 285 (5435): 1889-1892. doi: 10.1126/science.285.5435.1889 [7] Bertine, K. K., Turekian, K. K., 1973. Molybdenumin ma-rine deposits. Geochimicaet Cosmochimica Acta, 37 (6): 1415-1434. doi: 10.1016/0016-7037(73)90080-X [8] Bralower, T. J., Thierstein, H. R., 1984. Low productivity and slow deep-water circulation in Mid-Cretaceous oceans. Geology, 12 (10): 614-618. doi: 10.1130/0091-7613(1984)12<614:LPASDC>2.0.CO;2 [9] Brumsack, H. J., Gieskes, M., 1983. Interstitial water trace-metal chemistry of laminated sediments from the Gulf of California, Mexico. Marine Chemistry, 14 (1): 89-106. doi: 10.1016/0304-4203(83)90072-5 [10] Brumsack, H. J., 1986. The inorganic geochemistry of Creta-ceous black shales (DSDP Leg 41) in comparison tomodern upwelling sediments from the Gulf of Califor-nia. In: Summerhayes, C. P., Shackleton, N. J., eds., North Atlantic palaeoceanography. Geol. Soc. London, Spec. Publ., 21: 447-462. [11] Bureau of Geology and Mineral Resources of Shaanxi Prov-ince, 1989. Shanxi regional geology. Geological Publish-ing House, Beijing, l-258 (in Chinese). [12] Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of recentoxic and anoxic marine sediments: Implications for the geological record. Marine Geology, 113 (1-2): 67-88. doi: 10.1016/0025-3227(93)90150-T [13] Cochran, J. K., Carey, A. E., Sholkovitz, E. R., et al., 1986. The geochemistry of uranium and thorium in coastal marine sediments and sediment pore waters. Geochimicaet Cosmochimica Acta, 50 (5): 663-680. doi: 10.1016/0016-7037(86)90344-3 [14] Crusius, J., Calvert, S. E., Pedersen, T. F., et al., 1996. Rhe-niumand molybdenum enrichment in sediments as indi-cators of oxic, suboxic and sulfidic conditions of deposi-tion. Earth and Planetary Science Letters, 145 (1-4): 65-78. doi: 10.1016/S0012-821X(96)00204-X [15] Dudo, A., Odor, L., 1980. Abetemetodesi melyseg es a kompakcios viz mennyisegenek becslese a terfogatsuly ertekek segitsegevel (Dunantuli Kozephegyseg). Foldt. Int. Evi. Jel. , 1978: 291-299. [16] Dunk, R. M., Mills, R. A., Jenkins, W. J., 2002. A reevalu-ation of the oceanic uranium budget for the Holocene. Chemical Geology, 190 (1-4): 45-67. doi: 10.1016/S0009-2541(02)00110-9 [17] Emerson, S. R., Huested, S. S., 1991. Ocean anoxia and the concentrations of molybdenum and vanadiumin seawa-ter. Marine Chemistry, 34 (3-4): 177-196. doi: 10.1016/0304-4203(91)90002-E [18] Erickson, B. E., Helz, G. R., 2000. Molybdenum (Ⅵ) specia-tion in sulfidic waters: Stability and lability of thiomo-lybdates. Geochimicaet Cosmochimica Acta, 64: 1149-1158. doi: 10.1016/S0016-7037(99)00423-8 [19] Gao, S., 1989. Structure, composition and evolution of the continental crust in the Qinling orogenic belt and its ad-jacent North China and Yangtze cratons (Dr. Sci. The-sis) China University of Geosciences, Wuhan, 20-50 (in Chinese with English abstract). [20] Helz, G. R., Miller, C. V., Charnock, J. M., et al., 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimicaet Cosmochimica Acta, 60: 3631-3642. doi: 10.1016/0016-7037(96)00195-0 [21] Herbert, T. D., Stallard, R. F., Fischer, A. G., 1986. Anoxicevents, productivity rhythms and the orbital signature in a Mid-Cretaceous deep-sea sequence from central Italy. Paleoceanography, 1 (4): 495-506. doi: 10.1029/PA001i004p00495 [22] Isla, E., Masque, P., Palanques, A., et al., 2002. Sediment accumulation rates and carbon burial in the bottomsedi-ment in a high-productivity area: Gerlache Strait (Ant-arctica). Deep-Sea Research Ⅱ: Topical Studies in O-ceanography, 49 (16): 3275-3287. doi: 10.1016/S0967-0645(02)00083-8 [23] Jiang, S. Y., Woodhead, J., Yu, J. M., et al., 2002. A recon-naissance of Cu isotopic compositions of hydrothermal vein-type copper deposit, Jinman, Yunnan, China. Chi-nese Science Bulletin, 47: 247-250. doi: 10.1360/02tb9059 [24] Jorgensen, B. B., 2001. Mineralization of organic matter in seabed: The role of sulfate reduction. Nature, 296: 643-645. [25] Ku, T. L., Knauss, K., Mathieu, G. G., 1977. Uranium in the open ocean: Concentration and isotopic composition. Deep-Sea Research, 24 (11): 1005-1017. doi: 10.1016/0146-6291(77)90571-9 [26] Marechal, C. N., Telouk, P., Albarede, F., et al., 1999. Pre-cise analysis of copper and zinc isotopic compositions byplasma-source mass spectrometry. Chemical Geology, 156 (1-4): 251-273. doi: 10.1016/S0009-2541(98)00191-0 [27] Martin, W. R., Bender, M., 1991. Benthic organic carbon degradation and biogenic silica dissolutionin the center-al equatorial Pacific. Deep-Sea