Water in UHP Jadeite-Quartzites of Dabie Mountains: Evidence from Micro-FTIR
-
摘要: 为了探讨大别山“名义上无水矿物”(NAMs)中结构水的分布特征, 研究相关的流体活动、矿物变形以及板块俯冲和折返动力学过程提供重要的微观信息.对大别山双河和碧溪岭地区超高压硬玉石英岩中的石英、硬玉、石榴石和金红石进行了傅立叶变换红外光谱(FTIR)分析, 研究结果显示这些矿物都含有以OH-或者H2O形式存在的氢, 硬玉中结构水平均含量在1000×10-6左右; 石榴石结构水含量在(900~1600)×10-6之间, 各样品颗粒结构水的分布不均匀; 副矿物金红石结构水含量在2000×10-6以上, 而石英结构中基本不含或仅含微量水(< 4×10-6).双河和碧溪岭地区的硬玉石英岩全岩含水量分别为(490~600)×10-6和545×10-6, 不同地区同一种NAMs中结构水含量基本相同.表明在高压-超高压变质岩的形成过程中, 地壳或原岩中的水可以通过这些超高压变质岩中的NAMs携带到地球深部.Abstract: The distribution characteristics of structural water in nominally anhydrous minerals (NAMs) from Dabie mountains can provide important microscopic information on some aspects of the related fluid activities, mineral deformation, dynamical process of blocks subduction and exhumation. The NAMs such as jadeites, garnets, rutiles and quarts in ultra-high pressure (UHP) jadeite-quartzites of Shuanghe and Bixiling areas from Dabie mountains were investigated by Fourier transform infrared spectroscopy (FTIR), the result of which indicates that NAMs contain hydrogen occurring as hydroxyl (OH-) or molecule H2O. It is found that the average structural water contents of the jadeites from the two areas are both close to 1 000×10-6; the rutilezs' are both above 2 000×10-6; the quarts' are both < 4×10-6. The structural water contents of garnets from different grains in the same area aren't uniform, while the water contents of UHP jadeite-quartzites from the two areas both range from 900×10-6 to 1 600×10-6. The results reveal that the water in crust or protolith can be transported into the earth's depth through NAMs in the UHP metamorphic rocks during the formation of the HP-UHP metamorphic rocks.
-
图 1 南大别部分地区地质简图和双河、碧溪岭的位置(据李旭平等, 2005)
1.北大别角闪岩-麻粒岩变质带; 2.中大别UHP变质带; 3.南大别LT榴辉岩变质带; 4.宿松蓝片岩-角闪变质带; 5.晚中生代花岗岩; 6.主剪切带; 7.主断层
Fig. 1. Geological sketch map of the southern Dabie mountains and the position of Shuanghe and Bixiling
表 1 大别山硬玉石英岩硬玉中结构水的红外吸收特征和计算结果
Table 1. FTIR analysis of jadeites from the jadeite-quartzites at Dabie mountains
表 2 大别山硬玉石英岩石榴石中水的红外吸收特征和计算结果
Table 2. FTIR analysis of garnets from the jadeite-quartzites at Dabie mountains
表 3 大别山硬玉石英岩金红石中结构水的红外吸收特征和计算结果
Table 3. FTIR analysis of rutiles from the jadeite-quartzites at Dabie mountains
表 4 大别山硬玉石英岩石英中结构水的红外吸收特征和计算结果
Table 4. FTIR analysis of quartzs from the jadeite-quartzites at Dabie mountains
-
[1] Anies, R. D., Rossman, G. R., 1984. Water in minerals?Apeakin the infrared. J. Geophys. Res. , 89: 4059-4071. doi: 10.1029/JB089iB06p04059 [2] Bell, D. R., Ihinger, P. D., Rossman, G. R., 1995. Quantita-tive analysis of trace OH- in garnet and pyroxenes. Am. Mineral. , 80: 465-474. doi: 10.2138/am-1995-5-607 [3] Chakraborty, D., Lehmann, G., 1976. Distribution of OH- insynthetic and natural quartz crystals. J. Solid StateChem. , 17: 305-311. doi: 10.1016/0022-4596(76)90136-5 [4] Cheng, Y. Q., Zhuang, Y. X., Gao, T. S., et al., 2002. Li-thology and protolith of HP-UHP eclogites facies meta-morphic rocks and relevant rocks of the Changpu-Bixiling area, Dabie mountains. Acta Geologica Sinica, 76(1): 1-14(in Chinese with English Abstract). [5] Cromer, D. T., Herrington, K., 1955. The structures