Study on Modes of Occurrence of Mercury in Coals from the Huaibei Coalfield
-
摘要: 系统采集淮北煤田10、7、5、4和3煤层的29个煤样品, 采用逐级化学提取方法研究了煤中汞的赋存状态, 根据提取步骤和汞的特性, 将煤中的汞分为水溶态、离子交换态、有机态、碳酸盐结合态、硅酸盐结合态和硫化物结合态, 利用Flow Injection Mercury System(FIMS)分析了样品中总汞和不同形态中汞的含量.测试结果表明, 与华北石炭-二叠纪煤、中国煤以及美国煤含量相比较, 淮北煤田煤中汞的含量明显富集.逐级化学提取实验结果和煤中汞与硫、灰分的相关分析结果表明, 岩浆的侵入对煤中汞的赋存状态有较大的影响, 不受岩浆侵入影响的10、4和3煤层煤中的汞主要以有机态和硫化物结合态存在, 受岩浆侵入影响的5和7煤层中的汞主要以硅酸盐结合态存在.Abstract: Sequential extraction tests using Flow Injection Mercury System(FIMS)were done on 29 coal samples collected from the number 3, 4, 5, 7, and 10 coal seams in the Huaibei coalfield. The average total Hg concentrations for the coal seams 3, 4, 5, 7, and 10 were 0.13, 0.18, 0.54, 0.34, and 0.19 mg/kg respectively. The average value of Hg for all of the coal samples was 0.26 mg/kg, which is higher than that of most Chinese and U.S. coals. Six modes of Hg occurrence were recognized, including water-leachable, ion-exchangeable, organic-bound, carbonate-bound, silicate-bound, and sulfidebound Hg ones.With rare exception, little Hg was found in water-soluble, ion-exchangeable or carbonate-bound forms. Sulfide-bound Hg and organic-bound Hg dominated seams 3, 4, and 10, whereas silicate-bound Hg dominated seams 5 and 7. The relatively high Hg values observed in seams 5 and 7, especially in parting samples, are attributed to Hg enrichment by magmatic intrusions.
-
Key words:
- mercury /
- modes of occurrence /
- sequential extraction /
- Huaibei coalfield
-
表 1 淮北煤田煤中硫和灰分含量
Table 1. Sulfur and ash contents in coals from the Huaibei coalfield
表 2 表 2煤中汞的赋存状态及其逐级化学提取方法
Table 2. Modes of occurrence of mercury and sequential extraction tests
表 3 淮北煤田煤中汞的逐级化学提取实验结果(ng/g)
Table 3. Experimental results(ng/g)of sequential extractions on samples from the Huaibei coalfield
表 4 淮北煤田与华北C-P、中国和美国煤中汞的含量对比(ng/g)
Table 4. Concentrations of total mercury from the Huaibei coalfield as compared with C-P coals of northern China, Chinese coals, and average U.S. coals
-
[1] Bool, L. E., Helble, J. J., 1995. A laboratory study of the partitioning of trace-elements during pulverized coal combustion. Energy Fuels, 9(5): 880-887. doi: 10.1021/ef00053a021 [2] Dai, S.F., Ren, D.Y., Tang, Y.G., et al., 2005. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 61: 119-137. doi: 10.1016/j.coal.2004.07.003 [3] Diehl, S.F., Goldhaber, M.B., Hatch, J.R., 2004. Modes of occurrence of mercury and other trace elements in coals from the Warrior field, Black Warrior basin, northwestern Alabama. International Journal of Coal Geology, 59: 193-208. doi: 10.1016/j.coal.2004.02.003 [4] Ding, Z. H., Zheng, B.S., Finkelman, R.B., et al., 2003. Subsequent leaching study of typical high-As coal samples from Southwest Guizhou Province. Earth Science—Journal of China University of Geosciences, 28(2): 209-213(in Chinese with English abstract). [5] Ding, Z.H., Zheng, B.S., Zhang, J.Y., et al., 2001. Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China. Applied Geochemistry, 16: 1353-1360. doi: 10.1016/S0883-2927(01)00049-X [6] Feng, X., Hong, Y., 1999. Modes of occurrence of mercury in coals from Guizhou, People's Republic of China. Fuel, 78: 1181-1188. doi: 10.1016/S0016-2361(99)00077-0 [7] Finkelman, R.B., 1993. Trace and minor elements in coal. In: Engel, M.H., Macko, S.A., eds., Organic geochemistry. Plenum, New York, 593-607. [8] Finkelman, R.B., 1994. Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Process Technology, 39: 21-24. doi: 10.1016/0378-3820(94)90169-4 [9] Gao, L.F., Liu, G.J., Chou, C.L., et al., 2005. The study of sulfur geochemistry in Chinese coals. Bulletin of Mineralogy, Petrology and Geochemistry, 24(1): 79-87 (in Chinese with English abstract). [10] Ghosh, S.B., Das, M.C., Roy, R.R., et al., 1994. Mercury in Indian coals. Indian Journal of Chemistry Technology, 1: 237-240. [11] Jozef, M.P., Elisabeth, G.P., Frits, S., et al., 2003. Mapping 1995 global anthropogenic emissions of mercury. Atmospheric Environment, 37(1): 109-117. [12] Kortenski, J., Sotirov, A., 2002. Trace and major element content and distribution in Neogene lignite from the Sofia