Research, 38: 1481-1516. doi: 10.1016/0198-0149(91)90086-U [28] Mc Manus, J., William, M., Berelson, S. S., et al., 2006. Mo-lybdenumand uranium geochemistry in continental mar-gin sediments: Paleoproxy potential. Geochimicaet Cos-mochimica Acta, 70: 4643-4662. doi: 10.1016/j.gca.2006.06.1564 [29] Middleburg, J. J., 1989. A simple model for organic matter decomposition in marine sediments. Geochimicaet Cos-mochimica Acta, 53: 1577-1581. doi: 10.1016/0016-7037(89)90239-1 [30] Mo, T., Suttle, A. D., Sackett, W. M., 1973. Uraniumcon-centrations in marine sediments. Geochimicaet Cosmo-chimica Acta, 37: 35-51. doi: 10.1016/0016-7037(73)90242-1 [31] Morford, J. L., Emerson, S. R., 1999. The geochemistry ofredox sensitive trace metals in sediments. Geochimicaet Cosmochimica Acta, 63: 1735-1750. doi: 10.1016/S0016-7037(99)00126-X [32] Shimmield, G. B., Price, N. B., 1986. The behavior of molyb-denum and manganese during early sediment diagene-sis: Offshore Baja California, Mexico. Marine Chemis-try, 19 (3): 261-280. doi: 10.1016/0304-4203(86)90027-7 [33] Siebert, C., McManus, J., Bice, A., et al., 2006. Molybde-num isotope signatures in continental margin marinesediments. Earth and Planetary Science Letters, 241: 723-733. doi: 10.1016/j.epsl.2005.11.010 [34] Siebert, C., Nagler, T. F., von Blanckenburg, F., et al., 2003. Molybdenum isotope records as a potential proxy for paleoceanography. Earth and Planetary Science Letters, 211: 159-171. doi: 10.1016/S0012-821X(03)00189-4 [35] Stephen, R. M., Bradley, B., Sageman, T. W. L., 2005. Or-ganic carbon burial rate and the molybdenum proxy: Theoretical framework and application to Cenomanian-Turonian oceanic anoxic event. Paleoceanography, 20, PA2002, doi: 10.1029/2004PA001068. [36] Suess, E., 1980. Particulate organic carbon flux in theoceans-surface productivity and oxygen utilization. Na-ture, 288: 260-263. [37] Vetö, I., Demeny, A., Hertelendi, E., et al., 1997. Esti ma-tion of pri mary productivity in the Toarcian Tethys: Anovel approach based on TOC, reduced sulphur and manganese contents. Palaeogeography, Palaeoclima-tology, Palaeoecology, 132 (1-4): 355-371. doi: 10.1016/S0031-0182(97)00053-9 [38] Vetö, I., Hetenyi, M., Demeny, A., et al., 1995. Hydrogen index as reflecting sulphidic diagenesis in non-bioturbat-ed shales. Org. Geochem. , 22: 299-310. [39] Vetö, I., Péter, O., István, F., et al., 2007. Extension of car-bon flux estimation to oxic sediments based on sulphur geochemistry and analysis of benthic foraminiferal as-semblages: A case history from the Eocene of Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 248: 119-144. doi: 10.1016/j.palaeo.2006.12.001 [40] Vorlicek, T. P., Helz, G. R., 2002. Catalysis by mineral sur-faces: Implications for Mo geochemistry in anoxic envi-ronments. Geochimicaet Cosmochimica Acta, 66: 3679-3692. doi: 10.1016/S0016-7037(01)00837-7 [41] Werne, J. P., Sageman, B. B., Lyons, T. W., et al., 2002. Anintegrated assessment of a "type euxinic" deposit: Evi-dence for multiple controls on black shale deposition in the Middle Devonian Oatka Creek Formation. Am. J. Sci. , 302: 110-143. doi: 10.2475/ajs.302.2.110 [42] Wilde, P., Lyons, T. W., Quinby-Hunt, M. S., 2004. Organic carbon proxies in black shales: Molybdenum. Chemical Geology, 206 (3-4): 167-176. doi: 10.1016/j.chemgeo.2003.12.005 [43] Zheng, G. X., Song, J. M., Dai, J. C., 2006. Migration and transformation of marine carbon and related chemical driving factors. Chinese Journal of Applied Ecology, 17 (4): 740-746 (in Chinese with English abstract). [44] Zheng, Y., Anderson, R. F., Van Geen, A., et al., 2002. Preservation of particulate non-lithogenic uranium inmarine sediments. Geochimicaet Cosmochimica Acta, 66: 3085-3092. doi: 10.1016/S0016-7037(01)00632-9 [45] Zheng, Y., Anderson, R. F., Van Geen, A., et al., 2000. Au-thigenic molybdenumformation in marine sediments: Alink to pore water sulfide in the Santa Barbara basin. Geochimicaet Cosmochimica Acta, 64: 4165-4178. doi: 10.1016/S0016-7037(00)00495-6 [46] Zhu, X. K., O'Nions, R. K., Guo, Y., et al., 2000. Determina-tion of natural Cu-isotope variation by plasma-sourcemass spectrometry: Implications for use as geochemical tracers. Chemical Geology, 163 (1-4): 139-149. doi: 10.1016/S0009-2541(99)00076-5 [47] 高山, 1989. 秦岭造山带及其邻区大陆地壳结构、成分与演化的地球化学研究. 博士学位论文. 武汉: 中国地质大学, 20-50. [48] 陕西省地质矿产局, 1989. 陕西省区域地质志. 北京: 地质出版社, 1-258. [49] 郑国侠, 宋金明, 戴纪翠, 2006. 海洋碳迁移转化与主要化学驱动因子的相互关系. 应用生态学报, 17 (4): 740-746. doi: 10.3321/j.issn:1001-9332.2006.04.035