of ana-tase and rutile. J. Am. Chem. Soc. , 77: 4708-4709. doi: 10.1021/ja01623a004 [6] Fu, B., Touret, J. L. R., Zheng, Y. F., 2001. Fluid inclusionsin coesite-bearing eclogites and jadeite quartzite atShuanghe, Dabie mountains(China). J. MetamorphicGeol. , 19: 529-545. [7] Hammer, V. M. F., Beran, A., 1991. Variations in the OH- concentration of rutiles from different geological envi-ronments. Mineral. Petrol. , 45: 1-9. doi: 10.1007/BF01164498 [8] Han, Y. J., Zhang, Z. M., Liu, R., 1997. Fluidinclusions in coesite-bearing jadeite quartzite from Shuanghe, Anhui Province. Earth Science—Journal of China University of Geosci-ences, 22: 322-326(in Chinese with English Abstract). [9] Ingrin, J., Latrous, K., Doukhan, J. C., et al., 1989. Water indiopside: An electron microscopy and infrared spectros-copy study. Eur. J. Mineral. , 1: 327-341. doi: 10.1127/ejm/1/3/0327 [10] Ingrin, J., Skogby, H., 2000. Hydrogen in nominally anhy-drous upper-mantle minerals: Concentration levels andi mplications. Eur. J. Mineral. , 12: 543-570. doi: 10.1127/ejm/12/3/0543 [11] Katayama, I., Nakashi ma, S., 2003. Hydroxyl in clinopyrox-ene from the deep subducted crust: Evidence for H2Otransport into the mantle. Am. Mineral. , 88: 229-234. doi: 10.2138/am-2003-0126 [12] Lager, G. A., Armbruster, T., Rotella, F. J., et al., 1989. OH- substitutionin garnets: X-ray and neutron diffrac-tion, infrared, and geometric-modelling studies. Am. Mineral. , 74: 840-851. [13] Langer, K., Robarick, E., Sobolev, N. V., et al., 1993. Single-crystal spectra of garnets from diamondiferoushigh-pressure metamorphic rocks from Kazakhstan: In-dications for OH-, H2O, and FeTi charge transfer. Eur. J. Mineral. , 5: 1091-1100. doi: 10.1127/ejm/5/6/1091 [14] Li, X. P., Li, Y. L., Shu, G. M., 2005. Breakdown of lawso-nite subsequent to peak UHP metamorphismin the Da-bie terrane and its i mplication for fluid activity. ChineseScience Bulletin, 50(13): 1366-1372. [15] Libowitzky, E., Rossman, G. R., 1996. Principles of quanti-tative absorbance measurement in anisotropic crystals. Phys. Chem. Mineral. , 23: 319-327. doi: 10.1007/BF00199497 [16] Liou, J. G., Zhang, R. Y., Jahn, B. M., 1997. Geochemistryand isotope data on an ultrahigh-pressurejadeite quartz-ite from Shuanghe, Dabie mountains, eastern China. Lithos, 41: 59-78. doi: 10.1016/S0024-4937(97)82005-1 [17] Liu, X. W., Jin, Z. M., Jin, S. Y., et al., 2005. Differences of de-formation characteristics of garnets fromtwo types of eclo-gites: Evidence from TEMstudy. Acta Petrologica Sinica, 21(2): 399-404(in Chinese with English abstract). [18] Lu, R., Keppler, H., 1997. Water solubility in pyrope to100kbar. Contrib. Mineral. Petrol. , 129: 35-42. doi: 10.1007/s004100050321 [19] Luth, R. W., Virgo, D., Boyd, F. R., et al., 1990. Ferric ironin mantle-derived garnets. Contrib. Mineral. Petrol. , 104: 56-72. doi: 10.1007/BF00310646 [20] Miller, G. H., Rossman, G. R., Harlow, G. E., 1987. Thenatural occurrence of hydroxide in olivine. Phys. Chem. Minerals. , 19: 1155-1164. doi: 10.1007/BF00628824 [21] Paterson, M., 1982. The determination of hydroxyl by infra-red absorptionin quartz, silicate glasses and si milar ma-terials. Bull. Mineral. , 105: 20-29. https://www.persee.fr/doc/bulmi_0180-9210_1982_num_105_1_7582 [22] Rossman, G. R., Aines, R. D., 1991. The hydrous compo-nents in garnets: Grossular-hydrogrossular. Am. Miner-al. , 76: 1153-1164. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/76/7-8/1153/42558/The-hydrous-components-in-garnets-Grossular [23] Sheng, Y. M., Xia, Q. K., Yang, X. Z., 2004. Heterogeneityof water in UHP eclogites from Bixiling in Dabieshan: Evidence fromgarnet. Chinese Science Bulletin, 49(5): 481-486. doi: 10.1007/BF02900969 [24] Sheng, Y. M., Xia, Q. K., Hao, Y. D., et al., 2005a. Water inUHP eclogites at Shuanghe, Dabie mountains: Micro-FTIRanalysis. Earth Science—Journal of China Uni-versity of Geosciences, 30(6): 673-684(in Chinesewith English abstract). [25] Sheng, Y. M., Xia, Q. K., Ding, Q., et al., 2005b. Water ingarnets from Dabie mountains eclogites: FTIRanalysis. Acta Mineralogica Sinica, 25(4): 334-340(in Chinesewith English abstract). [26] Skogby, H., Bell, D. R., Rossman, G. R., 1990. Hydroxide inpyroxenes: Variations in the natural environment. Am. Mineral. , 75: 764-774. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/75/7-8/764/42400/Hydroxide-in-pyroxene-variations-in-the-natural [27] Skogby, H., Rossman, G. R., 1989. OH- in pyroxene: Anexperi mental study of incorporation mechanismand sta-bility. Am. Mineral. , 74: 1059-1069. [28] Su, W., Ji, Z. P., You, Z. D., et al., 2004. Distribution of hy-drous components in jadeite of the Dabie mountains. Earth Planet. Sci. Lett. , 222(1): 85-100. doi: 10.1016/j.epsl.2004.02.028 [29] Su, W., You, Z. D., Cong, B. L., et al., 2002. Cluster of wa-ter molecules in garnet from ultrahigh-pressure eclo-gites. Geology, 30(7): 611-614. doi: 10.1130/0091-7613(2002)030<0611:COWMIG>2.0.CO;2 [30] Su, W., You, Z. D., Cong, B. L., et al., 2003. Roles of waterin deformed omphacite in UHP eclogite fromthe Dabiemountains, eastern China. Acta Geologica Sinica, 77(3): 320-325. doi: 10.1111/j.1755-6724.2003.tb00748.x [31] Swope, R. J., Smyth, J. R., 1995. H+in rutile-type com-pounds: Single-crystal neutron and X-ray diffractionstudy of Hin rutile. Am. Mineral. , 80: 448-453. doi: 10.2138/am-1995-5-604 [32] Wang, L., Jin, Z. M., Liu, X. W., et al., 2004. Microfabric char-acteristics of ultrahigh pressurejadeite quartzite andits rhe-ology significances in Shuanghe, Dabie mountains. EarthScience—Journal of China University of Geosciences, 29(3): 293-302(in Chinese with English abstract). [33] Wilkins, R. W., Sabine, W., 1973. Water content of somenominally anhydrous silicates. Am. Mineral. , 58: 508-516. [34] Wu, X. L., Meng, D. W., Han, Y. J., et al., 2005. Nano-scalefluid inclusions in quartz of jadeite quartzite at Shuang-he, Dabie mountains. J. Minreal. Petrol. , 25(2): 7-10(in Chinese with English abstract). [35] Xia, Q. K., 2005. Water in the deep subducted continentalplate: Message from NAMs. Bulletin of MineralogyPetrology and Geochemistry, 24(1): 1-6(in Chinesewith English abstract). [36] Xia, Q. K., Chen, D. G., Guo, L. H., 1998. Structural OH- in mantle-derived clinopyroxene megacrysts from Nush-an. Chinese Science Bulletin, 43(20): 1742-1745. doi: 10.1007/BF02883977 [37] Xia, Q. K., Chen, D. G., Rossman, G. R., 2000. Ani mportantcarrier for HP-UHP metamorphic fluids: Nominally an-hydrous minerals. Geological Review, 46: 461-465(inChinese with English abstract). [38] You, Z. D., Han, Y., Yang, W., et al., 1996. The high-pres-sure and ultra-high-pressure metamorphic belt in theeast Qinling and Dabie mountains, China. China Univer-sity of Geosciences Press, Wuhan, 1-150. [39] Zhang, J. F., Jin, Z. M., GreenⅡ, H. W., et al., 2001. Hy-droxyl in continental deep subduction zone: Evidencefrom UHP eclogites of the Dabie mountains. ChineseScience Bulletin, 46(7): 592-596. [40] Zhang, J. F., Jin, Z. M., GreenⅡ, H. W., 2005. Hydroxylinduced eclogite fabric and deformation mechanism. Chinese Science Bulletin, 50(7): 685-690. doi: 10.1360/982004-274 [41] Zheng, Y. F., Fu, B., Li, Y. L., et al., 1998. Oxygen and hy-drogenisotope geochemistry of ultrahigh pressure eclo-gites from the Dabie mountains and the Sulu terrane. Earth Planet. Sci. Lett. , 155: 113-129. doi: 10.1016/S0012-821X(97)00203-3 [42] Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable isotopegeochemistry of ultrahigh pressure metamorphic rocksfromthe Dabie-Sulu orogen in China: I mplications forgeodynamics and fluid regi me. Earth-Science Reviews, 62: 105-161. doi: 10.1016/S0012-8252(02)00133-2 [43] 程裕淇, 庄育勋, 高天山, 等, 2002. 大别山菖蒲-碧溪岭地区高压-超高压榴辉岩相变质岩和有关岩石的岩石类型及其原岩性质. 地质学报, 76(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200201001.htm [44] 韩郁菁, 张泽明, 刘嵘, 1997. 安徽双河含柯石英硬玉石英岩中流体包裹体的研究. 地球科学——中国地质大学学报, 22(3): 322-326. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX703.017.htm [45] 李旭平, 李一良, 舒桂明, 2005. 大别山黄镇榴辉岩和蓝晶石-石英脉中硬柱石分解的岩石学研究及其流体活动意义. 科学通报, 50(10): 1000-1006. doi: 10.3321/j.issn:0023-074X.2005.10.011 [46] 刘祥文, 金振民, 金淑燕, 等, 2005. 两类榴辉岩的石榴石变形特征差异——来自TEM的证据. 岩石学报, 21(2): 399-404. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502015.htm [47] 盛英明, 夏群科, 杨晓志, 2004. 大陆深俯冲过程中水分布的不均一性: 大别山碧溪岭榴辉岩中石榴石的红外光谱分析. 科学通报, 49(4): 390-395. doi: 10.3321/j.issn:0023-074X.2004.04.016 [48] 盛英明, 夏群科, 郝艳东, 等, 2005a. 大别山双河超高压榴辉岩中的水: 微区红外光谱分析. 地球科学——中国地质大学学报, 30(6): 673-684. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200506003.htm [49] 盛英明, 夏群科, 丁强, 等, 2005b. 大别山榴辉岩中石榴石的结构水: 红外光谱分析. 矿物学报, 25(4): 334-340. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200504003.htm [50] 王璐, 金振民, 刘祥文, 等, 2004. 大别山双河超高压硬玉石英岩显微组构特征及其流变学意义. 地球科学——中国地质大学学报, 29(3): 293-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200403005.htm [51] 吴秀玲, 孟大维, 韩郁菁, 等, 2005. 大别山双河硬玉石英岩石英中的纳米-亚微米级流体包裹体. 矿物岩石, 25(2): 7-10. doi: 10.3969/j.issn.1001-6872.2005.02.002 [52] 夏群科, 2005. 大陆深俯冲过程中的水: "名义上无水矿物(NAMs)"的信息. 矿物岩石地球化学通报, 24(1): 1-6. doi: 10.3969/j.issn.1007-2802.2005.01.001 [53] 夏群科, 陈道公, 郭立鹤, 1998. 女山幔源单斜辉石巨晶中的结构OH. 科学通报, 43(16): 1764-1767. doi: 10.3321/j.issn:0023-074X.1998.16.017 [54] 夏群科, 陈道公, Rossman, G. R., 2000. 高压超高压变质流体的一种重要载体: 名义上的无水矿物. 地质论评, 46: 461-465. doi: 10.3321/j.issn:0371-5736.2000.05.003 [55] 章军峰, 金振民, GreenⅡ, H. W., 等, 2000. 大陆深俯冲带中的水: 来自大别山超高压榴辉岩的证据. 科学通报, 45(17): 1889-1894. doi: 10.3321/j.issn:0023-074X.2000.17.018 [56] 章军峰, 金振民, GreenⅡ, H. W., 2005. 结构水引起的榴辉岩变形组构和变形机制. 科学通报, 50(6): 559-564. doi: 10.3321/j.issn:0023-074X.2005.06.010