basin, Bulgaria. International Journal of Coal Geology, 52: 63-82. doi: 10.1016/S0166-5162(02)00133-7 [13] Liu, G.J., Yang, P.Y., Peng, Z.C., 2004. Petrographic and geochemical contrasts and environmentally significant trace elements in marine-influenced coal seams, Yanzhou mining area, China. Journal of Asian Earth Science, 23: 491-506. doi: 10.1016/j.jseaes.2003.07.003 [14] Liu, G.J., Zhang, H.Y., Zheng, L.G., et al., 2004. Distribution, occurrence and accumulation factors of chlorine in coal from Jining coal field. Earth Science— Journal of China University of Geosciences, 29(1): 85-92(in Chinese with English abstract). [15] Liu, J., Lu, X.H., Guo, X., et al., 2000. Speciation analysis of arsenic and mercury in coal. Journal of Huazhong University of Science & Technology, 28(7): 71-73 (in Chinese with English abstract). [16] Milena, H., Nata a, N., Vesna, F., et al., 2003. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. The Science of the Total Environment, 304: 231-256. doi: 10.1016/S0048-9697(02)00572-7 [17] Nriagu, J.Q., Paeyna, J.M., 1988. Quantitative assessment of worldwide contamination of air, water and soil by trace metals. Nature, 333: 134-139. doi: 10.1038/333134a0 [18] Palmer, C.A., Mroczkowski, S.J., Kolker, A., et al., 2000. Chemical analyses and modes of occurrence of selected trace elements in a Powder River basin coal and its corresponding simulated cleaned coal. U.S. Geology Survey Open-File Reo., 00-323, 52, Washington, D.C. [19] Querol, X., Fernández-Turiel, J.L., López-Soler, A., 1995. Trace elements in coal and their behavior during combustion in a large power station. Fuel, 74: 331-343. doi: 10.1016/0016-2361(95)93464-O [20] Skyllberg, U., Xia, K., Bloom, P.R., et al., 2004. Binding of mercury(Ⅱ)to reduced S in soil organic matter along upland-peat soil transects. Journal of Environment Quality, 29: 855-865. [21] Slemr, F., Langer, E., 1992. Increase in global atomsperic concentration of mercury inferred from measurements over the Atlantic Ocean. Nature, 355: 434. doi: 10.1038/355434a0 [22] Tang, X.Y., Huang, W.H., 2000. Trace elements in Chinese coals. The Commercial Press, Beijing, 8(in Chinese). [23] Toole-O'Neil, B., Tewalt, S. J., Finkelman, R. B., et al., 1999. Mercury concentration in coal-unraveling the puzzle. Fuel, 78: 47-54. doi: 10.1016/S0016-2361(98)00112-4 [24] U.S. Environmental Protection Agency, 2000. Method 7473. Mercury in solids and solutions by thermal decomposition, amalgamation and atomic absorption spectrometry. Test methods for evaluating solid waste, phisical/chemical methods, SW-846, update Ⅳ A. Washington, DC: Gov. Print. Office. [25] Yudovich, Ya. E., Ketris, M.P., 2005. Mercury in coal: A review Part 1. Geochemistry. International Journal of Coal Geology, 62: 107-134. doi: 10.1016/j.coal.2004.11.002 [26] Zhang, J., Qi, U, Y., Ren, D., et al., 2004. Concentrations and occurrences of mercury and arsenic in coals from the Qianxi fault depression area in southwestern Guizhou, China. 12th International Conference of Coal Science(2-6 Nov. 2003), Cairns, Australia, No. 7B2, 9. [27] Zhang, J., Ren, D., Xu, D., 1999. Distribution of arsenic and mercury in Triassic coals from Longtoushan syncline, southeastern Guizhou, P.R. China. In: Li B.Q., Liu Z.Y., eds., Prospects for coal science in the 21st century. Shanxi Science and Technology Press, Taiyuan, 153-156. [28] Zheng, L.G., Liu, G.J., Chou, C.L., et al., 2006. Geochemistry of rare earth elements in Permian coals from the Huaibei coalfield, Anhui Province, China. Fuel(accepted). [29] 丁振华, 郑宝山, Finkelman, R.B., 等, 2003. 典型高砷煤样品的连续浸取实验研究———兼论黔西南高砷煤中砷的赋存状态. 地球科学———中国地质大学学报, 28(2): 209-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200302016.htm [30] 高连芬, 刘桂建, Chou, C.L., 等, 2005. 中国煤中硫的地球化学研究. 矿物岩石地球化学通报, 24(1): 79-87. doi: 10.3969/j.issn.1007-2802.2005.01.013 [31] 刘桂建, 张浩原, 郑刘根, 等, 2004. 济宁煤田煤中氯的分布, 赋存及富集因素研究. 地球科学———中国地质大学学报, 29(1): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401015.htm [32] 刘晶, 陆晓华, 郭欣, 等, 2000. 煤中痕量砷和汞的形态分析. 华中理工大学学报, 28(7): 71-73. doi: 10.3321/j.issn:1671-4512.2000.07.024 [33] 唐修义, 黄文辉, 2000. 中国煤中的微量元素. 北京: 商务印书馆, 8. 284